
Sitecore E-Commerce Fundamental Edition 1.1
The Sitecore E-Commerce API Reference Guide Rev: 13 May 2011

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Sitecore E-Commerce Fundamental Edition 1.1

The Sitecore E-Commerce
API Reference Guide
A reference guide for the Sitecore E-Commerce API

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 2 of 60

Table of Contents

Chapter 1 Introduction .. 3
1.1 Glossary ... 4

Chapter 2 The SEFE API .. 5
2.1 The SEFE Configuration Components .. 7

2.1.1 Configuration Contracts .. 9
2.2 The SEFE Customer Components .. 11

2.2.1 The Customer Contracts ... 12
2.3 The SEFE Product Components ... 14

2.3.1 The Product Contracts .. 15
2.3.2 Product Information Management ... 18

Using Product Factory to Create a Product Instance.. 18
Using Product Specification to Extend Products .. 20
Entity Mappers .. 22
Product Repository.. 25

2.4 The SEFE Product Catalog Components .. 27
2.4.1 The Product Catalog Contract... 27

2.5 The SEFE Order Components .. 29
2.5.1 The Order Contracts ... 30
2.5.2 Extending the OrderLine ... 31
2.5.3 Extending the OrderLine Data Template ... 31
2.5.4 Extending the OrderManager .. 32
2.5.5 Extending the OrderLineMappingRule .. 35

2.6 The SEFE Product Stock Components ... 36
2.6.1 The Product Stock Contracts .. 36

2.7 The SEFE Shipping Components ... 38
2.7.1 The Shipping Contract .. 38

2.8 The SEFE Shopping Cart Components .. 39
2.8.1 The Shopping Cart Contracts ... 39
2.8.2 Extending the ShoppingCartLine .. 40
2.8.3 Extending the ShoppingCartManager ... 41

2.9 The SEFE Pricing Components .. 43
2.9.1 The Pricing Contracts ... 44

2.10 The SEFE Payment Providers Components ... 47
2.10.1 The Payment Providers Contracts... 48

2.11 The SEFE Content-to-Object Mapping Components ... 50
2.11.1 The Content-to-Object Mapping Contracts .. 50

2.12 The SEFE Search Provider Components .. 52
2.12.1 The Search Provider Contracts ... 52

2.13 The SEFE Analytics Component... 54
2.13.1 The Analytics Contract .. 54

2.14 The SEFE Product Resolver Components .. 55
2.14.1 The Product Resolver Contracts ... 55

2.15 Miscellaneous SEFE Components .. 57
2.15.1 Miscellaneous Contracts ... 57

2.16 Web Shop Site Settings .. 59

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 3 of 60

Chapter 1

Introduction

This guide describes the Sitecore E-Commerce Fundamental Edition (SEFE) API and
some useful extensions to its functionality.

It is useful for developers who are looking for information about the SEFE API. It gives
the reader a description for the contract/class functionality, parent classes,
implementation, important methods/properties and some sample code.

This document contains the following chapters:

 Chapter 1 — Introduction
This chapter is an introduction to the guide.

 Chapter 2 — The SEFE API
This chapter is an API reference.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 4 of 60

1.1 Glossary

This section defines the terms that are used in this guide.

 Component: is a package or a module that encapsulates a set of contracts and implementations
or related functionalities or data.

 Contract: is an interface or an abstract class.

 Implementation: is a class that implements a contract

 Object: is an instance of a class.

 Unity
1
: Unity is a lightweight, extensible dependency injection container. It facilitates building

loosely coupled applications and provides developers with the following advantages:

o Simplified creation of objects, especially for hierarchical object structures and dependencies

o Abstraction of requirements; this allows developers to specify dependencies at run time or in
configuration and simplify management of crosscutting concerns

o Increased flexibility by deferring component configuration to the container

o Service location capability, which allows clients to store or cache the container

o Instance and type interception

1
 For more information about the Unity Application Block, see http://unity.codeplex.com/,

http://msdn.microsoft.com/en-us/library/ff663144.aspx and the SEFE Developer’s cookbook where the
Unity configuration is explained in more details.

http://unity.codeplex.com/
http://msdn.microsoft.com/en-us/library/ff663144.aspx

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 5 of 60

Chapter 2

The SEFE API

This chapter describes the SEFE contracts that constitute the SEFE API.

SEFE uses Unity which has a component-based architecture to configure a number of
contracts that exist in assemblies that match their namespaces. The
Sitecore.Ecommerce.DomainModel.dll is the assembly that contains the contracts

and The Sitecore.Ecommerce.Kernel.dll assembly that contains the default

implementations.

Each section in this chapter represents a component in SEFE. In each section, there are
class diagrams to show the contracts and corresponding default implementations of each
of the components, tables to describe each contract’s functionality, implementation and
sometimes sample code snippets.

There is also a section that describes the webshop site settings.

This chapter contains the following sections:

 The SEFE Configuration Components

 The SEFE Customer Components

 The SEFE Product Components

 The SEFE Product Catalog Components

 The SEFE Order Components

 The SEFE Product Stock Components

 The SEFE Shipping Components

 The SEFE Shopping Cart Components

 The SEFE Pricing Components

 The SEFE Payment Providers Components

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 6 of 60

 The SEFE Content-to-Object Mapping Components

 The SEFE Search Provider Components

 The SEFE Analytics Component

 The SEFE Product Resolver Components

 Miscellaneous SEFE Components

 Web Shop Site Settings

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 7 of 60

2.1 The SEFE Configuration Components

The SEFE configuration contracts and implementation classes describe the various configuration options
that control how a variety of system components work. Some of these classes are about presentation
logic.

This set of components consists of two groups: non-presentation related and presentation related.

Non-Presentation Related Configuration Objects

The following class diagram gives you an overview of the non-presentation related configuration
contracts:

The following class diagram gives you an overview of the implementation classes of the non-presentation
related configuration contracts:

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 8 of 60

Presentation Related Configuration Objects

The following class diagram gives you an overview of the presentation related configuration contracts:

The following class diagram provides an overview of the implementation classes of the presentation
related configuration contracts:

Note

We recommend that you do not modify the DesignSettings, ShoppingCartSettings and

ShoppingCartSpotSettings objects because they are read by the presentation components.

However, you can safely extend them by extending the contract and the implementation and configuring
them in the Unity.config file.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 9 of 60

2.1.1 Configuration Contracts

The following table describes each of the configuration related contracts. It presents the contract’s
functionality and default implementation.

It also presents the parent contract that this class implements.

Contract Description

BusinessCatalogSettings The default implementation of the Domain Model uses
this contract —
Sitecore.Ecommerce.DomainModel.Configurati

ons.BusinessCatalogSettings — to determine the

root items for various SEFE business information stores,
such as the product and order stores.

The default implementation of this contract —
Sitecore.Ecommerce.Configurations.Business

CatalogSettings — retrieves field values from the

Site Settings/Business Catalog item of the current site —

(<home>/Site Settings/Business Catalog).

Note
You can change the Site settings location by changing the
following attribute value in the site registration.
EcommerceSiteSettings="/Site Settings".

See example site registration in
Sitecore.Ecommerce.Examples.config.

DesignSettings Sitecore.Ecommerce.DomainModel.Configurati

ons.DesignSettings exposes the layout and

presentation configuration settings for the presentation
components on the managed website(s).

The default implementation of this contract —
Sitecore.Ecommerce.Configurations.DesignSe

ttings — retrieves field values from the Site
Settings/Design Settings of the current site —

(<home>/Site Settings/Design Settings).

GeneralSettings Sitecore.Ecommerce.DomainModel.Configurati

ons.GeneralSettings exposes the global

configuration settings.

The default implementation of this contract —
Sitecore.Ecommerce.Configurations.GeneralS

ettings — retrieves field values from the Site
Settings/General item of the current site —

(<home>/Site Settings/General).

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 10 of 60

Contract Description

ShoppingCartSettings Sitecore.Ecommerce.DomainModel.Configurati

ons.ShoppingCartSettings exposes the

configuration settings for individual shopping carts.

The default implementation of this contract —
Sitecore.Ecommerce.Configurations.Shopping

CartSettings — manages information in the Site
Settings/Shopping Cart item of the current site —

(<home>/Site Settings/Shopping Cart).

ShoppingCartSpotSettings Sitecore.Ecommerce.DomainModel.Configurati

ons.ShoppingCartSpotSettings exposes the

configuration settings for the presentation components
that display an individual shopping cart.

The default implementation of this contract —
Sitecore.Ecommerce.Configurations.Shopping

CartSpotSettings — accesses the Site
Settings/Shopping Cart Spot item of the current site —

(<home>/Site Settings/Shopping Cart Spot).

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 11 of 60

2.2 The SEFE Customer Components

The SEFE Customer model consists of CustomerInfo and ICustomerManager contracts that are

used to provide and manage the customer’s information.

The following class diagram gives you an overview of the Customer contracts:

The default implementations of the Customer related contracts are using the Sitecore ASP.NET
membership provider. The setting that indicates, which security roles the users should be members of, is
configured by the DefaultCustomerRoles property of the GeneralSettings class, see the section

Configuration Contracts.

SEFE creates users in the site context domain with the default implementation.

Note
The domain can be specified at the site definition in the Web.config file. If the roles specified in setting

DefaultCustomerRoles are not in that domain, then the users will not be added to the roles and a log

entry will be created.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 12 of 60

The following class diagram gives you an overview of the customer implementation:

2.2.1 The Customer Contracts

The following table describes each of the customer related contracts. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class implements.

Contract Description

CustomerInfo Sitecore.Ecommerce.DomainModel.Users.CustomerInfo

exposes information about a customer.

The default implementation of this contract —
Sitecore.Ecommerce.Users.CustomerInfo — provides basic

customer information.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 13 of 60

Contract Description

ICustomerManager Sitecore.Ecommerce.DomainModel.Users.CustomerManage

r defines a programming interface for managing information about

customers.

The default implementation of this contract —
Sitecore.Ecommerce.Users.CustomerManager — manages

customer information in the Sitecore ASP.NET membership
database.

A pipeline called CustomerCreated can be modified or extended

to add custom logic. This pipeline is in located in the
Sitecore.Ecommerce.config file.

<customerCreated>
 <processor

type="Sitecore.Ecommerce.Pipelines.CustomerCreated.ConfigureSecurity,
Sitecore.Ecommerce.Kernel"/>

 <processor
type="Sitecore.Ecommerce.Pipelines.CustomerCreated.LogIn,
Sitecore.Ecommerce.Kernel"/>

 <processor
type="Sitecore.Ecommerce.Pipelines.CustomerCreated.SendNotification,
Sitecore.Ecommerce.Kernel"/>

 </customerCreated>

As a default setting, all roles defined in the general setting
―DefaultCustomerRoles‖ are added to the users membership.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 14 of 60

2.3 The SEFE Product Components

The following class diagram gives you an overview of the product contracts:

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 15 of 60

The following class diagram gives you an overview of the product implementation:

2.3.1 The Product Contracts

The following table describes each of the product related contracts. It presents the contract’s functionality
and default implementation. It also presents the parent contract that this class implements.

Contract Description

IProductRepository Sitecore.Ecommerce.DomainModel.Products.IProduc

tRepository defines a programming interface for managing a

product catalog.

The default implementation of this contract —
Sitecore.Ecommerce.Products.ProductRepository —
manages the descendants of the item specified in the Business
Catalog item in the Products Link field of the current site —

(<home>/Site Settings/Business Catalog).

Examples:
// Reading default product data

publ1ic void

ShouldReadDefaultProductData(IProductRepository repository)

 {

 ProductBaseData productBase =

repository.Get<ProductBaseData>("1002");

 Product product = productBase as Product;

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 16 of 60

Contract Description

 Assert.IsNotNull(product);

 }

// Reading custom product data

public void

ShouldReadCustomProductData(IProductRepository repository)

 {

 SlrCamera product =

repository.Get<SlrCamera>("1002");

string Exposure =

product.Specifications[“Exposure”];

 }

IProductRepositoryIt

em

Sitecore.Ecommerce.DomainModel.Products.IProduc

tRepositoryItem represents any item in a product repository,

such as a product or a product category. All the items in a
product repository implement this contract.

For more information about product repositories, see the section
The SEFE IProductRepository contract.

For more information about products, see The SEFE
ProductBaseData contract.

The default implementations of this contract include the
ProductBaseData and the ProductCategory contracts.

ProductBaseData Sitecore.Ecommerce.DomainModel.Products.Product

BaseData implements the IProductRepositoryItem and

the ITemplatedEntity interfaces. This contract presents

essential information about a product.

 Code

 EAN which stands for the European Article Number

 SKU which stands for the Stock-Keeping Unit.

 Title

This contract has a corresponding CMS template. This template
is registered in the Sitecore.Ecommerce.Config file

 <setting

name="Ecommerce.Product.BaseTemplateId" value="{02870C17-

4273-4242-89A4-E973C3CF8EC0}" />

Note

You should not replace or overwrite the ProductBaseData

contract and template. Instead create a custom product class
and inherit from it.

The default implementation of this contract —
Sitecore.Ecommerce.Products.Product — presents

common information about a product, such as the product name
and the product description.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 17 of 60

Contract Description

ProductCategory Sitecore.Ecommerce.DomainModel.Products.Product

Category implements the IProductRepositoryItem

interface and represents a category of products.

The default implementation of this contract —
Sitecore.Ecommerce.Products.ProductCategory —

represents basic information about a product category, such as
the product category name and the product category code.

ProductLine

Sitecore.Ecommerce.DomainModel.Products.Product

Line represents information about a specific product in a

business entity, such as the quantity of a product that is in a
shopping cart or order.

The default implementations of this contract include the
OrderLine contract and the ShoppingCartLine contract.

ProductSpecification

Sitecore.Ecommerce.DomainModel.Products.

ProductSpecification presents product specifications in a

dictionary-like format. It contains a list of key-value pairs which
describes each item in the specifications collection.

For example:

 The specification for the SLR camera has the fields:
―Effective Pixels‖ and ―Image Sensor‖.

 The specification for the Lenses has the fields: ―Focal
Length‖, ―Maximum Aperture‖ and ―Minimum Aperture‖.

For more information, see the section Using Product
Specification to Extend Products.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 18 of 60

Contract Description

ProductFactory Sitecore.Ecommerce.DomainModel.Products.Product

Factory is used for product instance creation. The Create

method receives product template ID and returns a new product
instance based on the ProductBaseData contract.

The default implementation of this contract is
Sitecore.Ecommerce.Products.ItemProductFactory.

The default product factory does two things:

1. It returns a product instance. It resolves the product

from Unity.config file using the template parameter

of the Create method. In Unity the mapping between

the template ID and the product class is configured like
the following example, where the name attribute
contains the template ID:

<register type="ProductBaseData"

mapTo="SlrCameraProduct" name="{B072B7C7-6F3F-4316-

B8D7-010629AEBEF1}" />

2. It populates the ProductSpecification collection.

For more information, see the section How to extend
products using product specifications.

Note
Creating a product using a product factory will create the
product instance and not the corresponding product item in the
CMS.

2.3.2 Product Information Management

This section describes some product information management improvements.

There are two ways to add custom product information to SEFE:

 Use the Product Specifications collection for standard fields that contains simple product
specification data. This is the recommended approach if you only need one product class that
handles many specialized product templates in CMS (one – to – many relationship). For this to
work and to be able read the data through the API, all the specification data (fields) must be
located in a template section called Specification. For more information, see the section Using
Product Specification to Extend Products.

 Creating some custom product classes for each specialized product template. This is the
recommended approach if you need to add fields to product templates which are not located in a
template section named Specification. In this case, you must create a custom product class to be
able to read the data through the API. For more information, see the section Creating a New
Product Class.

Using Product Factory to Create a Product Instance

The Product Factory component is used to construct instances of products classes.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 19 of 60

Contract and Implementation

The Product Factory located in the Sitecore.Ecommerce.DomainModel.Products namespace and

has one method Create, which takes a string parameter template and returns a product class instance

based on the ProductBaseData contract.

Example:

public abstract ProductBaseData Create(string template);

The default implementation of the factory is the
Sitecore.Ecommerce.Products.ItemProductFactory class that is located in

Sitecore.Ecommerce.Kernel.dll assembly. In the default implementation, the parameter

template is assumed to be a product template ID.

Creating a New Product Class

If you want to implement your own product class you can inherit from either:
Sitecore.Ecommerce.DomainModel.Products.ProductBaseData class or

Sitecore.Ecommerce.Products.Product class.

The base class for all the products is ProductBaseData from the DomainModel namespace. There is a
default product implementation located in the Kernel project which has some additional properties such
as Description and Brand. If you want to use your custom products along with the Sample Pages you
must inherit from the Product template and class. If not, you must create a custom template and inherit

from ProductBaseData.

Registering New Product Classes in Unity

The Product Factory instantiates product classes using Unity IoCContainer. By default,

ProductBaseData is mapped to the Product class:

Example:

<alias alias="ProductBaseData"

type="Sitecore.Ecommerce.DomainModel.Products.ProductBaseData, Sitecore.Ecommerce.DomainModel"/>

<alias alias="SitecoreProduct" type="Sitecore.Ecommerce.Products.Product,

Sitecore.Ecommerce.Kernel"/>

<container>

 <register type="ProductBaseData" mapTo="SitecoreProduct" />

</container>

You must register the new product classes in Unity giving it the template ID to map to.

The following snippet shows you how to register it.

Example:

<alias alias="FlashProduct" type="Sitecore.Ecommerce.Examples.Products.Flash,

Sitecore.Ecommerce.Custom"/>

<alias alias="LenseProduct" type="Sitecore.Ecommerce.Examples.Products.Lense,

Sitecore.Ecommerce.Custom"/>

<alias alias="OtherAccessoryProduct"

type="Sitecore.Ecommerce.Examples.Products.OtherAccessory, Sitecore.Ecommerce.Custom"/>

<alias alias="PsCameraProduct" type="Sitecore.Ecommerce.Examples.Products.PsCamera,

Sitecore.Ecommerce.Custom"/>

<alias alias="SlrCameraProduct" type="Sitecore.Ecommerce.Examples.Products.SlrCamera,

Sitecore.Ecommerce.Custom"/>

<container>

 <register type="ProductBaseData" mapTo="FlashProduct" name="{95681CF6-3635-49EC-A09A-

CC548FA62389}" />

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 20 of 60

 <register type="ProductBaseData" mapTo="LenseProduct" name="{8FAC8E12-7459-43F8-97E8-

1BC6840B9226}" />

 <register type="ProductBaseData" mapTo="OtherAccessoryProduct" name="{A93FA2C4-3AE4-

45C2-8C3F-EFA7E129537E}" />

 <register type="ProductBaseData" mapTo="PsCameraProduct" name="{7BD2FBC6-061B-40DD-

B1F9-D8603A701624}" />

 <register type="ProductBaseData" mapTo="SlrCameraProduct" name="{B072B7C7-6F3F-4316-

B8D7-010629AEBEF1}" />

</container>

Note:
The classes are implemented in the Sample Pages package.

Instantiating a Product

Example:

ProductFactory factory = Context.Entity.Resolve<ProductFactory>();

const string ShoeTemplate = "<Shoe Template ID>";

ProductBaseData product = factory.Create(ShoeTemplate);

If the template ID is not found in the database, the InvalidOperationException exception is thrown.

If a product class with a specific template ID is not registered in Unity, using the Name attribute, the

default mapping is used, which is the registration without the Name attribute.

Using Product Specification to Extend Products

ProductSpecification is a new business entity that is intended to simplify product information

management. It is a dictionary-like entity which allows dynamic storing and reading of key-value pair data.

The default implementation assumes that the product specifications are stored in a template section
called Specification. The fields located in the template section called Specification in all the inherited
templates are included in the same product Specifications collection. For example, if the SLRCamera
template inherits from the Cameras template and they both contain a template section called
Specification, then key-value pairs based on the fields from both templates are read and mapped to the

ProductSpecification collection on the product class, when the products are resolved through the

API.

Creating Product Templates with Specifications

To extend the product information with new fields:

1. Create a new product template and inherit from a template
/sitecore/templates/Ecommerce/Product/Product.

2. Create a template section called Specification.

3. Add fields to the section that will contain the additional specification data.

Now your product template is ready for use. The following is an example of a specialized Shoe template
that adds two additional fields Color and Size to the template section called Specification. These fields

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 21 of 60

will then be mapped to the Specifications collection of the product instance.

Creating a Product

To create a new product using the SEFE API:

1. Create a product instance using the Product Factory.

2. Populate the product data along with the key value pairs in the Specifications collection.

3. Save the product using Product Repository — see the section Saving a Product.

Populating Product Data

The default Product Factory implementation uses the Template parameter to read all the specification
fields located in the Specification sections of the product template and the inherited templates. When the
factory creates the product instance, the Specifications collection is populated with the fields found in the
new product instance. In the Shoe example, it will contain two keys: Color and Size that were read from
Shoe template.

The following snippet shows you how to set data to the product instance.

Example:

product.Code = "1001";

product.Title = "Sandals";

product.Specifications["Color"] = "Black";

product.Specifications["Size"] = "36-38";

Any attempts to set collection values for keys that are not part of the templates sections called
Specification and consequently not a part of the Keys in the collection, will result in the exception

KeyNotFoundException.

Example:

product.Specifications["Some invalid key "] = "any value"; // throws

KeyNotFoundException.

Saving a Product

You must use ProductRepository instance to store new products in the CMS.

If you use the Product Factory to create a product instance (see section Instantiating a product), it will just
create the object instance and not the corresponding product item in the CMS. To create and save the
product in the CMS, you must call an additional method.

The following snippet shows you how to call it.

Example:

IProductRepository repository = Context.Entity.Resolve<IProductRepository>();

repository.Create(product);

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 22 of 60

Reading Product Data

You must use the product repository to read the product data. The keys-value pairs which are located in
the Specifications collection depend on the fields in the template sections named Specification of the
corresponding product template, as described in the section Populating the Product Data. If the template
has base templates that also contain Specification sections, the keys are aggregated into the same
Specifications collection.

Example:

IProductRepository repository = Context.Entity.Resolve<IProductRepository>();

ProductBaseData camera = repository.Get<ProductBaseData>("1002");

Assert.AreEqual("10.1 million", camera.Specifications["Effective Pixels"]);

ProductBaseData lense = repository.Get<ProductBaseData>("4001");

Assert.AreEqual("105mm (157.5mm when used with Nicam DX format) ",

lense.Specifications["Focal length"]);

ProductBaseData flash = repository.Get<ProductBaseData>("2002");

Assert.AreEqual("25 to 1000 ", flash.Specifications["ISO range in TTL auto flash

mode"]);

Entity Mappers

SEFE contains a number Entity mappers designed to simplify data mapping between the SEFE entities
and the CMS items. It is possible to convert primitive and custom types if custom converters are
implemented.

Note:
Only Get methods of the default Product Repository uses Entity Mappers.

How It Works

An Entity Mapper has a simple Map method which gets the source and the target instances. It analyzes

the source type members and creates a list of the Member Converters. It calls each specific member
converter and saves the results to the target object.

Default Mappers Implementation

There are two default Entity Mappers available by default that convert entities to items and vice-versa.

Example:

<alias alias="EntityToItemMapper"

type="Sitecore.Ecommerce.Data.Mapping.EntityToItemMapper, Sitecore.Ecommerce.Kernel"/>

<alias alias="ItemToEntityMapper"

type="Sitecore.Ecommerce.Data.Mapping.ItemToEntityMapper, Sitecore.Ecommerce.Kernel"/>

<container>

 <register type="EntityMapper[IEntity, Item]" mapTo="EntityToItemMapper" />

 <register type="EntityMapper[Item, IEntity]" mapTo="ItemToEntityMapper" />

</container>

Entity Member Converters

The Entity member converters are designed to convert a specific entity member type to a storage object.
and vice-versa. The storage object is an item in the default implementation.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 23 of 60

Creating a New Converter

All the entity member converters should implement either the
Sitecore.Ecommerce.DomainMode.Data.IEntityMemberConverter interface or inherit from the
Sitecore.Ecommerce.DomainModel.Data.EntityMemberConverter<TEntityMember,

TStorage> class.

The implementation based on the abstract class is recommended. It allows using strongly typed
parameters and avoids type casting.

Resolving a Converter

All the converters must be registered in Unity. The Sitecore.Ecommerce.Data.Mapping.

EntityMemberConverterLookupTable class is responsible for resolving the converters. The

converters are resolved according to the following algorithm:

1. If the entity member has been augmented with the SEFE specific Entity attribute, the
MemberConverter property of Entity attribute explicitly specifies the exact Converter to use.

The MemberConverter property must contain a name of a Converter specified in Unity and it

will throw an exception, otherwise.

2. If no explicit Entity attribute with the MemberConverter property set is specified for an entity

member, the DataMapper tries to combine the entity member type name with the suffix

EntityMemberConverter. That is the default way that Converters such as

BooleanEntityMemberConverter and DateTimeEntityMemberConverter are resolved.

3. If the first two steps have not resolved the default converter —
ConvertibleEntityMemberConverter — is used.

Default Implementation

The Entity member Converters are located in the
Sitecore.Ecommerce.Data.Mapping.Converters namespace. Four entity member Converters are

available by default:

 ConvertibleEntityMemberConverter

 BooleanEntityMemberConverter

 DateTimeEntityMemberConverter

 ProductSpecificationEntityMemberConverter

The default entity member converters registered in the Unity.config file:

<alias alias="ConvertibleEntityMemberConverter"

type="Sitecore.Ecommerce.Data.Mapping.Converters.ConvertibleEntityMemberConverter,

Sitecore.Ecommerce.Kernel"/>

<alias alias="BooleanEntityMemberConverter"

type="Sitecore.Ecommerce.Data.Mapping.Converters.BooleanEntityMemberConverter,

Sitecore.Ecommerce.Kernel"/>

<alias alias="DateTimeEntityMemberConverter"

type="Sitecore.Ecommerce.Data.Mapping.Converters.DateTimeEntityMemberConverter,

Sitecore.Ecommerce.Kernel"/>

<alias alias="ProductSpecificationEntityMemberConverter"

type="Sitecore.Ecommerce.Data.Mapping.Converters.ProductSpecificationEntityMemberConverter,

Sitecore.Ecommerce.Kernel"/>

<container>

 <register type="IEntityMemberConverter" mapTo="ConvertibleEntityMemberConverter" />

 <register type="IEntityMemberConverter" mapTo="BooleanEntityMemberConverter"

name="BooleanEntityMemberConverter" />

 <register type="IEntityMemberConverter" mapTo="DateTimeEntityMemberConverter"

name="DateTimeEntityMemberConverter" />

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 24 of 60

 <register type="IEntityMemberConverter"

mapTo="ProductSpecificationEntityMemberConverter"

name="ProductSpecificationEntityMemberConverter" />

</container>

Convertible Entity Member Converter

The ConvertibleEntityMemberConverter is the default entity member converter which is used to

map all the primitive types which implement the System.IConvertible interface.

Note

The convertor does not map Boolean and DateTime values.

BooleanEntityMemberConverter and DateTimeEntityMemberConverter

Sitecore stores Boolean and DateTime values types in a specific format and that is why the types have

their own specific converters.

ProductSpecificationEntityMemberConverter

The product Specifications collection is not a simple property type and therefore has its own converter.
The ProductSpecificationEntityMemberConverter takes care of converting all the key-value

pairs mapped between the collection and the product template. It uses the algorithm for converting the
values that is described in the section Resolving a Converter.

Field-Based Entity Member Converter

You must use the Sitecore.Ecommerce.Data.Mapping.FieldBasedEntityMemberConverter

class as a base class for converters that are designed to work with item fields. The class has the
StorageObject property of type Sitecore.Data.Fields.Field and contains the storage field.

How to Create Custom Entity Class

There are some examples of custom products located in the
Sitecore.Ecommerce.Examples.Products namespace of the Sitecore.Ecommerce.Custom

assembly. Here is an example for the SLRCamera:

Example:

namespace Sitecore.Ecommerce.Examples.Products

{

 using Ecommerce.Products;

 // <summary>

 // Defines the SLR camera class.

 // </summary>

 public class SlrCamera : Product

 {

 // <summary>

 // Gets or sets the effective pixels.

 // </summary>

 // <value>

 // The effective pixels.

 // </value>

 public string EffectivePixels { get; set; }

 // <summary>

 // Gets or sets the image sensor.

 // </summary>

 // <value>

 // The image sensor.

 // </value>

 public string ImageSensor { get; set; }

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 25 of 60

 }

}

This class extends the default Product class with two new properties EffectivePixels and

ImageSensors. The properties are mapped to the template fields Effective Pixels and Image Sensors.

Note that item field names contain spaces and can be mapped correctly. This logic for resolving the field
name mapping is implemented in the Sitecore.Ecommerce.Data.Mapping.FieldNamingPolicy

class.

Product Repository

How to Create Product in a Category

This code shows how to create a Binocular product in a given category. There is a test template Binocular
that adds some new specification fields. The example creates a new instance of the default product class
based on the given template ID, specifies some test values and saves it in the Binoculars category of the
repository.

Example:

namespace Sefe.Samples

{

 using Sitecore.Ecommerce;

 using Sitecore.Ecommerce.DomainModel.Products;

 public class ProductRepositorySample

 {

 public void HowToCreateProductInCategory()

 {

 // Instantiate Product Repository using Unity IoCContainer.

 IProductRepository repository = Context.Entity.Resolve<IProductRepository>();

 // Get the category from the repository to ensure that it exists.

 ProductCategory binocularsCategory = repository.Get<ProductCategory>("Binoculars");

 // Create new category if nothing found.

 if (binocularsCategory == null)

 {

 binocularsCategory = Context.Entity.Resolve<ProductCategory>();

 // Specify required product categury parameters such Code and Name.

 // Code is used to find a category in repository.

 // Name is a product item name in default implementation.

 binocularsCategory.Code = "Binoculars";

 binocularsCategory.Name = "Binoculars";

 repository.Create(binocularsCategory);

 }

 // Instantiate Product Factory to create a product instance.

 ProductFactory factory = Context.Entity.Resolve<ProductFactory>();

 // Create instance of SLR camera product class.

 const string BinocularTemplateId = "{4703A513-F89A-4F45-96B9-D3CE94A3E43A}";

 ProductBaseData binocular = factory.Create(BinocularTemplateId);

 binocular.Code = "8x42HG L DCF";

 binocular.Name = "8x42HG L DCF";

 // Fill the product specifications.

 binocular.Specifications["Magnification"] = "8";

 binocular.Specifications["Objective diameter"] = "42";

 binocular.Specifications["Angular field of view - Real degree"] = "7.0";

 binocular.Specifications["Angular field of view - Apparent degree"] = "52.1";

 binocular.Specifications["Field of view at 1000m"] = "122";

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 26 of 60

 binocular.Specifications["Exit pupil"] = "5.3";

 binocular.Specifications["Relative brightness"] = "28.1";

 binocular.Specifications["Eye relief"] = "20.0";

 binocular.Specifications["Close focusing distance"] = "3.0";

 binocular.Specifications["Weight"] = "795";

 binocular.Specifications["Length"] = "157";

 binocular.Specifications["Width"] = "139";

 binocular.Specifications["Interpupillary distance adjustment"] = "56-72";

 // Create new product in the repository and put it into Binoculars category.

 repository.Create<ProductBaseData, ProductCategory>("Binoculars", binocular);

 }

 }

}

The Binocular template is inherited from the /sitecore/templates/Ecommerce/Product/Product

template that is a base for all the product templates. The following image shows the fields used in the
example:

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 27 of 60

2.4 The SEFE Product Catalog Components

The following class diagram gives you an overview of the product catalog contracts:

The following class diagram gives you an overview of the product catalog implementation:

2.4.1 The Product Catalog Contract

The following table describes each of the product catalog related contract. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class implements.

Contract Description

ICatalogProductResol

veStrategy

Sitecore.Ecommerce.DomainModel.Catalogs.ICatalo

gProductResolveStrategy defines the API that should be

used to retrieve specified products from a product catalog.
Sitecore provides two default implementations of the
ICatalogProductResolveStrategy contract:

 The Product List product resolution strategy
(Sitecore.Ecommerce.Catalogs.ProductListCa

talogResolveStrategy) retrieves one or more items

based on their IDs.

 The Query product resolution strategy

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 28 of 60

Contract Description

(Sitecore.Ecommerce.Catalogs.QueryCatalogP

roductResolveStrategy) returns products that

match the search query.

When you create an item that presents a number of products on
a website, you must use one of the
ICatalogProductResolveStrategy implementations to

determine how to specify which products should be displayed.
SEFE stores the user’s selections as parameters in the fields of
the item, and the presentation components use those fields to
determine which products to display.

The Product Page editor that appears for items based on the
Ecommerce/Product Categories/Product Search

Group data template uses these two

ICatalogProductResolveStrategy implementations.

SEFE manages the ICatalogProductResolveStrategy

definition items beneath the
Sitecore/System/Modules/Ecommerce/System/Produc

t Selection Method item.

The
Sitecore.Ecommerce.Xsl.XslExtensions.GetProduct

sForCatalog() XSL extension method (intended for use with

items based on the Ecommerce/Product

Categories/Product Search Group data template) returns

the list of products that were retrieved using the strategy
selected in the current item. To expose this method as
sc:GetProductsForCatalog() in an XSL rendering, add the

following attribute to the /xsl:stylesheet element in the

.xslt file:
xmlns:ec="http://www.sitecore.net/ec"

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 29 of 60

2.5 The SEFE Order Components

The following class diagram gives you an overview of the order contracts:

The following class diagram gives you an overview of the order implementation:

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 30 of 60

2.5.1 The Order Contracts

The following table describes each of the order related contracts. It presents the contract’s functionality
and default implementation. It also presents the parent contract that this class implements.

Contract Description

Order Sitecore.Ecommerce.DomainModel.Orders.Order exposes

information about individual orders.

The default implementation of this contract —
Sitecore.Ecommerce.Orders.Order — represents the

descendants of the item specified in the Business Catalog in the
Orders Link field of the current site — (<home>/Site

Settings/Business Catalog).

To integrate an external order management system, you do not need
to implement the Order contract. Instead, implement the

IOrderManager contract to manage orders.

OrderStatus Sitecore.Ecommerce.DomainModel.Orders.OrderStatus

presents the status of an order.

Each of the following contract implementations can contain logic to
apply when the system updates the status of an order.

The default OrderStatus implementations include:

 Completed
(Sitecore.Ecommerce.Orders.Statuses.Completed)

 Closed
(Sitecore.Ecommerce.Orders.Statuses.Closed)

 Held (Sitecore.Ecommerce.Orders.Statuses.Held)

 Pending
(Sitecore.Ecommerce.Orders.Statuses.Pending)

 Processing
(Sitecore.Ecommerce.Orders.Statuses.Processing)

 Canceled
(Sitecore.Ecommerce.Orders.Statuses.Canceled)

 New (Sitecore.Ecommerce.Orders.Statuses.New)

 Captured
(Sitecore.Ecommerce.Orders.Statuses.Captured)

OrderLine Sitecore.Ecommerce.DomainModel.Orders.OrderLine

implements the ProductLine class and exposes information about

an order line item on an order.

The default implementation of this contract —
Sitecore.Ecommerce.Orders.OrderLine — represents the

descendants of an order item.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 31 of 60

Contract Description

IOrderManager Sitecore.Ecommerce.DomainModel.Orders.IOrderManager

defines a programming interface for managing orders.

This contract has two implementations:

 OrderManager in the Kernel. This implementation accesses

the descendants of the item specified in the Business Catalog
in the Orders Link field of the context site — (<home>/Site

Settings/Business Catalog).

Note
This implementation writes order information to the Sitecore
Master database.

 The RemoteOrderManager in the Service model. This

implementation is a service that is used when the content
management and content delivery systems have been
separated. For more information, see the E-Commerce Scaling
Guide.

2.5.2 Extending the OrderLine

In the same way as a ShoppingCartLine represents a product in a cart, an OrderLine represents a

product in an order. When an add-on product is added to an order, the corresponding OrderLine needs

to be able to store the "parent" product code.

This section describes how to extend the class that represents an OrderLine to accommodate the

"parent" product code.

4. In Visual Studio, add a new class named

Sitecore.MySEFE.Extensions.AddOn.OrderLine.

5. Add the following code to the class.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Sitecore.Marketing.SEFE.Extensions.AddOn

{

 public class OrderLine : Sitecore.Ecommerce.Orders.OrderLine

 {

 public string ParentProductCode { get; set; }

 }

}

2.5.3 Extending the OrderLine Data Template

In the previous section, you extended the OrderLine object to store a "parent" product code. By default,

SEFE uses Sitecore items to store order lines. Since the OrderLine has been extended, the data

template that represents an order line in Sitecore must also be extended.

This section explains how to extend the data template that represents an order line.

1. In the Content Editor, select the /sitecore/templates/Ecommerce/Order/OrderLine item.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 32 of 60

2. Create a field named ParentProductCode in the Data section.

Set the following properties:

Type: Single-Line Text

Unversioned: checked

Shared: checked

2.5.4 Extending the OrderManager

The ShoppingCartManager class stores information in memory, so its logic is pretty basic. The

OrderManager class does a lot more, but the basic idea is simple enough — take information from one

place (a cart) and save it to another (an order).

This section describes how to extend the OrderManager class in order to accommodate for the "parent"

product code.

1. In Visual Studio, add a new class called
Sitecore.MySEFE.Extensions.AddOn.OrderManager.

2. Add the following code to the class:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Microsoft.Practices.Unity;

using Sitecore.Configuration;

using Sitecore.Data;

using Sitecore.Data.Items;

using Sitecore.Diagnostics;

using Sitecore.Ecommerce.Data;

using Sitecore.Ecommerce.DomainModel.Carts;

using Sitecore.Ecommerce.DomainModel.Data;

using Sitecore.Ecommerce.DomainModel.Payments;

using Sitecore.Ecommerce.Orders.Statuses;

using Sitecore.Ecommerce.Payments;

using Sitecore.Ecommerce.Search;

using Sitecore.Ecommerce.Utils;

using Sitecore.SecurityModel;

namespace Sitecore.Marketing.SEFE.Extensions.AddOn

{

 public class OrderManager<T> : Sitecore.Ecommerce.Orders.OrderManager<T>

 where T : Sitecore.Ecommerce.DomainModel.Orders.Order

 {

 public OrderManager()

 : base()

 {

 }

 public OrderManager(ISearchProvider searchProvider)

 : base(searchProvider)

 {

 }

 private static TemplateItem _orderItemTemplate = null;

 protected virtual TemplateItem OrderItemTemplate

 {

 get

 {

 if (_orderItemTemplate == null)

 {

 var id = Settings.GetSetting("Ecommerce.Order.OrderItemTempalteId");

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 33 of 60

 _orderItemTemplate = this.Database.GetTemplate(new ID(id));

 }

 return _orderItemTemplate;

 }

 }

 private static TemplateItem _orderLineItemTemplate = null;

 protected virtual TemplateItem OrderLineItemTemplate

 {

 get

 {

 if (_orderLineItemTemplate == null)

 {

 var id =

Settings.GetSetting("Ecommerce.Order.OrderLineItemTempalteId");

 _orderLineItemTemplate = this.Database.GetTemplate(new ID(id));

 }

 return _orderLineItemTemplate;

 }

 }

 protected virtual Item OrdersItem

 {

 get

 {

 Assert.IsNotNull(this.Database, "Orders database not found.");

 return this.Database.GetItem(this.ItemId);

 }

 }

 protected virtual T CreateOrderEntity<TShoppingCart>(

 TShoppingCart shoppingCart) where TShoppingCart :

ShoppingCart

 {

 var orderEntity = Sitecore.Ecommerce.Context.Entity.Resolve<T>();

 var entityHelper = Sitecore.Ecommerce.Context.Entity.Resolve<EntityHelper>();

 entityHelper.CopyPropertiesValues<TShoppingCart, T>(shoppingCart, ref

orderEntity);

 return orderEntity;

 }

 protected virtual void AddOrderLines<TShoppingCart>(

 T orderEntity, TShoppingCart shoppingCart) where TShoppingCart :

ShoppingCart

 {

 foreach (ShoppingCartLine cartLine in shoppingCart.ShoppingCartLines)

 {

 var orderLine = ConvertToOrderLine(cartLine);

 orderEntity.OrderLines.Add(orderLine);

 }

 }

 protected virtual OrderLine ConvertToOrderLine<TShoppingCartLine>(

 TShoppingCartLine cartLine) where TShoppingCartLine :

ShoppingCartLine

 {

 var orderLine = Sitecore.Ecommerce.Context.Entity.Resolve<OrderLine>();

 orderLine.Product = cartLine.Product;

 orderLine.Totals = cartLine.Totals;

 orderLine.Quantity = cartLine.Quantity;

 orderLine.FriendlyUrl = cartLine.FriendlyUrl;

 orderLine.ParentProductCode = cartLine.ParentProductCode;

 return orderLine;

 }

 protected virtual void SetOrderDetails<TShoppingCart>(

 T orderEntity, TShoppingCart shoppingCart) where TShoppingCart :

ShoppingCart

 {

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 34 of 60

 var tData = Sitecore.Ecommerce.Context.Entity.Resolve<ITransactionData>();

 var persistentValue = tData.GetPersistentValue(

 shoppingCart.OrderNumber,

TransactionConstants.TransactionNumber);

 var transactionNumber = TypeUtil.TryParse<string>(persistentValue,

string.Empty);

 if (!string.IsNullOrEmpty(transactionNumber))

 {

 orderEntity.TransactionNumber = transactionNumber;

 }

 orderEntity.OrderDate = System.DateTime.Now;

 }

 protected virtual void SetOrderStatus<TShoppingCart>(

 T orderEntity, TShoppingCart shoppingCart) where TShoppingCart :

ShoppingCart

 {

 orderEntity.Status = Sitecore.Ecommerce.Context.Entity.Resolve<NewOrder>();

 orderEntity.ProcessStatus();

 }

 protected virtual void SaveOrder<TShoppingCart>(

 T orderEntity, TShoppingCart shoppingCart) where TShoppingCart :

ShoppingCart

 {

 Item orderItem;

 using (new SecurityDisabler())

 {

 orderItem = this.OrdersItem.Add(shoppingCart.OrderNumber,

 this.OrderItemTemplate);

 Assert.IsNotNull(orderItem, "Failed to create to order item");

 if (orderEntity is IEntity)

 {

 ((IEntity)orderEntity).Alias = orderItem.ID.ToString();

 }

 }

 try

 {

 this.SaveOrder(orderItem, orderEntity);

 }

 catch

 {

 using (new SecurityDisabler())

 {

 orderItem.Delete();

 }

 throw;

 }

 }

 public override T CreateOrder<TShoppingCart>(TShoppingCart shoppingCart)

 {

 Assert.IsNotNull(shoppingCart, "Shopping Cart is null");

 //Creating a new order means creating a new Sitecore item,

 //so get data template must be specified

 Assert.IsNotNull(this.OrderItemTemplate, "Order item template is null");

 var orderEntity = CreateOrderEntity(shoppingCart);

 AddOrderLines(orderEntity, shoppingCart);

 SetOrderDetails(orderEntity, shoppingCart);

 SetOrderStatus(orderEntity, shoppingCart);

 SaveOrder(orderEntity, shoppingCart);

 return orderEntity;

 }

 }

}

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 35 of 60

2.5.5 Extending the OrderLineMappingRule

SEFE handles the work of creating the Sitecore items needed to accommodate an order and its order
lines, as long as the order information is provided to SEFE. The OrderManager handles the order

information in SEFE. The OrderManager also specifies which data template should be used for the

order and order lines.

One thing that is not specified in the OrderManager, however, is the mapping of entity values to Sitecore

item fields. This "mapping rule"is the entity that handles this mapping. Since you added a new field on the
OrderLine class and the OrderLine data template, you need to define the mapping between the two.

This section describes how to extend the class that represents the OrderLineMappingRules in order

to map the new property in the OrderLine class to the corresponding field on the OrderLine data

template.

1. In Visual Studio, add a new class named
Sitecore.MySEFE.Extensions.AddOn.OrderLineMappingRule.

2. Add the following code to the class:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Sitecore.Ecommerce.Data;

using Sitecore.Ecommerce.Validators.Interception;

namespace Sitecore.Marketing.SEFE.Extensions.AddOn

{

 public class OrderLineMappingRule : Sitecore.Ecommerce.Data.OrderLineMappingRule

 {

 [Entity(FieldName = "ParentProductCode")]

 public virtual string ParentProductCode

 {

 get

 {

 if (this.MappingObject is OrderLine)

 {

 var line = this.MappingObject as OrderLine;

 return line.ParentProductCode;

 }

 return string.Empty;

 }

 [NotNullValue]

 set

 {

 if (this.MappingObject is OrderLine)

 {

 var line = this.MappingObject as OrderLine;

 line.ParentProductCode = value;

 }

 }

 }

 }

}

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 36 of 60

2.6 The SEFE Product Stock Components

The following class diagram gives you an overview of the product stock contracts:

The following class diagram gives you an overview of the product stock implementation:

2.6.1 The Product Stock Contracts

The following table describes each of the product stock related contracts. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class implements.

Contract Description

IProductStockManager Sitecore.Ecommerce.DomainModel.Products.IProduc

tStockManager allows you to read and update the stock

amount for specific products in the product repository.

Example:

public void ShouldReadStockFromProductItem()

 {

 IProductStockManager stockManager =

Context.Entity.Resolve<IProductStockManager>();

 ProductStockInfo stockInfo = new

ProductStockInfo { ProductCode = "1002" };

 long stock =

stockManager.GetStock(stockInfo).Stock;

 }

This contract has two implementations:

 The ProductPriceManager class in the Kernel.

 The RemoteProductPriceManager class in the

Service model. This implementation is a service that is
used in case of split content management and content
delivery environment.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 37 of 60

Contract Description

For more information, see the E-Commerce Scaling Guide.

ProductStock Sitecore.Ecommerce.DomainModel.Products.Product

Stock represents the stock amount of a given product returned

from the IProductStockManager.

The default implementation of this contract is the
Sitecore.Ecommerce.Products.ProductStock class,

which implements the IProductRepositoryItem interface.

PoductStockInfo Sitecore.Ecommerce.DomainModel.Products.Product

StockInfo is both the contract and the implementation

passed to IProductStockManager methods representing the

arguments being used.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 38 of 60

2.7 The SEFE Shipping Components

The following class diagram gives you an overview of the shipping contract:

The following class diagram gives you an overview of the shipping implementation:

2.7.1 The Shipping Contract

The following table describes the shipping related contract. It presents the contract’s functionality and
default implementation. It also presents the parent contract that this class implements.

Contract Description

ShippingProvider Sitecore.Ecommerce.DomainModel.Shippings.ShippingPr

ovider exposes information about a shipping system.

The default implementation of this contract —
Sitecore.Ecommerce.Shippings.ShippingProvider —

represents the children of the item specified in the System Links
section in the Shipping Providers Link field of the Business Catalog

of the current site — (<home>/Site Settings/Business

Catalog).

Note
The default implementation cannot communicate with the external
shipping providers.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 39 of 60

2.8 The SEFE Shopping Cart Components

The following class diagram gives you an overview of the shopping cart contracts:

The following class diagram gives you an overview of the shopping cart implementation:

2.8.1 The Shopping Cart Contracts

The following table describes each of the shopping cart related contracts. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class implements.

Contract Description

ProductLine See the section The Product Contracts.

IShoppingCartManager Sitecore.Ecommerce.DomainModel.Carts.IShoppingC

artManager defines a programming interface for managing the

content of a shopping cart.

The default implementation of this contract —
Sitecore.Ecommerce.Carts.ShoppingCartManager —

stores information in the ASP.NET session.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 40 of 60

Contract Description

Example:

public void ShouldAddProductToShoppingCart()

 {

 IShoppingCartManager cartManager =

Context.Entity.GetInstance<IShoppingCartManager>();

 cartManager.AddProduct("1002", 2);

 ShoppingCart cart =

Context.Entity.GetInstance<ShoppingCart>();

 IList<ShoppingCartLine> lines =

cart.ShoppingCartLines;

 }

ShoppingCart Sitecore.Ecommerce.DomainModel.Carts.ShoppingCa

rt exposes information about the state of an individual

shopping cart, such as the customer associated with the cart,
and the contents of the cart.

The default implementation of this contract —
Sitecore.Ecommerce.Carts.ShoppingCart —

implements typical shopping cart functionality.

ShoppingCartLine Sitecore.Ecommerce.DomainModel.Carts.

ShoppingCartLine implements the ProductLine class and

exposes information about a line item in a shopping cart.

The default implementation of this contract —
Sitecore.Ecommerce.Carts.ShoppingCartLine —

represents the descendants of an order item as described in the
section The SEFE Order.

2.8.2 Extending the ShoppingCartLine

When a product is added to a shopping cart, a shopping cart line is created. The shopping cart line
represents a product in the cart. An add-on is a product that is added to a cart, but some additional
information must be recorded.

You need to know if the product is an add-on for another product. This can be accomplished by saving
the product code for the "parent" product.

This section describes how to extend the class that represents a ShoppingCartLine in order to

accommodate this information.

1. In Visual Studio, add a new class named
Sitecore.MySEFE.Extensions.AddOn.ShoppingCartLine.

2. Add the following code to the class:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Sitecore.Marketing.SEFE.Extensions.AddOn

{

 public class ShoppingCartLine : Sitecore.Ecommerce.Carts.ShoppingCartLine

 {

 public string ParentProductCode { get; set; }

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 41 of 60

 }

}

2.8.3 Extending the ShoppingCartManager

You can use the ShoppingCartManager class to create the ShoppingCartLine and to add the

ShoppingCartLine to the cart.

This section describes how to extend the class that represents the ShoppingCartManager to

accommodate the "parent" product code.

1. In Visual Studio, add a new class named
Sitecore.MySEFE.Extensions.AddOn.ShoppingCartManager.

2. Add the following code to the class:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using Sitecore.Ecommerce;

using Sitecore.Ecommerce.Carts;

using Sitecore.Ecommerce.DomainModel.Prices;

using Sitecore.Ecommerce.DomainModel.Products;

using Sitecore.Ecommerce.DomainModel.Currencies;

namespace Sitecore.Marketing.SEFE.Extensions.AddOn

{

 public class ShoppingCartManager : Sitecore.Ecommerce.Carts.ShoppingCartManager

 {

 public ShoppingCartManager(IProductRepository productRepository,

 IProductPriceManager productPriceManager)

 : base(productRepository, productPriceManager)

 {

 }

 protected virtual ShoppingCartLine GetShoppingCartLine(

 string parentProductCode,

 string addonProductCode)

 {

 var product = GetProduct(parentProductCode);

 var addon = GetProduct(addonProductCode);

 var cart = Sitecore.Ecommerce.Context.Entity.GetInstance<ShoppingCart>();

 foreach (var line in cart.ShoppingCartLines)

 {

 if (string.Equals(line.Product.Code, addonProductCode))

 {

 var line2 = line as ShoppingCartLine;

 if (line2 == null)

 {

 continue;

 }

 if (string.Equals(line2.ParentProductCode, parentProductCode))

 {

 return line2;

 }

 }

 }

 return null;

 }

 protected virtual ProductBaseData GetProduct(string productCode)

 {

 if (string.IsNullOrEmpty(productCode))

 {

 return null;

 }

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 42 of 60

 var repository =

Sitecore.Ecommerce.Context.Entity.Resolve<IProductRepository>();

 return repository.Get<ProductBaseData>(productCode);

 }

 public virtual void AddAddOn(string productCode, string parentProductCode)

 {

 var line = this.GetShoppingCartLine(productCode, parentProductCode);

 if (line != null)

 {

 return;

 }

 line = Sitecore.Ecommerce.Context.Entity.Resolve<ShoppingCartLine>();

 line.Product = GetProduct(productCode);

 line.ParentProductCode = parentProductCode;

 line.Quantity = 1;

 var cart = Sitecore.Ecommerce.Context.Entity.GetInstance<ShoppingCart>();

 var mgr =

Sitecore.Ecommerce.Context.Entity.GetInstance<IProductPriceManager>();

 line.Totals = mgr.GetProductTotals<Totals, ProductBaseData, Currency>(

 line.Product, cart.Currency,

line.Quantity);

 cart.ShoppingCartLines.Add(line);

 }

 }

}

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 43 of 60

2.9 The SEFE Pricing Components

The following class diagram gives you an overview of the pricing contracts:

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 44 of 60

The following class diagram gives you an overview of the pricing implementation.

2.9.1 The Pricing Contracts

The following table describes each of the pricing related contracts. It presents the contract’s functionality
and default implementation. It also presents the parent contract that this class implements.

Contract Description

Totals Sitecore.Ecommerce.DomainModel.Prices.Totals

implements the IDictionary interface and exposes

information about pricing totals for an order.

The default implementation of this contract —
Sitecore.Ecommerce.Prices.Totals — stores data in

session during transactions and persists that data in order
items as described in the section, The SEFE Order.

VatRegion Sitecore.Ecommerce.DomainModel.Addresses.VatRe

gion exposes information about a tax region.

IProductPriceManager Sitecore.Ecommerce.DomainModel.Prices.IProduct

PriceManager defines a programming interface for product

pricing.

This contract has two implementations:

 The ProductPriceManager class in the Kernel.

This implementation calculates the price for a product.
As different prices apply to different customers, a
Totals object is used to represent the price. The base

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 45 of 60

Contract Description

price comes from the pricing information stored on the
product definition item in the Product Meta Info section
in the Price field. The VAT rate that is associated with
the product is also included in this calculation.

Example:
public void GetProductTotalsTest()

 {

 IProductRepository productProvider =

Context.Entity.Resolve<IProductRepository>();

 ProductBaseData product =

productProvider.Get<ProductBaseData>(this.ProductI

temId.ToString());

 IProductPriceManager

productPriceManager =

Context.Entity.Resolve<IProductPriceManager>();

 Totals totals =

productPriceManager.GetProductTotals(product);

 }

 The RemoteProductStockManager class in the

Service model. This implementation is a service that is
used when the content management and content
delivery systems have been separated.

For more information, see the E-Commerce Scaling Guide.

ICurrencyConverter There are two currencies in SEFE: Master and Display
currency. You can set them in the General Settings item.
The Master currency is defining the default currency used in
the product repository and the Display currency is used in case
you want to display a different currency at the frontend. If
Master and Display currencies are different, the
implementation of the contract
Sitecore.Ecommerce.DomainModel.Currencies.ICur

rencyConverter is resolved and is responsible for

converting product price from Master currency to Display
currency. The default implementation uses the conversion
rates from Business Catalog.

Sitecore.Ecommerce.Prices.ProductPriceManager

uses the ICurrencyConverter interface.

The default implementation of this contract is
Sitecore.Ecommerce.Currencies.CurrencyConverte

r.

Currency Sitecore.Ecommerce.DomainModel.Currencies.Curr

ency exposes information about a currency.

The default implementation —
Sitecore.Ecommerce.Currencies.Currency — of this

contract represents the children of the item specified by the

 Business Catalog,

 System Links section,

 Currencies Link field
(<home>/Site Settings/Business Catalog).

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 46 of 60

Contract Description

ProductPriceBaseData Sitecore.Ecommerce.DomainModel.Products.Produc

tPriceBaseData

Represent product price info. Contains PriceMatrix (xml as
simple string) and product code. Implements
IProductRepository.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 47 of 60

2.10 The SEFE Payment Providers Components

The following class diagram gives you an overview of the payment provider contracts.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 48 of 60

The following class diagram gives you an overview of the payment provider implementation.

2.10.1 The Payment Providers Contracts

The following table describes each of the payment providers related contracts. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class implements.

Contract Description

PaymentSystem Sitecore.Ecommerce.DomainModel.Payments.P

aymentSystem exposes information about an online

payment provider gateway. For more information about
payment providers, see the documents Sitecore E-
Commerce Payment Providers Enhancement and
Sitecore E-Commerce Payment Providers Enhancement
Guide.

The default implementation of this contract —

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 49 of 60

Contract Description

Sitecore.Ecommerce.Payments.PaymentSystem

— represents a child of the item specified by the

 Business Catalog,

 System Links section,

 Payment Systems Link field
(<home>/Site Settings/Business Catalog).

PaymentProvider Sitecore.Ecommerce.DomainModel.Payments.P

aymentProvider is the base contract for all of the

SEFE payment providers.

This contract has two methods:

 Invoke

 ProcessCallback

IReservable Sitecore.Ecommerce.DomainModel.Payments.I

Reservable is an additional contract for payment

providers that is used for payment reservation and
deferred capturing.

This contract has three methods:

 Invoke to invoke a payment.

 Capture to capture a payment and save the

value of the payment as a persistent value in the
http context.

 CancelReservation to cancel a reservation

ITransactionData Sitecore.Ecommerce.DomainModel.Payments.I

TransactionData defines a programming interface to

persist payment transaction information between HTTP
requests.

The default implementation of this contract —
Sitecore.Ecommerce.Payments.TransactionDa

ta — stores data in the ASP.NET session.

For more information, see the document Sitecore E-Commerce Payment Method Reference Guide.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 50 of 60

2.11 The SEFE Content-to-Object Mapping Components

The following class diagram gives you an overview of the object content management data contracts.

2.11.1 The Content-to-Object Mapping Contracts

The following table describes each of the Content-to-Object Mapping (COM) related contracts. It presents
the contract’s functionality and default implementation. It also presents the parent contract that this class
implements.

Contract Description

IDataMapper Sitecore.Ecommerce.Data.IDataMapper defines a

programming interface to help various data manager objects abstract
storage.

The default implementation of this contract —
Sitecore.Ecommerce.Data.DataMapper — represents data as

Sitecore items.
The default IDataMapper implementation uses the Entity attribute

in .NET to determine the data templates and fields associated with
various data elements.

For example, the Entity attributes in square brackets (―[]‖) define the

ID of a data template for products and the name of a field in that data
template that contains the specified property:

[Entity(TemplateId = "{B87EFAE7-D3D5-4E07-A6FC-

012AAA13A6CF}")]

public class Product :

DomainModel.Products.ProductBaseData, IEntity

 {

 [Entity(FieldName = "Name")]

 public override string Name { get; [NotNullValue] set;

}

...

}

EntityHelper Sitecore.Ecommerce.Data.EntityHelper provides an API that

the default implementation of the IDataMapper contract uses to

access the value of the Entity attributes in .NET code. The class that
defines the EntityHelper contract also serves as the default

implementation of the contract.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 51 of 60

IEntityProvider Sitecore.Ecommerce.DomainModel.Data.IEntityProvider

provides an API to access a variety of similar data types.

The default implementation of this contract —
Sitecore.Ecommerce.Data.EntityProvider — retrieves data

of items based on the Ecommerce/Business Catalog/Option

Value data template or any data template that inherits from that data

template.
You can use the IEntityProvider contract to access information

about countries, country states, currencies, delivery alternatives,
language option values, notification options, payments, and VAT
option values.
For example, to access information about every country:

Using Sitecore.Ecommerce.DomainModel.Data;

Using Sitecore.Ecommerce.DomainModel.Addresses;

...

IEntityProvider<Country>

 countries =

Sitecore.Ecommerce.Context.Entity.Resolve<IEntityProvider<Country

>>();

foreach

(Country country

 in countries.GetAllEntities())

{

...

}

To use country code to access a specific country:
Country unitedStates = countries.GetEntityByCode("US");

IMappingRule Sitecore.Ecommerce.Data.IMappingRule defines a

programming interface that represents adapters for mapping between
physical and logical storage for complex types, including conversion
between system and Sitecore internal data types such as dates in the
ISO string format used by Sitecore.

Sitecore provides two default implementations of this contract:

 The Order mapping rule
(Sitecore.Ecommerce.Data.OrderMappingRule)

implementation of the IMappingRule contract adapts orders

from items in the content tree.

 The OrderLine mapping rule
(Sitecore.Ecommerce.Data.OrderLineMappingRule)

implementation of the IMappingRule contract adapts order

lines from items in the content tree.

The default implementation of this contract uses Unity to determine
which IMappingRule to use. The default configuration uses

OrderMappingRule and OrderLineMappingRule. However, you

could change the Unity.config file to use different IMappingRule

objects.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 52 of 60

2.12 The SEFE Search Provider Components

The following class diagram gives you an overview of the search provider contracts.

The following class diagram gives you an overview of the search provider implementation.

2.12.1 The Search Provider Contracts

The following table describes each of the contracts that are related to the payment providers. It presents
the contract’s functionality and default implementation. It also presents the parent contract that this class
implements.

Contract Description

ISearchProvider Sitecore.Ecommerce.Search.ISearchProvider defines a

programming interface for locating items that match specific criteria.

SEFE provides three implementations of this contract:

 The Lucene search provider
(Sitecore.Ecommerce.Search.LuceneSearchProvide

r).

 The Sitecore Query search provider
(Sitecore.Ecommerce.Search.SitecoreQuerySearch

Provider).

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 53 of 60

Contract Description

 The Sitecore Fast Query search provider
(Sitecore.Ecommerce.Search.FastQuerySearchProv

ider).

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 54 of 60

2.13 The SEFE Analytics Component

The following class diagram gives you an overview of the analytics contract.

2.13.1 The Analytics Contract

The following table describes the analytics contract. It presents the contract’s functionality and default
implementation. It also presents the parent contract that this class implements.

Contract Description

AnalyticsHelper This contract supports the integration between the Sitecore Online
Marketing Suite (OMS)

2
 and SEFE.

For more information about using APIs to access SEFE events, see
the classes in the
Sitecore.Ecommerce.Analytics.Components.PageEvents

namespace and the
Sitecore.Ecommerce.Analytics.AnalyticsHelper class.

2
 For more information about the OMS, see http://www.sitecore.net/en/Products/Sitecore-Online-

Marketing-Suite.aspx.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 55 of 60

2.14 The SEFE Product Resolver Components

The following class diagram gives you an overview the search product resolver contracts.

2.14.1 The Product Resolver Contracts

The following table describes each of the product resolver related contracts. It presents the contract’s
functionality and default implementation. It also presents the parent contract that this class implements.

Contract Description

ProductUrlProcessor Sitecore.Ecommerce.Catalogs.ProductUrlPro

cessor defines two programming interfaces —one that

determines the URL of a product item and another that
determines the product specified by a URL. Product
resolvers control how SEFE constructs and parses the
URLs of product pages.

SEFE provides multiple implementations for the
ProductUrlProcessor contract:

 Sitecore.Ecommerce.Catalogs.NamePro

ductUrlProcessor that uses product names.

 Sitecore.Ecommerce.Catalogs.CodePro

ductUrlProcessor that uses product codes.

 Sitecore.Ecommerce.Catalogs.NameAnd

CodeProductUrlProcessor that uses

product names and codes.
By default, the product URLs begin with the path to the
page that links to the product. For example, if the

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 56 of 60

Contract Description

Products item of a managed website contains a link to a
product called product_name with a code called
product_id, the default URL that is generated for that

product is /products/product_name.aspx,

/products/product_name_product_id.aspx, or

/products/product_id.aspx, depending on the

ProductUrlProcessor implementation that SEFE

applies.
For more information about the
ProductUrlProcessor implementation that SEFE

applies, see the How to Specify the Product URL Format
section.

VirtualProductResolver Sitecore.Ecommerce.Catalogs.VirtualProduc

tResolver defines an API to determine the Sitecore

item that represents a product. This item is specified by
a URL generated by a ProductUrlProcessor

implementation. The VirtualProductResolver

contract applies the ProductUrlProcessor contract

that is appropriate in the context to determine the item
specified by the URL. The ProductResolver

processor that SEFE adds to the httpRequestBegin

pipeline defined in the web.config file uses the

VirtualProductResolver to determine the item

associated with a requested URL.

The class that defines the VirtualProductResolver

contract also serves as the default implementation of the
VirtualProductResolver contract. For more

information about product URLs and product resolution,
see the corresponding sections.

VirtualProductResolverArgs Sitecore.Ecommerce.Catalogs.VirtualProduc

tResolverArgs is an argument class that wraps

paramters for passing it in the SEFE model.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 57 of 60

2.15 Miscellaneous SEFE Components

The following class diagram gives you an overview of the miscellaneous contracts.

The following class diagram gives you an overview of the miscellaneous implementation.

2.15.1 Miscellaneous Contracts

The following table describes each of the miscellaneous contracts. It presents the contract’s functionality
and default implementation. It also presents the parent contract that this class implements.

Contract Description

AddressInfo Sitecore.Ecommerce.DomainModel.Addresses.AddressInfo

exposes information about a physical address.

The default implementation of this contract —
Sitecore.Ecommerce.Addresses.AddressInfo — represents typical

address information.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 58 of 60

Contract Description

Country Sitecore.Ecommerce.DomainModel.Addresses.Country exposes

information about a country.

The default implementation of this contract —
Sitecore.Ecommerce.Addresses.Country — represents the

children of the item specified by the

 Business Catalog item,

 System Links Section,

 Countries Link field
(<home>/Site Settings/Business Catalog).

Notification

Option

Sitecore.Ecommerce.DomainModel.Shippings.NotificationOp

tion exposes information about how a customer prefers to receive

notification about the status of an order.

The default implementation of this contract —
Sitecore.Ecommerce.Shippings.NotificationOption —

specifies that Sitecore sends an e-mail to customers about each order that
they place on the webshop.

ICheckOut Sitecore.Ecommerce.DomainModel.CheckOuts.ICheckOut

defines a programming interface to determine or alter the state of the
shopping checkout process.

Before Sitecore renders a checkout page, the checkout page accesses the
properties and methods in the default implementation of the ICheckOut
contract to ensure that the preceding process has been completed.

IMail Sitecore.Ecommerce.DomainModel.Mails.IMail is used to send e-

mails using a template-based or a custom method.

It defines a programming interface for sending e-mail.

The default implementation of this contract —
Sitecore.Ecommerce.Mails.Mail — uses the MailServer,

MailServerUserName, MailServerPassword, and MailServerPort

settings in the Web.config file.

The Sitecore E-Commerce API Reference Guide

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 59 of 60

2.16 Web Shop Site Settings

To configure the web shop site settings, use the iisreset command to restart the Sitecore server.

These are the settings that are usually in Sitecore/Content/E-Commerce

Examples/Home/Webshop Site Settings.

This is because these settings are only read by the application when the Sitecore server starts. The
Sitecore instance scans the Sitecore.Ecommerce.config file, scans all the configuration files that

correspond to the entries in this file, accumulates them into the Web.config file, and caches them for

quick access.

This is a snippet from the Sitecore.Ecommence.config file.

 <initialize>

 <!-- Processor initialize the Unity container configuration on the first start. -

->

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.ConfigureEntities,

Sitecore.Ecommerce.Kernel"

patch:after="processor[@type='Sitecore.Pipelines.Loader.EnsureAnonymousUsers, Sitecore.Kernel']">

 <UnityConfigSource>/App_Config/Unity.config</UnityConfigSource>

 </processor>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.RegisterEcommerceProviders,

Sitecore.Ecommerce.Kernel"

patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.ConfigureEntities,

Sitecore.Ecommerce.Kernel']" method="InitializePaymentSystemProvider" />

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.RegisterEcommerceProviders,

Sitecore.Ecommerce.Kernel"

patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.ConfigureEntities,

Sitecore.Ecommerce.Kernel']" method="InitializeShippingSystemProvider" />

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.RegisterEcommerceProviders,

Sitecore.Ecommerce.Kernel"

patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.ConfigureEntities,

Sitecore.Ecommerce.Kernel']" method="InitializeNotificationOptionProvider" />

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.RegisterEcommerceProviders,

Sitecore.Ecommerce.Kernel"

patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.ConfigureEntities,

Sitecore.Ecommerce.Kernel']" method="InitializeCountryProvider" />

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.RegisterEcommerceProviders,

Sitecore.Ecommerce.Kernel"

patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.ConfigureEntities,

Sitecore.Ecommerce.Kernel']" method="InitializeCurrencyProvider" />

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.RegisterEcommerceProviders,

Sitecore.Ecommerce.Kernel"

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 60 of 60

patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.ConfigureEntities,

Sitecore.Ecommerce.Kernel']" method="InitializeVatRegionProvider" />

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.RegisterEcommerceProviders,

Sitecore.Ecommerce.Kernel"

patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.ConfigureEntities,

Sitecore.Ecommerce.Kernel']" method="InitializeOrderStatusProvider" />

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.RegisterEcommerceProviders,

Sitecore.Ecommerce.Kernel"

patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.ConfigureEntities,

Sitecore.Ecommerce.Kernel']" method="InitializeBusinessCatalogProviders" />

 </initialize>

	Chapter 1 Introduction
	1.1 Glossary

	Chapter 2 The SEFE API
	2.1 The SEFE Configuration Components
	2.1.1 Configuration Contracts

	2.2 The SEFE Customer Components
	2.2.1 The Customer Contracts

	2.3 The SEFE Product Components
	2.3.1 The Product Contracts
	2.3.2 Product Information Management
	Using Product Factory to Create a Product Instance
	Using Product Specification to Extend Products
	Entity Mappers
	Product Repository

	2.4 The SEFE Product Catalog Components
	2.4.1 The Product Catalog Contract

	2.5 The SEFE Order Components
	2.5.1 The Order Contracts
	2.5.2 Extending the OrderLine
	2.5.3 Extending the OrderLine Data Template
	2.5.4 Extending the OrderManager
	2.5.5 Extending the OrderLineMappingRule

	2.6 The SEFE Product Stock Components
	2.6.1 The Product Stock Contracts

	2.7 The SEFE Shipping Components
	2.7.1 The Shipping Contract

	2.8 The SEFE Shopping Cart Components
	2.8.1 The Shopping Cart Contracts
	2.8.2 Extending the ShoppingCartLine
	2.8.3 Extending the ShoppingCartManager

	2.9 The SEFE Pricing Components
	2.9.1 The Pricing Contracts

	2.10 The SEFE Payment Providers Components
	2.10.1 The Payment Providers Contracts

	2.11 The SEFE Content-to-Object Mapping Components
	2.11.1 The Content-to-Object Mapping Contracts

	2.12 The SEFE Search Provider Components
	2.12.1 The Search Provider Contracts

	2.13 The SEFE Analytics Component
	2.13.1 The Analytics Contract

	2.14 The SEFE Product Resolver Components
	2.14.1 The Product Resolver Contracts

	2.15 Miscellaneous SEFE Components
	2.15.1 Miscellaneous Contracts

	2.16 Web Shop Site Settings

