
Sitecore E-Commerce Fundamental Edition 1.1
Sitecore E-Commerce Developer's Cookbook Rev: 2011-05-13

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore E-Commerce
Developer's Cookbook
Configuration and Development with the Sitecore E -Commerce Fundamental Edition

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 2 of 51

Table of Contents

Chapter 1 Introduction .. 4
Chapter 2 SEFE Technical Overview .. 5

2.1 The SEFE Domain Model ... 6
2.2 Unity Application Block Overview.. 7

2.2.1 The Unity Configuration File ... 8
2.2.2 The initialize Pipeline .. 9
2.2.3 Dependency Injection ... 9
2.2.4 How to Resolve a SEFE Component .. 10
2.2.5 How to Add an Implementation to the Unity Configuration ... 10
2.2.6 How to Add a Contract to the Unity Configuration ... 11
2.2.7 How to Replace a SEFE Component .. 11
2.2.8 How to Configure SEFE for Multiple Managed Websites ... 11

2.3 SEFE Product Management ... 13
2.3.1 Product URLs and Product Resolution .. 13

How to Specify the Product URL Format ... 13
2.3.2 Product Presentation .. 13

How to Specify a Product Presentation Format .. 14
How to Update a Product Presentation Format .. 14
How to Define a New Product Presentation Format ... 14

Chapter 3 The SEFE Contracts ... 16
3.1 SEFE Configuration Contracts .. 17

3.1.1 The SEFE BusinessCatalogSettings Contract ... 17
3.1.2 The SEFE DesignSettings Contract .. 17
3.1.3 The SEFE GeneralSettings Contract .. 17
3.1.4 The SEFE ShoppingCartSettings Contract .. 17
3.1.5 The SEFE ShoppingCartSpotSettings Contract .. 18

3.2 SEFE Business Object Contracts ... 19
3.2.1 The SEFE AddressInfo Contract ... 19
3.2.2 The SEFE Country Contract ... 19
3.2.3 The SEFE Currency Contract ... 19
3.2.4 The SEFE CustomerInfo Contract... 19
3.2.5 The SEFE IProductRepositoryItem Contract ... 19
3.2.6 The SEFE NotificationOption Contract .. 20
3.2.7 The SEFE Order Contract... 20

How to Implement the Order Contract ... 20
3.2.8 The SEFE OrderLine Contract .. 20
3.2.9 The SEFE OrderStatus Contract ... 21

How to Override an OrderStatus Implementation ... 21
How to Implement a New Order Status .. 21
How to Resolve an Order Status ... 22

3.2.10 The SEFE PaymentSystem Contract .. 22
3.2.11 The SEFE ProductBaseData Contract .. 22
3.2.12 The SEFE ProductCategory Contract.. 23
3.2.13 The SEFE ProductLine Contract ... 23
3.2.14 The SEFE ShippingProvider Contract ... 23
3.2.15 The SEFE ShoppingCart Contract .. 23
3.2.16 The SEFE ShoppingCartLine Contract .. 23
3.2.17 The SEFE Totals Contract .. 23
3.2.18 The SEFE VatRegion Contract ... 24

3.3 SEFE Business Logic Contracts ... 25

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 3 of 51

3.3.1 The SEFE ICheckOut Contract ... 25
3.3.2 The SEFE ICurrencyManager Contract ... 25
3.3.3 The SEFE ICustomerManager Contract .. 25
3.3.4 The SEFE IMail Contract .. 25
3.3.5 The SEFE IOrderManager Contract .. 25

How to Integrate an Order Management System ... 26
3.3.6 The SEFE IProductRepository Contract .. 26
3.3.7 The SEFE IProductPriceManager Contract ... 27

How to Add a Price Type to the Default IProductPriceManager Implementation 27
3.3.8 The SEFE IShoppingCartManager Contract ... 27
3.3.9 The SEFE ITransactionData Contract ... 28

3.4 SEFE Payment Providers ... 29
3.4.1 SEFE Online Payment Providers .. 29
3.4.2 SEFE Offline Payment Providers .. 29

3.5 SEFE Data Contracts ... 30
3.5.1 The SEFE IDataMapper Contract ... 30
3.5.2 The SEFE EntityHelper Contract .. 30
3.5.3 The SEFE IEntityProvider Contract ... 30
3.5.4 The SEFE IMappingRule Contract .. 31

3.6 The SEFE ISearchProvider Contract .. 32
3.7 The SEFE ICatalogProductResolveStrategy Contract ... 33
3.8 The SEFE AnalyticsHelper Contract ... 34
3.9 The SEFE ProductUrlProcessor Contract ... 35

3.9.1 The SEFE VirtualProductResolver Contract .. 35
3.9.2 How to Add a ProductUrlProcessor Implementation .. 35

Chapter 4 Adding Customized Product Search Criteria ... 37
4.1 The Need for the Product Search Configuration and Extensibility .. 38
4.1 Extending the Product Search Group Template .. 39
4.2 Extending the Resolve Strategy .. 41

Extending the DatabaseCrawler .. 41
Extending the ICatalogProductResolveStrategy Class ... 42
Configuring SEFE and Lucene .. 44

4.3 Extending the Product Search Catalog ... 46
Extending the CatalogQueryBuilder ... 46
Creating a Products Source .. 48
Defining a New Editor in the Core Database .. 49
Creating a Product catalog .. 50

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 4 of 51

Chapter 1

Introduction

This document provides a technical overview of the Sitecore E-Commerce Fundamental
Edition (SEFE), introduces SEFE configuration using the Unity application block,
describes the SEFE programming contracts, and includes instructions to configure SEFE
components.

You can use SEFE as a final product, or you can integrate SEFE with other applications.
Sitecore designed SEFE for integration and extension. This document provides
information about SEFE Application Programming Interfaces (APIs), how you can
configure the .NET types used to implement various features, and the programming
contracts that SEFE employs.

You can use the information in this document to understand, customize, and extend
SEFE functionality. Sitecore administrators and developers should read this document
before extending or customizing SEFE, such as to integrate SEFE with an external
system.

You can use Sitecore to manage multiple websites. You can configure SEFE to use
different data stores for each managed website. For example, different managed
websites can store product, order, and other business information in different locations in
Sitecore, and in different external systems.

This document contains the following chapters:

 Chapter 1— Introduction
This chapter contains a brief description of this manual.

 Chapter 2 — SEFE Technical Overview
This chapter contains a description of the domain model, the Unity application block, and
SEFE’s product management system.

 Chapter 3 — The SEFE Contracts
This chapter describes the SEFE contracts.

 Chapter 4 — Adding Customized Product Search Criteria
This chapter describes how to extend the product search feature in SEFE.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 5 of 51

Chapter 2

SEFE Technical Overview

This chapter provides a technical overview of SEFE, including the domain model, the
Unity dependency injection container, and information about how SEFE manages product
information.

This chapter contains the following sections:

 The SEFE Domain Model

 Unity Application Block Overview

 SEFE Product Management

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 6 of 51

2.1 The SEFE Domain Model

The SEFE domain model is an API layer that defines contracts to abstract SEFE functionality, such as
product, customer, and order information storage. The Sitecore.Ecommerce.DomainModel

namespace in the Sitecore.Ecommerce.DomainModel.dll assembly contains the SEFE domain

model.

The default implementation of the SEFE domain model stores data as items in the Sitecore content tree.
For example, a product definition item describes each product that the website sells, and the complete
SEFE purchasing process results in a new order definition item in the content tree. You can replace
elements of the domain model, and you can use different implementations based on logical conditions.
Multiple managed websites can share implementations of the domain model and the data that those
implementations abstract, or each managed website can use different implementations and data.

To integrate external systems with SEFE, you can implement processes to import data into Sitecore using
the default implementation of the domain model, or you can replace components of the SEFE domain
model with custom implementations that access external systems directly.

SEFE includes a sample implementation that uses presentation components developed for the Web
Forms for Marketers module to provide a complete online store.

1
 You can use the example

implementation, or you can learn how to implement a custom solution using the code that it contains.

Important
Whenever possible, use contracts in the domain model rather than the concrete implementations of those
contracts.

1
 For more information about the Web Forms for Marketers module, see

http://sdn.sitecore.net/Products/Web%20Forms%20for%20Marketers.aspx.

http://sdn.sitecore.net/Products/Web%20Forms%20for%20Marketers.aspx

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 7 of 51

2.2 Unity Application Block Overview

SEFE uses the Unity application block (Unity) to support customization and integration with such external
systems. The Unity application block is a lightweight, extensible dependency injection container, which
among other features, provides symbolic names for different implementations of various SEFE features
described by the domain model. Dependency injection is a strategy for specifying relations between types
in object-oriented applications. Dependency injection provides a form of inversion of control, moving logic
for type specification from code to the dependency injection container. Unity injects the appropriate types
into the application at runtime to allow the use of different implementations of a single function depending
on configuration, conditions, and code. Unity provides constructor injection, property injection, and
method call injection. The Unity container works like a factory to instantiate objects in a manner similar to
the providers pattern, but with greater flexibility.

For more information about the Unity Application Block, see http://unity.codeplex.com/.

Unity can designate the software components an application will use, and which software components
other components can use. Complex objects typically depend on other objects. Unity helps to ensure that
each object correctly instantiates and populates the right type of object for each such dependency.

The Unity architecture supports loose coupling of application components. SEFE developers reference
relatively abstract types, and Unity injects the appropriate implementations at runtime.

The Unity application block provides the following benefits for developers customizing and extending
SEFE:

 Flexibility to specify types and dependencies through configuration and at runtime, deferring
configuration to the container.

 Simplification of object instantiation code, especially for hierarchical structures with
dependencies, which simplifies application code.

 Abstraction of requirements through type information and dependencies.

 Service locator capability supports persistence of the container, such as within the ASP.NET
session or application, or through Web services or other techniques.

2

With Unity, you can easily configure SEFE to use custom implementations for specific features, including:

 Configuration components, such as general settings.

 Business objects, such as customers and orders.

 Business logic, such as sending e-mail or locating a product.

 Payment providers, such as specific payment gateways.

 Internal logic, such as mapping in-memory storage to long-term storage.

With SEFE and Unity, you can use different implementations of an interface or descendants of an
abstract or other base class to achieve a common function for different managed websites. For example,
different managed websites can access customer information from different systems. Unity makes it
easier to integrate external business systems typically involved in ecommerce into an SEFE
implementation.

In this document, the term contract refers to an interface that a class implements, an abstract or concrete
base class from which it inherits. The term implementation refers to a class that implements a given
contract.

2
 For more information about Service Locator pattern, see http://msdn.microsoft.com/en-

us/library/ff649658.aspx.

http://unity.codeplex.com/
http://msdn.microsoft.com/en-us/library/ff649658.aspx
http://msdn.microsoft.com/en-us/library/ff649658.aspx

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 8 of 51

SEFE entities defined with Unity include:

 Contracts define Application Programming Interfaces (APIs).

 Implementations define concrete instances that implement contracts.

 Mappings configure which implementations to inject.

 Dependencies configure which dependant implementations to inject.

Unity allows you to define contracts using interfaces, abstract classes, and concrete classes. An
implementation can implement an interface, inherit from an abstract base class, inherit from a concrete
base class, or inherit directly from System.Object. A contract defined by a concrete class can serve as

its own implementation.

Note
To work with SEFE APIs that depend on the Unity application block, you may need to add a reference to
the Microsoft.Practices.Unity.dll assembly in the /bin subdirectory to the Visual Studio
project. Remember to set the Copy Local property of the reference to False.

The following diagram describes the SEFE API layers. The example UI pages access APIs in the domain
model, and SEFE uses Unity to resolve those API calls to concrete implementations of those contracts.

UIAPI

Implementation Layer

Sitecore Ecommerce Abstraction Layer (Domain Model)

Default Providers (based on
Sitecore data providers)

Custom Providers (Navision)

Inversion of Control Container (Unity configuration)
Component Kit

(Example pages)

2.2.1 The Unity Configuration File

SEFE manages Unity configuration in the /App_Config/Unity.config file. The Unity configuration

file consists of two main parts.

Each /unity/aliases element in the Unity configuration file defines a type alias, which provides a

symbolic name for a contract or implementation, which can be an interface, and abstract type, or a
concrete type.

Each /unity/container/register element in the Unity configuration file specifies a concrete type

that implements a contract identified by a /unity/alias element.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 9 of 51

2.2.2 The initialize Pipeline

SEFE adds two processors to the initialize pipeline defined in the web.config file.

Note
SEFE uses the /App_Config/Include/Sitecore.Ecommerce.config file to extend the

web.config file.

Based on Unity configuration, the ConfigureEntities processor in the initialize pipeline

initializes the entities that SEFE uses. This processor loads an inversion of control container into the
SEFE context as a static resource in memory.

The RegisterEcommerceProviders processor in the initialize pipeline initializes various SEFE

implementations.

2.2.3 Dependency Injection

With Unity, you can designate dependencies between entities.

For example, for search features, the IOrderManager contract depends on an object that implements the
ISearchProvider contract. The following excerpts from Unity configuration define that the default
implementation of the IOrderManager contract uses the FastQueryItemSearchProvder

implementation of the ISearchProvider interface by passing an instance of
FastQueryItemSearchProvder to the constructor for that the IOrderManager.

<unity>

...

 <alias alias="IOrderManager"

 type="Sitecore.Ecommerce.DomainModel.Orders.IOrderManager`1..."/>

...

 <alias alias="ISearchProvider"

 type="Sitecore.Ecommerce.Search.ISearchProvider, Sitecore.Ecommerce.Kernel"/>

...

 <alias alias="OrderManager"

 type="Sitecore.Ecommerce.Orders.OrderManager`1, Sitecore.Ecommerce.Kernel"/>

...

 <register type="ISearchProvider" mapTo="FastQuerySearchProvider"

 name="FastQuerySearchProvider" />

...

 <container>

...

 <register type="IOrderManager" mapTo="OrderManager">

 <lifetime type="perthread" />

 <constructor>

 <param name="searchProvider">

 <dependency name="FastQuerySearchProvider"/>

 </param>

 </constructor>

 </register>

...

 </container>

</unity>

Note

To indicate generic type parameters in Unity configuration, append a back quote character (“`”) followed

by a number.

For example, to specify the
Sitecore.Ecommerce.DomainModel.Currencies.ICurrencyManager<TTotals,

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 10 of 51

TCurrency> interface that requires two generic types, specify a type signature followed by a back quote

and the number 2:

Sitecore.Ecommerce.DomainModel.Currencies.ICurrencyManager`2

2.2.4 How to Resolve a SEFE Component

Use the Sitecore.Ecommerce.Context.Entity.Resolve() method to resolve a type configured

with Unity. Pass the type of the contract to the method as a generic type parameter. For example, to
access the default implementation of the IProductRepository contract:

using Sitecore.Ecommerce;

...

Sitecore.Ecommerce.DomainModel.Products.IProductRepository productRepository =

 Sitecore.Ecommerce.Context.Entity.Resolve

 <Sitecore.Ecommerce.DomainModel.Products.IProductRepository>();

Note
The signature of the Resolve() method is an extension method in the

Sitecore.Ecommerce.IoCContainerExtensions class. To use this signature, add the following

line at the top of your class:

using Sitecore.Ecommerce;

Alternatively, fully designate this implementation of the Resolve() method:

Sitecore.Ecommerce.DomainModel.Products.IProductRepository productRepository =

 Sitecore.Ecommerce.IoCContainerExtensions.Resolve

 <Sitecore.Ecommerce.DomainModel.Products.IProductRepository>

 (Sitecore.Ecommerce.Context.Entity);

To access a named entity, pass the name of an entity as the first parameter to the
Sitecore.Ecommerce.Context.Entity.Resolve() method. For example, to retrieve the

IProductRepository implementation named MyProductRepository:

Sitecore.Ecommerce.DomainModel.Products.IProductRepository myProductRepository =

 Sitecore.Ecommerce.Context.Entity.Resolve

 <Sitecore.Ecommerce.DomainModel.Products.IProductRepository>("MyProductRepository");

For more information about how SEFE resolves types, see the section How to Configure SEFE for
Multiple Managed Websites.

2.2.5 How to Add an Implementation to the Unity Configuration

To add an additional implementation of a contract to Unity configuration:

1. In the Visual Studio project, create a class that implement the required interface or inherits from
the appropriate base class.

2. In Unity configuration, insert an additional /unity/alias element.

3. In the new /unity/alias element, set the alias attribute to a unique alias.

4. In the new /unity/alias element, set the type attribute to the signature of the .NET class.

For instructions to configure SEFE to use the implementation, see the sections How to Replace a SEFE
Component and How to Configure SEFE for Multiple Managed Websites.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 11 of 51

2.2.6 How to Add a Contract to the Unity Configuration

To add a contract to Unity configuration:

1. In the Unity configuration file, add a /unity/alias element. Set the alias attribute of the new

/unity/alias element to a unique value that identifies the contract. Set the type attribute of

the new /unity/alias element to the .NET type of the interface or class that defines the

contract. For example:

<alias alias="MyType" type="Namespace.MyType, MyAssembly"/>

2. If the type that defines the contract does not also serve as the implementation of that contract,
then configure one or more implementations of the contract. For instructions to define an
implementation of the contract, see the section How to Add an Implementation to the Unity
Configuration.

2.2.7 How to Replace a SEFE Component

To configure SEFE to use a custom component for a feature:

1. In the Unity configuration, add a /unity/alias element to register the new implementation. For
instructions to add an implementation to the Unity configuration, see the section How to Add an
Implementation to the Unity Configuration.

2. In the Unity configuration, set the mapTo attribute of the /unity/container/register

element with a value for the type attribute that specifies the value of the alias attribute of the

/unity/alias element that defines the contract or implementation to the value of the alias

attribute of the new /unity/alias element that specifies the implementation.

In the /unity/container/register element, the type attribute identifies the alias of the contract,

the mapTo attribute identifies the alias of the implementation, and the optional name attribute defines a

token with which to resolve the implementation in API calls.

2.2.8 How to Configure SEFE for Multiple Managed Websites

Different managed websites can use different implementations of each SEFE contract. When SEFE
resolves dependencies, it first checks for the existence of types named after the context site.

To use different implementations of contracts for different managed websites:

1. Add any required implementations to the Unity configuration. For instructions to add an
implementation to Unity configuration, see the section How to Add an Implementation to the Unity
Configuration.

2. For each implementation, create a /unity/container/register element in the Unity

configuration.

Tip
To create the new /unity/container/register element, copy an existing

/unity/container/register element associated with the same contract.

3. Set the value of the name attribute in the new /unity/container/register element to the

name of the managed website.

For example, to cause SEFE to use the ProductCategory implementation with alias
MyProductCategory for the managed websites named site2 and site3, and use the default

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 12 of 51

ProductCategory implementation with alias SitecoreProductCategory for all other managed

websites, configure the following /unity/container/register elements in the Unity configuration:

...

<!-- contract -->

 <alias alias="ProductCategory"

 type="Sitecore.Ecommerce.DomainModel.Products.ProductCategory..." />

...

<!-- implementations -->

<alias alias="SitecoreProductCategory"

 type="Sitecore.Ecommerce.Products.ProductCategory, Sitecore.Ecommerce.Kernel" />

<alias alias="MyProductCategory

 type="MyNamespace.ProductCategory, MyAssembly" />

...

<!-- uses -->

<container>

 <register type="ProductCategory" mapTo="SitecoreProductCategory">

 <interceptor type="VirtualMethodInterceptor" />

 <policyInjection />

 </register>

 <register type="ProductCategory" mapTo="MyProductCategory" name="site2">

 <interceptor type="VirtualMethodInterceptor" />

 <policyInjection />

 </register>

 <register type="ProductCategory" mapTo="MyProductCategory" name="site3">

 <interceptor type="VirtualMethodInterceptor" />

 <policyInjection />

 </register>

To access a named implementation, pass the name of the implementation without the site name to the
Sitecore.Ecommerce.Context.Entity.Resolve() method. For example, given the following

Unity configuration:

<register type="ProductCategory" mapTo="MyOtherProductCategory"

 name="site3MyOtherProductCategory">

...

If the name of the context site is site3, then the following code accesses the ProductCategory

implementation named site3MyOtherProductCategory:

Sitecore.Ecommerce.DomainModel.Products.ProductCategory productCategory =

 Sitecore.Ecommerce.Context.Entity.Resolve

 <Sitecore.Ecommerce.DomainModel.Products.ProductCategory>("MyOtherProductCategory");

If you do not pass a parameter to the Sitecore.Ecommerce.Context.Entity.Resolve() method,

if an implementation exists with the same name as the context site, Unity injects that type. Otherwise,
Unity injects the default implementation of the contract. If no default implementation exists, Unity raises
an error.

If you pass a parameter to the Sitecore.Ecommerce.Context.Entity.Resolve() method, if an

implementation exists with a name that matches the name of the context site concatenated with the value
of the parameter, Unity injects that type. Otherwise, Unity injects the default implementation for the
contract. If no default implementation exists, Unity raises an error.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 13 of 51

2.3 SEFE Product Management

SEFE stores product information in repositories that typically exist outside of the content tree of any
managed website, allowing multiple websites to share product repositories.

SEFE provides logic to generate product URLs that appear to be within the website, and enhances the
logic that Sitecore applies to determine and present the product definition item associated with such a
URL.

2.3.1 Product URLs and Product Resolution

SEFE adds the ProductResolver processor after the default ItemResolver processor in the

httpRequestBegin pipeline defined in the web.config file. If the default ItemResolver cannot

resolve the context item from the requested URL, then the ProductResolver uses a

VirtualProductResolver to attempt to determine a product from the requested URL. If the
VirtualProductResolver can determine the product, it sets the context item to the item that defines that
product. For more information about the VirtualProductResolver, see the section The SEFE
ProductUrlProcessor Contract.

How to Specify the Product URL Format

To specify the product URL format for a managed website or branch:

 In the Content Editor, in the home item for the managed Web site or the root item of the branch,
in the System section, in the Display Products Mode field, select one of the
ProductUrlProcessor definition items.

Note

If the Display Products Mode field does not exist for an item, add the Ecommerce/Product

Categories/Product Search Group Folder data template to the base templates for the data

template associated with the item.

SEFE uses the value of the Display Products Mode field in the nearest ancestor of the context item that

defines a value for that field. For example, given the URL /products.aspx, if the <home>/products
item has a value for Display Products Mode field, SEFE applies that value, otherwise SEFE applies the
value of the Display Products Mode field in the home item.

2.3.2 Product Presentation

The URLs of SEFE product pages map to items that do not define layout details.
3

Important
Do not update layout details for a product or the standard values of a data template for products.

Note
To preview the presentation of a product, use the Page Editor or the Preview user interface to navigate
from a page that links to the product to the product detail page.

3
 For more information about layout details, see the Presentation Component Reference at

http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx.

http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 14 of 51

SEFE replaces the InsertRenderings processor in the renderLayout pipeline defined in the

web.config file with the ProcessProductPresentation processor. When processing an HTTP

request for a product page, the ProcessProductPresentation processor applies layout details from

the item specified in the Product Detail Presentation Storage field in the nearest ancestor of the logical
parent item of the virtual product item that defines a value for that field. For example, given the URL
/products/product_name.aspx, if the <home>/products item has a value for Product Detail
Presentation Storage field, SEFE applies that value, otherwise SEFE applies the value of the Product
Detail Presentation Storage field in the home item.

Note
If the Product Detail Presentation Storage field does not appear in an item, add the

Ecommerce/Product Categories/Product Search Group data template to the base templates of

the data template associated with the item.

How to Specify a Product Presentation Format

To specify the presentation format to display the products associated with a page:

1. In the Content Editor, edit the page definition item.

2. In the page definition item, on the Content tab, in the Products in Category section, in the
Product Detail Presentation Storage field, select a product presentation definition item.

How to Update a Product Presentation Format

To update an existing product presentation format:

1. In the Content Editor, edit the product presentation definition item. The product presentation

definition item is a child of the /Sitecore/System/Modules/Ecommerce/System/Product

Presentation Repository item.

2. In the product presentation definition item, edit layout details.
4

Note
You can use access rights to control which users can apply various product presentation formats. You
can change the type of the Product Detail Presentation Storage in the Ecommerce/Product

Categories/Product Search Group from Lookup to Droptree, create folders under

/Sitecore/System/Modules/Ecommerce/System/Product Presentation Repository to

contain different groups of presentation format definition items, and apply access rights to those folders.

How to Define a New Product Presentation Format

To define a new product presentation format:

1. In the Content Editor, select the
/Sitecore/System/Modules/Ecommerce/System/Product Presentation

Repository item.

2. In the Content Editor, insert a new product presentation definition item using the
Ecommerce/Product/Product Presentation Storage data template.

3. In the new product presentation definition item, update the product presentation format. For
instructions to update the product presentation format, see the section How to Update a Product
Presentation Format.

4
 For instructions to apply layout details, see the Presentation Component Cookbook at

http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Cookbook.aspx.

http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Cookbook.aspx

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 15 of 51

4. Optionally, apply the new product presentation format to existing pages. For instructions to apply
a product presentation format, see the section How to Specify a Product Presentation Format.

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 16 of 51

Chapter 3

The SEFE Contracts

This chapter describes the SEFE contracts used to abstract various SEFE
implementations.

SEFE uses Unity to configure a number of contracts that generally exist in assemblies
that match their namespaces, such as the Sitecore.Ecommerce.DomainModel.dll

assembly, the Sitecore.Ecommerce.Kernel.dll assembly, and the

Sitecore.Analytics.dll assembly, all in the /bin directory.

This chapter contains the following sections:

 SEFE Configuration Contracts

 SEFE Business Object Contracts

 SEFE Business Logic Contracts

 SEFE Payment Providers

 SEFE Data Contracts

 The SEFE ISearchProvider Contract

 The SEFE ICatalogProductResolveStrategy Contract

 The SEFE AnalyticsHelper Contract

 The SEFE ProductUrlProcessor Contract

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 17 of 51

3.1 SEFE Configuration Contracts

The SEFE configuration contracts allow multiple websites to share common data and configuration for
some purposes, such as a product repository, while using separate data for other purposes, such as
order management. SEFE defines the following contracts that expose configuration information.

Note
Do not extend or replace the configuration contracts or implementations. Instead, create your own
contract and implementation to manage configuration settings.

3.1.1 The SEFE BusinessCatalogSettings Contract

The default data managers use the BusinessCatalogSettings contract
(Sitecore.Ecommerce.DomainModel.Configurations.BusinessCatalogSettings) to

determine the root items for various SEFE business information stores, such as the product and order
stores.

The default implementation
(Sitecore.Ecommerce.Configurations.BusinessCatalogSettings) of the
BusinessCatalogSettings contract retrieves field values from the child named Business Catalog of the

Site Settings child of the home item of the context site (<home>/Site Settings/Business

Catalog).

3.1.2 The SEFE DesignSettings Contract

The DesignSettings contract
(Sitecore.Ecommerce.DomainModel.Configurations.DesignSettings) exposes layout and

presentation configuration settings for presentation components on the managed website(s).

The default implementation (Sitecore.Ecommerce.Configurations.DesignSettings) of the

DesignSettings contract retrieves field values from the child named Design Settings of the Site Settings

child of the home item of the context site (<home>/Site Settings/Design Settings).

3.1.3 The SEFE GeneralSettings Contract

The GeneralSettings contract
(Sitecore.Ecommerce.DomainModel.Configurations.GeneralSettings) exposes global

configuration settings.

The default implementation (Sitecore.Ecommerce.Configurations.GeneralSettings) of the

GeneralSettings contract retrieves field values from the General child of the Site Settings child of the
home item of the context site (<home>/Site Settings/General).

3.1.4 The SEFE ShoppingCartSettings Contract

The ShoppingCartSettings contract
(Sitecore.Ecommerce.DomainModel.Configurations.ShoppingCartSettings) exposes

configuration settings for individual shopping carts.

The default implementation (Sitecore.Ecommerce.Configurations.ShoppingCartSettings) of
the ShoppingCartSettings contract manages information in the Shopping Cart child of the Site Settings

child of the home item of the context site (<home>/Site Settings/Shopping Cart).

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 18 of 51

3.1.5 The SEFE ShoppingCartSpotSettings Contract

The ShoppingCartSpotSettings contract
(Sitecore.Ecommerce.DomainModel.Configurations.ShoppingCartSpotSettings) exposes

configuration settings for presentation components that display an individual shopping cart.

The default implementation
(Sitecore.Ecommerce.Configurations.ShoppingCartSpotSettings) of the
ShoppingCartSpotSettings contract accesses the Shopping Cart Spot child of the Site Settings child of

the home item of the context site (<home>/Site Settings/Shopping Cart Spot).

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 19 of 51

3.2 SEFE Business Object Contracts

SEFE defines the following contracts that represent business objects.

3.2.1 The SEFE AddressInfo Contract

The AddressInfo contract (Sitecore.Ecommerce.DomainModel.Addresses.AddressInfo)

exposes information about a physical address.

The default implementation (Sitecore.Ecommerce.Addresses.AddressInfo) of the AddressInfo

contract represents typical address information.

3.2.2 The SEFE Country Contract

The Country contract (Sitecore.Ecommerce.DomainModel.Addresses.Country) exposes

information about a country.

The default implementation (Sitecore.Ecommerce.Addresses.Country) of the Country contract

represents the children of the item specified by the Countries Link field in the System Links section of
the Business Catalog child of the Site Settings child of the home item of the context site

(<home>/Site Settings/Business Catalog).

3.2.3 The SEFE Currency Contract

The Currency contract (Sitecore.Ecommerce.DomainModel.Currencies.Currency) exposes

information about a currency.

The default implementation (Sitecore.Ecommerce.Currencies.Currency) of the Currency contract
represents the children of the item specified by the Currencies Link field in the System Links section of
the Business Catalog child of the Site Settings child of the home item of the context site

(<home>/Site Settings/Business Catalog).

3.2.4 The SEFE CustomerInfo Contract

The CustomerInfo contract (Sitecore.Ecommerce.DomainModel.Users.CustomerInfo) exposes

information about a customer.

The default implementation (Sitecore.Ecommerce.Users.CustomerInfo) of the CustomerInfo

contract provides basic customer information.

3.2.5 The SEFE IProductRepositoryItem Contract

The IProductRepostiryItem contract
(Sitecore.Ecommerce.DomainModel.Products.IProductRepositoryItem) represents any

item in a product repository, such as a product or product category. All items in a product repository
implmement the IProductRepositoryItem contract. For more information about product repositories, see
the section The SEFE IProductRepository Contract. For more information about products, see the section
The SEFE ProductBaseData Contract. For more information about product categories, see the section
The SEFE ProductCategory Contract.

The default implementations of the IProductRepositoryItem contract include the ProductBaseData
contract and the ProductCategory contract.

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 20 of 51

3.2.6 The SEFE NotificationOption Contract

The NotificationOption contract
(Sitecore.Ecommerce.DomainModel.Shippings.NotificationOption) exposes information

about how a customer prefers to receive notification about the status of an order.

The default implementation (Sitecore.Ecommerce.Shippings.NotificationOption) of the

NotificationOption contract causes customers to receive an e-mail about each order.

3.2.7 The SEFE Order Contract

The Order contract (Sitecore.Ecommerce.DomainModel.Orders.Order) exposes information

about individual orders.

The default implementation (Sitecore.Ecommerce.Orders.Order) of the Order contract represents

the descendants of the item specified by the Orders Link field in the Business Catalog child in the

System Links section of the Site Settings child of the home item of the context site (<home>/Site

Settings/Business Catalog).

To integrate an external order management system, you do not need to implement the Order contract.
Instead, implement the IOrderManager contract to manage Orders. For more information about the
IOrderManager contract, see the section The SEFE IOrderManager Contract.

How to Implement the Order Contract

To implement the Order contract:

1. In the Visual Studio project, create a class that implements the Order contract

(Sitecore.Ecommerce.DomainModel.Orders.Order) to abstract information about an

order.

2. In the new class, implement a constructor that accepts an object that implements the OrderStatus
contract. For more information about the OrderStatus contract, see the section The SEFE
OrderStatus Contract.

3. Optionally, implement the OrderLine contract. For more information about the OrderLine contract,
see the section The SEFE OrderLine Contract.

4. Update Unity configuration to use your implementation of the Order contract. For instructions to
update Unity configuration, see the section How to Replace a SEFE Component. For example:

<alias alias="MyOrder" type="MyNamespace.MyOrder, MyAssembly" />

...

<register type="Order" mapTo="MyOrder">

...

3.2.8 The SEFE OrderLine Contract

The OrderLine contract (Sitecore.Ecommerce.DomainModel.Orders.OrderLine) exposes

information about a line item on an order.

The default implementation (Sitecore.Ecommerce.Orders.OrderLine) of the OrderLine contract
represents the descendants of an order item as described in the section The SEFE Order Contract.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 21 of 51

3.2.9 The SEFE OrderStatus Contract

The OrderStatus contract (Sitecore.Ecommerce.DomainModel.Orders.OrderStatus) represents

the status of an order. Each implementation of the OrderStatus contract can contain logic to apply when
the system updates the status of an order to that OrderStatus implementation.

The default OrderStatus implementations include:

 Completed (Sitecore.Ecommerce.Orders.Statuses.Completed)

 Closed (Sitecore.Ecommerce.Orders.Statuses.Closed)

 Held (Sitecore.Ecommerce.Orders.Statuses.Held)

 Pending (Sitecore.Ecommerce.Orders.Statuses.Pending)

 Processing (Sitecore.Ecommerce.Orders.Statuses.Processing)

 Canceled (Sitecore.Ecommerce.Orders.Statuses.Canceled)

 New (Sitecore.Ecommerce.Orders.Statuses.New)

How to Override an OrderStatus Implementation

To override the logic that SEFE applies when an order reaches an existing order status:

1. In the Visual Studio project, create a class that inherits from the

Sitecore.Ecommerce.Orders.Statuses.OrderStatusBase class, or from the class that

provides the default implementation of the order status.

2. In the new class, implement the Process() method, which may call the Process() method in

the base class.

3. In Unity configuration, create a new /unity/alias element to register the new implementation.

For instructions to add an implementation to Unity configuration, see the section How to Add an
Implementation to the Unity Configuration.

4. In Unity configuration, update the /unity/container/register element for the order status
to use your implementation. For instructions to update Unity configuration, see the section How to
Replace a SEFE Component.

How to Implement a New Order Status

To implement a new order status:

1. In the Visual Studio project, create a class that inherits from the

Sitecore.Ecommerce.Orders.Statuses.OrderStatusBase class.

2. In the new class, implement the Process() method to contain logic for SEFE to apply when

placing the order into that status.

3. In Unity configuration, add a /unity/alias element to register the new implementation For
instructions to add an implementation to Unity, see the section How to Add an Implementation to
the Unity Configuration. For example:

<alias alias="ShippedOrderStatus" type="MyNamespace.ShippedOrderStatus, MyAssembly" />

4. In Unity configuration, add a /unity/container/register element to define a mapping for

the new implementation. Set the type attribute of the new /unity/container/register

element to OrderStatus. Set the mapTo attribute of the new /unity/container/register

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 22 of 51

element to the alias attribute of the new /unity/alias element. Set the name attribute of the

/unity/container/register element to identify the status. For example:

<register type="OrderStatus" mapTo="ShippedOrderStatus" name="Shipped">

 <interceptor type="VirtualMethodInterceptor" />

 <policyInjection />

</register>

5. In the Content Editor, select the item specified in the field named Order Statuses Link in the
System Links section of the child named Business Catalog of the Site Settings child of the

home item of the managed website (<home>/Site Settings/Business Catalog).

6. In the Content Editor, insert an order status definition item using the Ecommerce/Business

Catalog/Order Status data template.

7. In the new order status definition item, in the Data section, in the Code field, enter the name

attribute of the new /unity/container/register element in Unity configuration.

8. In the new order status definition item, in the Data section, in the Title field, enter the label that
should appear in the user interface to transition an order to this status. Enter the same value for
the Name field in the Data section.

9. In the new order status definition item, in the Data section, in the Available List field, select the
order status(es) that the user can apply to an order currently associated with this order status.

How to Resolve an Order Status

You can use the Sitecore.Ecommerce.Entity.Resolve() method to resolve an order status. For

example, to assign Shipped order status to an order:

using Sitecore.Ecommerce.DomainModel.Orders;

...

IOrderManager<Order> orderManager = Sitecore.Ecommerce.Context.Entity.Resolve

 <IOrderManager<Order>>();

Order order = orderManager.GetOrder("order number");

order.Status = Sitecore.Ecommerce.Context.Entity.Resolve<OrderStatus>("Shipped");

orderManager.SaveOrder(order);

3.2.10 The SEFE PaymentSystem Contract

The PaymentSystem contract (Sitecore.Ecommerce.DomainModel.Payments.PaymentSystem)

exposes information about an online payment provider gateway. For more information about payment
providers, see the section SEFE Payment Providers.

The default implementation (Sitecore.Ecommerce.Payments.PaymentSystem) of the
PaymentSystem contract represents a child of the item specified by the Payment Systems Link field in
the System Links section of the Business Catalog child of the Site Settings child of the home item of

the context site (<home>/Site Settings/Business Catalog).

3.2.11 The SEFE ProductBaseData Contract

The ProductBaseData contract
(Sitecore.Ecommerce.DomainModel.Products.ProductBaseData) represents basic information

about a product.

The default implementation (Sitecore.Ecommerce.Products.Product) of the ProductBaseData

contract represents common information about a product, such as product name and product description.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 23 of 51

3.2.12 The SEFE ProductCategory Contract

The ProductCategory contract
(Sitecore.Ecommerce.DomainModel.Products.ProductCategory) represents a category of

products.

The default implementation (Sitecore.Ecommerce.Products.ProductCategory) of the

ProductCategory contract represents basic information about a product category, such as product
category name and product category code.

3.2.13 The SEFE ProductLine Contract

The ProductLine contract (Sitecore.Ecommerce.DomainModel.Products.ProductLine)

represents information about a specific product in a business entity, such as the quantity of a product in a
shopping cart or order.

The default implementations of the ProductLine contract include the OrderLine contract and the
ShoppingCartLine contract. For more information about the OrderLine contract, see the section The
SEFE OrderLine Contract. For more information about the ShoppingCartLine contract, see the section
The SEFE ShoppingCartLine.

3.2.14 The SEFE ShippingProvider Contract

The ShippingProvider contract
(Sitecore.Ecommerce.DomainModel.Shippings.ShippingProvider) exposes information

about a shipping system.

The default implementation (Sitecore.Ecommerce.Shippings.ShippingProvider) of the

ShippingProvider contract represents the children of the item specified by the Shipping Providers Link
field in the System Links section of the Business Catalog child of the Site Settings child of the home

item of the context site (<home>/Site Settings/Business Catalog).

3.2.15 The SEFE ShoppingCart Contract

The ShoppingCart contract (Sitecore.Ecommerce.DomainModel.Carts.ShoppingCart) exposes

information about the state of an individual shopping cart, such as its contents.

The default implementation (Sitecore.Ecommerce.Carts.ShoppingCart) of the ShoppingCart

contract implements typical shopping cart functionality.

3.2.16 The SEFE ShoppingCartLine Contract

The ShoppingCartLine contact (Sitecore.Ecommerce.DomainModel.Carts.ShoppingCartLine)

exposes information about an item in a shopping cart.

The default implementation (Sitecore.Ecommerce.Carts.ShoppingCartLine) of the

ShoppingCartLine contract implements typical shopping cart line functionality.

3.2.17 The SEFE Totals Contract

The Totals contract (Sitecore.Ecommerce.DomainModel.Prices.Totals) exposes information

about pricing totals for an order.

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 24 of 51

The default implementation (Sitecore.Ecommerce.Prices.Totals) of the Totals contract stores

data in session during transactions and persists that data in order items as described in the previous
section, The SEFE Order Contract.

3.2.18 The SEFE VatRegion Contract

The VatRegion contract (Sitecore.Ecommerce.DomainModel.Addresses.VatRegion) exposes

information about a tax region.

The default implementation (Sitecore.Ecommerce.Addresses.VatRegion) of the VatRegion

contract exposes the descendants of the VAT Regions child of the Business Catalog child of the home

item for the context site (<home>/Business Catalog/VAT Regions).

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 25 of 51

3.3 SEFE Business Logic Contracts

SEFE defines the following contracts that abstract business logic.

3.3.1 The SEFE ICheckOut Contract

The ICheckOut contract (Sitecore.Ecommerce.DomainModel.CheckOuts.ICheckOut) defines a

programming interface to determine or alter the state of the shopping checkout process.

Pages in the checkout process access properties and methods of the default implementation of the
ICheckOut contract.

3.3.2 The SEFE ICurrencyManager Contract

The ICurrencyManager contract
(Sitecore.Ecommerce.DomainModel.Currencies.ICurrencyManager) defines a programming

interface for currency conversion.

The default implementation (Sitecore.Ecommerce.Currencies.CurrencyManager) of the

ICurrencyManager contract uses information in the descendants of the item specified by the Currency
Matrix Link field in the System Links section of the Business Catalog child of the Site Settings child of

the home item of the context site (<home>/Site Settings/Business Catalog).

3.3.3 The SEFE ICustomerManager Contract

The ICustomerManager contract (Sitecore.Ecommerce.DomainModel.Users.CustomerManager)

defines a programming interface for managing information about customers.

The default implementation (Sitecore.Ecommerce.Users.CustomerManager) of the

ICustomerManager contract manages customer information in the Sitecore ASP.NET membership
database.

3.3.4 The SEFE IMail Contract

The IMail contract (Sitecore.Ecommerce.DomainModel.Mails.IMail) defines a programming

interface for sending e-mail.

The default implementation (Sitecore.Ecommerce.Mails.Mail) of the IMail contract uses the

MailServer, MailServerUserName, MailServerPassword, and MailServerPort settings in the

web.config file.

3.3.5 The SEFE IOrderManager Contract

The IOrderManager contract (Sitecore.Ecommerce.DomainModel.Orders.IOrderManager)

defines a programming interface for managing information about orders.

The default implementation (Sitecore.Ecommerce.Orders.OrderManager) of the IOrderManager

contract accesses the descendants of the item specified by the Orders Link field in the System Links
section of the Business Catalog child of the Site Settings child of the home item of the context site

(<home>/Site Settings/Business Catalog).

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 26 of 51

Note
The default implementation of the IOrderManager contract writes order information to the Sitecore Master
database.

How to Integrate an Order Management System

To integrate an external order management system:

1. Optionally, implement the Order contract. For more information about the Order contract, see the
section The SEFE Order Contract.

2. In the Visual Studio project, create a class that implements the IOrderManager contract to
abstract the order management system.

3. In the new class, implement the GetOrder() method to retrieve information about an order from

the external order management system, and return an object that implements the Order contract
to contain that information.

4. In the new class, implement the GetOrders() method to retrieve orders matching a given query

from the external order management system.

5. In the new class, implement the CreateOrder() method to create an order in the external order

management system.

6. In the new class, implement the SaveOrder() method to update an order in the external order

management system.

7. In the new class, implement the GenerateOrderNumber() method to generate an order

number appropriate for the external order management system.

8. In Unity configuration, add an /alias/alias element for your IOrderManager implementation.
For instructions to add an implementation to Unity configuration, see the section How to Add an
Implementation to the Unity Configuration.

9. Configure SEFE to use the IOrderManager implementation. Update the mapTo attribute of the

/unity/container/register element named IOrderManager to the value of the alias

attribute of the new /unity/alias element that specifies your IOrderManager implementation.

For instructions to configure SEFE to use your implementation, see the section How to Replace a
SEFE Component.

For additional information about Unity configuration, including instructions to use different
implementations under different conditions, see the section Dependency Injection.

Note
If you integrate SEFE with an external order management system, Sitecore recommends that you also
write orders data to Sitecore, so that the website can continue to process orders even when the external
order management system is unavailable.

3.3.6 The SEFE IProductRepository Contract

The IProductRepository contract
(Sitecore.Ecommerce.DomainModel.Products.IProductRepository) defines a programming

interface for managing a product catalog.

The default implementation (Sitecore.Ecommerce.Products.ProductRepository) of the

IProductRepository contract manages the descendants of the item specified by the Products Link field in

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 27 of 51

the System Links section of the Business Catalog child of the Site Settings child of the home item of

the context site (<home>/Site Settings/Business Catalog).
5

If you implement the IProductRepository contract, you should also implement the IProductPriceManager
contract. For more information about the IProductPriceManager contract, see the section The SEFE
IProductPriceManager Contract.

3.3.7 The SEFE IProductPriceManager Contract

The IProductPriceManager contract
(Sitecore.Ecommerce.DomainModel.Prices.IProductPriceManager) defines a programming

interface for product pricing.

The default implementation (Sitecore.Ecommerce.Prices.ProductPriceManager) of the

IProductPriceManager contract applies pricing information stored in the Price field in the Product Meta
Info section of the product definition item, accounting for member and non-member pricing types, plus the
VAT percentage associated with the region of purchase. For more information about VAT, see the section
The SEFE VatRegion Contract.

How to Add a Price Type to the Default IProductPriceManager Implementation

To add a price type to the default IProductPriceManager implementation:

1. In the Content Editor, select the

/Sitecore/System/Modules/Ecommerce/PriceMatrix/Shop item.

2. In the Content Editor, insert a new price type definition item using the Ecommerce/Price

Field/PriceMatrixPrice data template.

3. In the new price type definition item, in the Data section, in the Title field, enter the label for the
new price type.

4. In the Content Editor, sort the price type definition items to control their order of appearance in
the Price field of product definition items.

5. In the Content Editor, edit product definition items. In the Product Meta Info section, in the
Price field, enter values for the new price type.

6. Update rendering components to apply the new price type as appropriate.

To access the new price type for a product, pass the value of the Title field in the product price type

definition item as the second parameter to the GetPriceMatrixPrice() method of the

IProductPriceManager contract.

3.3.8 The SEFE IShoppingCartManager Contract

The IShoppingCartManager contract
(Sitecore.Ecommerce.DomainModel.Carts.IShoppingCartManager) defines a programming

interface for managing information about an individual shopping cart.

The default implementation (Sitecore.Ecommerce.Carts.ShoppingCartManager) stores

information in ASP.NET session.

5
 For information about APIs for importing product data into Sitecore, see the Content API Cookbook at

http://sdn.sitecore.net/Reference/Sitecore%206/Content%20API%20Cookbook.aspx.

http://sdn.sitecore.net/Reference/Sitecore%206/Content%20API%20Cookbook.aspx

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 28 of 51

3.3.9 The SEFE ITransactionData Contract

The ITransactionData contract
(Sitecore.Ecommerce.DomainModel.Payments.ITransactionData) defines a programming

interface to persist payment transaction information between HTTP requests.

The default implementation (Sitecore.Ecommerce.Payments.TransactionData) of the

ITransactionData contract stores data in ASP.NET session.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 29 of 51

3.4 SEFE Payment Providers

SEFE payment providers represent individual payment systems.
6
 SEFE supports two types of payment

providers: online and offline.

3.4.1 SEFE Online Payment Providers

Online payment providers implement the IOnlinePayementProvider contract
(Sitecore.Ecommerce.DomainModel.Payments.IOnlinePaymentProvider) and represent

online payment gateways.

The default online payment provider implementations include:

 Amazon (Sitecore.Ecommerce.Payments.Amazon.AmazonPaymentProvider).

 Authorize.NET
(Sitecore.Ecommerce.Payments.AuthorizeNet.AuthorizeNetPaymentProvider).

 BBS (Sitecore.Ecommerce.Payments.BBS.BBSPaymentProvider).

 DIBS (Sitecore.Ecommerce.Payments.DIBS.DIBSPaymentProvider).

 ePay (Sitecore.Ecommerce.Payments.EPay.EPayPaymentProvider).

 PayEx (Sitecore.Ecommerce.Payments.PayEx.PayExPaymentProvider).

 QuickPay (Sitecore.Ecommerce.Payments.QuickPay.QuickPayPaymentProvider).

3.4.2 SEFE Offline Payment Providers

Offline payment providers represent offline payment methods, such as a paper check or money order.
Offline payment providers implement the IOfflinePaymentProvider contract
(Sitecore.Ecommerce.DomainModel.Payments.IOfflinePaymentProvider).

The default implementation (Sitecore.Ecommerce.Payments.OfflinePaymentProvider) of the

IOfflinePaymentProvider contract creates an order without processing payment.

6
 For more information about payment providers, see the Payment Method Reference Guide at

http://sdn.sitecore.net/Products/ECommerce/Documentation.aspx.

http://sdn.sitecore.net/Products/ECommerce/Documentation.aspx

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 30 of 51

3.5 SEFE Data Contracts

SEFE provides the following contracts for managing representations of data.

3.5.1 The SEFE IDataMapper Contract

The IDataMapper contract (Sitecore.Ecommerce.Data.IDataMapper) defines a programming

interface to help various data managers abstract storage.

The default implementation (Sitecore.Ecommerce.Data.DataMapper) of the IDataMapper contract

represents data as Sitecore items.

The default IDataMapper implementation uses the Entity attribute in .NET to determine the data

templates and fields associated with various data elements. For example, in the following example, the
Entity attributes in square brackets (“[]”) define the ID of a data template for products and the name of

a field in that data template that contains the specified property:

[Entity(TemplateId = '{B87EFAE7-D3D5-4E07-A6FC-012AAA13A6CF}')]

public class Product : DomainModel.Products.ProductBaseDate, IEntity

{

 [Entity(FieldName = '__Display name')]

 public override string Name { get ; [NotNullValue] set; }

...

3.5.2 The SEFE EntityHelper Contract

The EntityHelper contract (Sitecore.Ecommerce.Data.EntityHelper) providers an API that the

default implementation of the IDataMapper contract uses to access the value of the Entity attributes in

.NET code. The class that defines the EntityHelper contract also serves as the default implementation of
the contract. For more information about the IDataMapper contract, see the section The SEFE
IDataMapper Contract.

3.5.3 The SEFE IEntityProvider Contract

The IEntityProvider contract (Sitecore.Ecommerce.DomainModel.Data.IEntityProvider)

provides an abstract API to access a variety of similar data types.

The default implementation (Sitecore.Ecommerce.Data.EntityProvider) of the IEntityProvider

contract manages data in items based on the Ecommerce/Business Catalog/Option Value data

template or any data template that inherits from that data template.

You can use the IEntityProvider contract to access information about countries, country states,
currencies, delivery alternatives, language option values, notification options, payments, and VAT option
values. For example, to access information about all countries:

using Sitecore.Ecommerce.DomainModel.Data;

using Sitecore.Ecommerce.DomainModel.Addresses;

...

IEntityProvider<Country> countries =

 Sitecore.Ecommerce.Context.Entity.Resolve<IEntityProvider<Country>>();

foreach(Country country in countries.GetAllEntities())

{

...

}

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 31 of 51

To access a specific country by country code:

Country unitedStates = countries.GetEntityByCode("US");

You can create data templates based on the Ecommerce/Business Catalog/Option Value data

template and use the IEntityProvider contract to access the stored data.

3.5.4 The SEFE IMappingRule Contract

The IMappingRule contract (Sitecore.Ecommerce.Data.IMappingRule) defines a programming

interface to define adapters for mapping between physical and logical storage for complex types,
including conversion between system and Sitecore internal data types such as dates in the ISO string
format used by Sitecore.

Sitecore provides two default implementations of the IMappingRule contract:

 The Order mapping rule (Sitecore.Ecommerce.Data.OrderMappingRule) implementation

of the IMappingRule contract adapts orders from items in the content tree.

 The OrderLine mapping rule (Sitecore.Ecommerce.Data.OrderLineMappingRule)

implementation of the IMappingRule contract adapts order lines from items in the content tree.

The default implementation of the IDataMapper contract uses these implementations of the IMappingRule
contract.

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 32 of 51

3.6 The SEFE ISearchProvider Contract

The ISearchProvider contract (Sitecore.Ecommerce.Search.ISearchProvider) defines a

programming interface for locating items matching specific criteria.

SEFE provides three implementations of the ISearchProvider contract:

 The Lucene search provider (Sitecore.Ecommerce.Search.LuceneSearchProvider)

uses a Lucene search index.

 The Sitecore Query search provider
(Sitecore.Ecommerce.Search.SitecoreQuerySearchProvider) uses Sitecore query.

 The Fast Query search provider
(Sitecore.Ecommerce.Search.FastQuerySearchProvider) uses Sitecore fast query.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 33 of 51

3.7 The SEFE ICatalogProductResolveStrategy Contract

The ICatalogProductResolveStrategy contract
(Sitecore.Ecommerce.DomainModel.Catalogs.ICatalogProductResolveStrategy) defines

an API to retrieve specified products from a product catalog.

Sitecore provides two default implementations of the ICatalogProductResolveStrategy contract:

 The Product List product resolution strategy
(Sitecore.Ecommerce.Catalogs.ProductListCatalogResolveStrategy) retrieves

one or more items based on their IDs.

 The Query product resolution strategy
(Sitecore.Ecommerce.Catalogs.QueryCatalogProductResolveStrategy) returns

products that match search query.

When a user creates an item to present some number of products on a website, they select one of the
ICatalogProductResolveStrategy implementations to determine how to specify the products to display.
SEFE stores the user’s selections as parameters in fields of the item, and presentation components use
those fields to determine which products to display.

The Product Page custom editor that appears for items based on the Ecommerce/Product

Categories/Product Search Group data template uses these two ICatalogProductResolveStrategy

implementations. SEFE manages ICatalogProductResolveStrategy definition items beneath the
/Sitecore/System/Modules/Ecommerce/System/Product Selection Method item.

The Sitecore.Ecommerce.Xsl.XslExtensions.GetProductsForCatalog() XSL extension

method (intended for use with items based on the Ecommerce/Product Categories/Product

Search Group data template) returns the list of products retrieved using the strategy selected in the

context item. To expose this method as sc:GetProductsForCatalog()in an XSL rendering, add the

following attribute to the /xsl:stylesheet element in the .xslt file:

xmlns:ec="http://www.sitecore.net/ec"

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 34 of 51

3.8 The SEFE AnalyticsHelper Contract

The AnalyticsHelper contract supports integration between the Sitecore Online Marketing Suite (OMS)
and SEFE.

7
 For example, the AnalyticsHelper contract exposes an API to identify specific OMS events as

goals.
8

The class that defines the AnalyticsHelper contract also serves as the default implementation of the
AnalyticsHelper contract.

7
 For more information about the Sitecore Online Marketing Suite (OMS), see

http://www.sitecore.net/en/Products/Sitecore-Online-Marketing-Suite.aspx.
8
 For information about APIs to access SEFE events, see the classes in the
Sitecore.Ecommerce.Analytics.Components.PageEvents namespace and the

Sitecore.Ecommerce.Analytics.AnalyticsHelper class.

http://www.sitecore.net/en/Products/Sitecore-Online-Marketing-Suite.aspx

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 35 of 51

3.9 The SEFE ProductUrlProcessor Contract

The ProductUrlProcessor contract (Sitecore.Ecommerce.Catalogs.ProductUrlProcessor)

defines a programming interface that determines the URL of a product item and another that determines
the product specified by a URL. Product resolvers control how SEFE constructs and parses the URLs of
product pages.

SEFE provides multiple implementations of the ProductUrlProcessor contract:

 The NameProductUrlProcessor
(Sitecore.Ecommerce.Catalogs.NameProductUrlProcessor) implementation of the

ProductUrlProcessor contract uses product names.

 The NameAndCodeProductUrlProcessor
(Sitecore.Ecommerce.Catalogs.NameAndCodeProductUrlProcessor) implementation

of the ProductUrlProcessor contract uses product names and codes.

 The CodeProductUrlProcessor
(Sitecore.Ecommerce.Catalogs.CodeProductUrlProcessor) implementation of the

ProductUrlProcessor contract uses product codes.

By default, product URLs begin with the path to the page that links to the product. For example, if the item
named products under the home item of a managed website contains a link to a product named

product_name and code product_id, the default URL generated for that product is

/products/product_name.aspx, /products/product_name_product_id.aspx, or

/products/product_id.aspx, depending on the ProductUrlProcessor implementation that SEFE

applies. For more information about the ProductUrlIProcessor implementation that SEFE applies, see the
section How to Specify the Product URL Format.

3.9.1 The SEFE VirtualProductResolver Contract

The VirtualProductResolver contract
(Sitecore.Ecommerce.Catalogs.VirtualProductResolver) defines an API to determine the

product specified by a URL generated by a ProductUrlProcessor implementation. The
VirtualProductResolver applies the ProductUrlProcessor appropriate to the context to determine the
product specified by the URL. The ProductResolver processor that SEFE adds to the

httpRequestBegin pipeline defined in the web.config file uses the VirtualProductResolver to

determine the product associated with a requested URL.

The class that defines the VirtualProductResolver contract also serves as the default implementation of
the VirtualProductResolver contract. For more information about product URLs and product resolution,
see the section Product URLs and Product Resolution.

3.9.2 How to Add a ProductUrlProcessor Implementation

You can add a ProductUrlProcessor implementation to define a custom format for product URLs.

To add an implementation of the ProductUrlProcessor contract:

1. In the Visual Studio project, add a class that inherits from the ProductUrlProcessor base class

(Sitecore.Ecommerce.Catalogs.ProductUrlProcessor).

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 36 of 51

2. In the new class, implement a constructor that accepts an object based on the ISearchProvider
contract. For more information about the ISearchProvider contract, see the section The SEFE
ISearchProvider Contract.

3. In the new class, implement the GetProductUrl() method to return the URL to use for a

product.

4. In the new class, implement the ResolveProductItem() method to return the product item

associated with a URL of a product.

5. In Unity configuration, add a /unity/alias element. Set the name attribute of the new

/unity/alias element to the name of the class. Set the type attribute of the new

/unity/alias element to the .NET type of the class. For example:

<alias name="MyProductUrlProcessor"

 type="MyNamespace.MyProductUrlProcessor, MyAssembly" />

6. In Unity configuration, add a /unity/container/register element. Set the type attribute of

the new /unity/container/register element to ProductUrlProcessor. Set the mapTo

attribute of the new /unity/container/register element to the name attribute of the new

/unity/alias element. Set the name attribute of the new /unity/container/register

element to a unique prefix based on the implementation, such as My. Copy the elements

enclosed in one of the other /unity/container/register elements with a value of

ProductUrlProcessor for the type attribute. For example:

<register type="ProductUrlProcessor"

 mapTo="MyProductUrlProcessor" name="My">

 <lifetime type="perthread" />

 <constructor>

 <param name="searchProvider">

 <dependency name="FastQuerySearchProvider"/>

 </param>

 </constructor>

</register>

7. In the Content Editor, beneath the

/Sitecore/System/Modules/Ecommerce/System/Display Product Modes item, insert

a ProductUrlProcessor definition item using the Ecommerce/Settings/Settings Item data

template. Give the new ProductUrlProcessor definition item a meaningful name based on the
implementation, such as My Product Url Processor.

8. In the new ProductUrlProcessor definition item, in the Data section, in the Key field, enter the

value of the name attribute of the new /unity/container/register element, for example

My.

For more information about Unity configuration, see the section Unity Application Block Overview.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 37 of 51

Chapter 4 Adding Customized Product Search

Criteria

This chapter describes how to extend the product search feature in SEFE. It shows how
to customize the search options and how to have more control over the products
presentation in both of the frontend and backend. By the front end we mean the display
of the search end result for the page visitor and by the backend we mean the content
editor and template manager views.

This chapter contains the following sections:

 The Need for the Product Search Configuration and Extensibility

 Extending the Product Search Group Template

 Extending the Resolve Strategy

 Extending the Product Search Catalog

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 38 of 51

4.1 The Need for the Product Search Configuration and
Extensibility

To illustrate the need for changing in the product search, the typical example is that of a camera and
photographic supply webshop. This is because it is full of different models, categories, proficiency levels
and interrelated products. Hence, sellers do not usually show all the cameras together but they rather
show each camera with the proper group of products of the same proficiency level. For example,
professional cameras usually exist with professional lenses and others accessories. Moreover, one
product can exist in multiple groups. This chapter is useful in general when there is a need to create any
classification that is different from that of the repository.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 39 of 51

4.1 Extending the Product Search Group Template

This section describes how to classify a product according to your business needs. You must create or
edit the classifications that you need in the Product Search Group template.

A convenient starting point is to extend this template with additional fields for storing search criteria. You
can use the Product Search Group template to define a category structure that reflects the way the
products are presented on the front end not the structure of the repository.

This section describes how to use the Content Editor to add a new search criterion to the Product Search
Group template. This is to apply an additional filter to the products selected.

To extend the Product Search Group template:

1. Login into the Content Editor.

2. Create a new template that inherits from the Product Search Group template and call it My
Product Search Group.

3. In the Builder menu, in the Catalog Settings section, add a new criterion, call it Search Treelist.

4. In the Type field, select Treelist as the type. You must select Treelist as the type if you want to
select multiple folders from the product repository.

In the Source field, enter the path to the product repository.

5. Create a page item that inherits from the My Product Search Group template and call it mytest.

At this point, you should be able to set the domain of your search from the Treelist.

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 40 of 51

In the following image, the search is executed for the Cameras domain only.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 41 of 51

4.2 Extending the Resolve Strategy

To search for products in the selected in the Treelist control, you must:

 Extend the DatabaseCrawler to index this product category parent folder.

 Extend the QueryCatalogProductResolveStrategy class to find the products based on a

particular product category folder.

Extending the DatabaseCrawler

Essentially, you use the DatabaseCrawler class to build product and web indexes.

The Sitecore.Search.DatabaseCrawler class scans a specific repository such as a database or

file system, extracts information and stores it in a search index. It then makes this information available to
Sitecore Search.

The Sitecore.Search.DatabaseCrawler class performs several functions:

 Indexer — It extracts data from a specific document that is requested by the crawler or the
monitor. The data extracted consists of metadata and content.

o Metadata — The Indexer extracts metadata that the system understands. You can filter and
prioritize the metadata, for example, by using the _name or _template field.

o Content — The Indexer also extracts body content and prioritizes it. You can use boost to
prioritize the content in the document. This is usually only applied to a single field, giving the
document a single prioritization.

 Crawler — Traverses a storage system and uses the indexer to populate the search index.

 Monitor — Monitors changes in the repository and updates the search index.

The following code shows how to extend the DatabaseCrawler class to add a special field to a

document in Lucene that represents the parent category folder in SEFE:

1. In Visual Studio, create a new project and call it Sample1.

2. Add the following class to the project and call it SampleDatabaseCrawler.

namespace Sample1.Kernel.Search

{

 using Lucene.Net.Documents;

 using Sitecore.Data;

 using Sitecore.Data.Items;

 // <summary>

 // SampleDatabaseCrawler class is inherited from

Sitecore.Ecommerce.Search.DatabaseCrawler

 // Created so we can add the needed field to the Lucene index products when resolving

products based on which product category folder they are located in

 // </summary>

 public class SampleDatabaseCrawler : Sitecore.Ecommerce.Search.DatabaseCrawler

 {

 // <summary>

 // Overridden method for adding special fields to the Lucene product index

 // </summary>

 // <param name="document">The Lucene document to add a new field to</param>

 // <param name="item">the item to get the value from</param>

 protected override void AddSpecialFields(Document document, Item item)

 {

 // Call the base class for setting the base special fields on the Lucene

document

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 42 of 51

 base.AddSpecialFields(document, item);

 // Add the field _parent to the document for the Luceneindexeer

 document.Add(CreateTextField("_parent", ShortID.Encode(item.Parent.ID)));

 }

 }

}

Once you have extended the DatabaseCrawler class to create the _parent field for the indexer, you

are ready to extend the search strategy to use this index.

Extending the ICatalogProductResolveStrategy Class

The ICatalogProductResolveStrategy contract defines the way to retrieve the products that should

be displayed on a given webpage without having to worry about the actual storage of search criteria and
how to search the products selected on the webpage item.

You can configure the implementations of the ICatalogProductResolveStrategy contract to search

for specific fields on the webpage item in the repository to return the products on the webpage item.

You can use this contract to retrieve the products shown on a given page in two situations:

 While creating the web index.

 While configuring a webpage.

The following classes are the default Implementations of the ICatalogProductResolveStrategy

contract:

ProductListCatalogResolveStrategy

You can use this class to retrieve the products that have been manually selected and stored on the
webpage item. (sitecore/system/Modules/Ecommerce/System/Product Selection Method)

QueryCataloPgroductResolveStrategy

You can use this class to retrieve the products that rewsults from the search and store the query
parameters on the webpage item (sitecore/system/Modules/Ecommerce/System/Product

Selection Method). It implements the CatalogProductResolveStrategyBase class which

implements the ICatalogProductResolveStrategy interface.

You can also extend the class that represents the QueryCatalogProductResolveStrategy to

accommodate for the search as follows:

1. In Visual Studio, open the project named Sample1 that you created in the last subsection.

2. Add the following class and name it SampleQueryCatalogProductResolveStrategy.

namespace Sample1.Kernel.Catalogs

{

 using System.Collections.Generic;

 using System.Linq;

 using Sitecore.Data;

 using Sitecore.Data.Items;

 using Sitecore.Diagnostics;

 using Sitecore.Ecommerce;

 using Sitecore.Ecommerce.Configurations;

 using Sitecore.Ecommerce.Search;

 // <summary>

 // SampleQueryCatalogProductResolveStrategy class is inherited from

Sitecore.Ecommerce.Catalogs.QueryCatalogProductResolveStrategy

 // Created to implement the functionality so we can resolve products based on which

repository folder they are located in.

 // </summary>

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 43 of 51

 public class SampleQueryCatalogProductResolveStrategy :

Sitecore.Ecommerce.Catalogs.QueryCatalogProductResolveStrategy

 {

 // <summary>

 // The Search TreeList field name

 // </summary>

 private readonly string searchTreelistFieldName;

 // <summary>

 // Initializes a new instance of the SampleQueryCatalogProductResolveStrategy

class.

 // </summary>

 // <param name="searchTextBoxesFieldName">Names of the searchtextboxes</param>

 // <param name="searchChecklistsFieldName">Names of the Checkboxes</param>

 // <param name="searchTreelistFieldName">name of the treelist field</param>

 public SampleQueryCatalogProductResolveStrategy(string searchTextBoxesFieldName,

string searchChecklistsFieldName, string searchTreelistFieldName)

 : base(searchTextBoxesFieldName, searchChecklistsFieldName)

 {

 // Testing for not null or empty

 Assert.ArgumentNotNullOrEmpty(searchTreelistFieldName,

"searchTreelistFieldName");

 // Assigning to local variable

 this.searchTreelistFieldName = searchTreelistFieldName;

 }

 // <summary>

 // Overridden method for building the search query for searching the Lucene index

 // </summary>

 // <param name="catalogItem">the catalog item we are resolving from (product

catalog)</param>

 // <returns>The query we build for searching</returns>

 protected override Query BuildSearchQuery(Item catalogItem)

 {

 // Let’s resolve the actual field on the current catalog item

 string searchTreelistFieldText = catalogItem[this.searchTreelistFieldName];

 // If nothing defined, returning “error in setup” on template

 if (string.IsNullOrEmpty(searchTreelistFieldText))

 {

 return default(Query);

 }

 // Calling the base class for getting all the query fields defined in the

base class

 Query query = base.BuildSearchQuery(catalogItem);

 // Getting the configuration from SEFE

 BusinessCatalogSettings businessCatalogSettings =

Context.Entity.GetConfiguration<BusinessCatalogSettings>();

 // Testing if configuration is set - if not, fail in setup by user.

 Assert.IsNotNull(businessCatalogSettings, GetType(), "Business Catalog

settings not found.", new object[0]);

 // Getting the root from where products are located (product repository)

 Item productRepositoryRootItem =

catalogItem.Database.GetItem(businessCatalogSettings.ProductsLink);

 // Testing if the root is set - if not, this is a failure from the user.

 Assert.IsNotNull(productRepositoryRootItem, "Product Repository Root Item is

null.");

 // If the query is empty, we need to add some stuff to it

 if (query == default(Query))

 {

 query = new Query { SearchRoot = productRepositoryRootItem.ID.ToString()

};

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 44 of 51

 }

 // Let´s parse the field from the current catalog items

 if (!string.IsNullOrEmpty(searchTreelistFieldText))

 {

 this.ParseTreelistField(searchTreelistFieldText, ref query);

 }

 return query;

 }

 // <summary>

 // Function for parsing TreeList to query on the catalog item

 // </summary>

 // <param name="ids">string with | separated list of categoryfolder Ids</param>

 // <param name="query">the query to append to</param>

 protected virtual void ParseTreelistField(string ids, ref Query query)

 {

 // Creating a list if more than one folder is defined

 List<string> folders = new List<string>();

 if (ids.Contains("|"))

 {

 folders.AddRange(ids.Split('|'));

 }

 else

 {

 folders.Add(ids);

 }

 Query sub = new Query();

 int count = 0;

 // Iterating through each folder where there's a Sitecore ID

 foreach (string s in folders.Where(ID.IsID))

 {

 // Appending the value of the folder to the query and telling the query

to search for the field _parent in the product Lucene index

 sub.AppendField("_parent", ShortID.Encode(s), MatchVariant.Exactly);

 // if more than one - we offcourse need to add an “Or” to the query

 if (count < (folders.Count - 1))

 {

 sub.AppendCondition(QueryCondition.Or);

 }

 count++;

 }

 // Appending the built query to the main query

 query.AppendSubquery(sub);

 }

 }

}

Configuring SEFE and Lucene

To register the newly created database crawler and the resolve strategy, you must configure the search in
two files — Sitecore.Ecommerce.config and Unity.config.

1. In the Sitecore.Ecommerce.config file, under the indexes element in the

Configuration element, add the following index.

 <!-- Products index - Used by SEFE for resolving products - should not be used

on frontend for searching-->

 <index id="products" type="Sitecore.Search.Index, Sitecore.Kernel">

 <param desc="name">$(id)</param>

 <param desc="folder">__products</param>

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 45 of 51

 <Analyzer type="Sitecore.Ecommerce.Search.LuceneAnalyzer,

Sitecore.Ecommerce.Kernel" />

 <locations hint="list:AddCrawler">

 <master type="Sample1.Kernel.Search.SampleDatabaseCrawler, Sample1">

 <Database hints="master">master</Database>

 <!-- Repository root where MT engros products are stored-->

 <!--<Root>{054AEC0D-9D92-4C3A-80AC-A0E78773EAB7}</Root>-->

 <!-- Repository root where SEFE engros products are stored-->

 <Root hints="masterRoot">{502EA9FA-19E7-4DA5-8EA4-56C374AED45B}</Root>

 <Tags hint="master products">master products</Tags>

 </master>

 <web type="Sample1.Kernel.Search.SampleDatabaseCrawler, Sample1">

 <Database hints="web">web</Database>

 <!-- Repository root where MT engros products are stored-->

 <!--<Root>{054AEC0D-9D92-4C3A-80AC-A0E78773EAB7}</Root>-->

 <!-- Repository root where SEFE engros products are stored-->

 <Root hints="webRoot">{502EA9FA-19E7-4DA5-8EA4-56C374AED45B}</Root>

 <Tags>web products</Tags>

 </web>

 </locations>

 </index>

2. In the Search.config file, in the Unity element, add the following alias.

<alias alias="SampleQueryCatalogProductResolveStrategy"

type="Sample1.Kernel.Catalogs.SampleQueryCatalogProductResolveStrategy, Sample1"/>

3. In the Search.config file, in the Container element, add the following registry.

<register type="ICatalogProductResolveStrategy"

mapTo="SampleQueryCatalogProductResolveStrategy" name="My product Repository query">

 <lifetime type="singleton" />

 <constructor>

 <param name="searchTextBoxesFieldName">

 <value value="Search Text Boxes"/>

 </param>

 <param name="searchChecklistsFieldName">

 <value value="Search Checklists"/>

 </param>

 <param name="searchTreelistFieldName">

 <value value="Search Treelist"/>

 </param>

 </constructor>

 </register>

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 46 of 51

4.3 Extending the Product Search Catalog

This section describes how to extend the Product Search Catalog to accommodate for the product search
extension in the backend. In other words, it describes how to make the search results visible in the
Content Editor.

To extend the Product Search Catalog you must:

 Extend the CatalogQueryBuilder.

 Create a products source.

 Reference this source in the Content Editor.

Extending the CatalogQueryBuilder

The CatalogQueryBuilder class is used for building the search query used by SEFE when querying

the product repository.

Note

You can only use the CataloQueryBuilder in the product catalog.

To extend the CatalogQueryBuilder class to reflect the search result in the backend:

1. In Visual Studio, open the project named Sample1 that you created earlier.

2. Add the following class to the project and name it CatalogQueryBuilder.

namespace Sample1.Shell.Applications.Catalogs.Models.Search

{

 using System.Linq;

 using Sitecore.Ecommerce.Search;

 using Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search;

 using Sitecore.Ecommerce.Configurations;

 using Sitecore.Ecommerce;

 using Sitecore.Diagnostics;

 using System.Collections.Generic;

 using Sitecore.Data;

 // <summary>

 // CatalogQueryBuilder inheriting from

Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.CatalogQueryBuilder

 // Class is used for implementing functionality for resolving our result on the

product page in the sitecore content editor.

 // </summary>

 public class CatalogQueryBuilder :

Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.CatalogQueryBuilder

 {

 // <summary>

 // Buildquery function overridden - used for building the actual query for

searching

 // </summary>

 // <param name="options">Seachoptions</param>

 // <returns>The query to be used for search</returns>

 public override Query BuildQuery(SearchOptions options)

 {

 // Get the base query - we still need the functionality from there

 var query = base.BuildQuery(options);

 // Requesting the id of the item we are resolving from in the content editor

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 47 of 51

 var id = Sitecore.Context.Request.QueryString.Get("id");

 // Getting the catalog item from the DB

 var catalogItem = Database.GetDatabase("master").GetItem(new ID(id));

 // Let’s resolve the actual field on the current catalog item

 var searchTreelistFieldText = catalogItem["Search Treelist"];

 // Returning (error in set up)on the termplate, if nothing is defined

 if (string.IsNullOrEmpty(searchTreelistFieldText))

 {

 return query;

 }

 // Getting the configuration from SEFE

 var businessCatalogSettings =

Context.Entity.GetConfiguration<BusinessCatalogSettings>();

 // Testing if configuration is set - if not, fail in setup by user

 Assert.IsNotNull(businessCatalogSettings, GetType(), "Business Catalog

settings not found.", new object[0]);

 // Getting the root from where products are located (product repository)

 var productRepositoryRootItem =

catalogItem.Database.GetItem(businessCatalogSettings.ProductsLink);

 // Testing if the root is set - if not this is a fail from the user

 Assert.IsNotNull(productRepositoryRootItem, "Product Repository Root Item is

null.");

 // If the query is empty - we need to add some stuff to it

 if (query == default(Query))

 {

 query = new Query { SearchRoot = productRepositoryRootItem.ID.ToString()

};

 }

 // let’s parse the treelist field from the current catalog items

 if (!string.IsNullOrEmpty(searchTreelistFieldText))

 {

 ParseTreelistField(searchTreelistFieldText, ref query);

 }

 return query;

 }

 // <summary>

 // Function for parsing treelist to query on the catalog item

 // </summary>

 // <param name="ids">string with | separeted list of categoryfolder Ids</param>

 // <param name="query">the query to append to</param>

 protected virtual void ParseTreelistField(string ids, ref Query query)

 {

 // Creating a list if more than one folder is defined

 var folders = new List<string>();

 if (ids.Contains("|"))

 {

 folders.AddRange(ids.Split('|'));

 }

 else

 {

 folders.Add(ids);

 }

 var sub = new Query();

 var count = 0;

 // Iterating through each folder where there is a Sitecore ID

 foreach (var s in folders.Where(ID.IsID))

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 48 of 51

 {

 // Sppending the value of the folder to the query and telling the query

to search for the field _parent in the product lucene index

 sub.AppendField("_parent", ShortID.Encode(s), MatchVariant.Exactly);

 // If more than one,we ofcourse need to add a or to the query

 if (count < (folders.Count - 1))

 {

 sub.AppendCondition(QueryCondition.Or);

 }

 count++;

 }

 // If the query is not empty, we need to be sure to add a AND condition.

 if (!query.IsEmpty())

 {

 query.AppendCondition(QueryCondition.And);

 }

 // Appending the built query to the main query

 query.AppendSubquery(sub);

 }

 }

}

Creating a Products Source

The main class that you should use in this scenario is the ProductsSource class. You can use the

methods in this class to initialize the search, build the query using the CatalogQueryBuilder

mentioned beforehand, and return the result.

To create a products source, you should extend the class named ProductsSource —

Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.ProductsSource.

1. In Visual Studio, open the project named Sample1 that you created earlier.

Add the following class to the project and call it ProductsSource:

namespace Sample1.Shell.Applications.Catalogs.Models.Search

{

 using System.Linq;

 using System.Collections.Generic;

 using Sitecore.Ecommerce.DomainModel.Products;

 using Sitecore.Ecommerce.Search;

 using Sitecore.Ecommerce.Utils;

 using Sitecore.Ecommerce;

 using Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search;

 using Sitecore.Ecommerce.Shell.Applications.Catalogs.Models;

 // <summary>

 // ProductsSource inheriting from

Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.ProductsSource

 // this class is created so we can call the new query functionality we need for

showing the result in the Sitecore content editor.

 // this class is also referred to on the copy made in Sitecore based on

/sitecore/system/Modules/Ecommerce/Catalogs/Product Catalog

 // </summary>

 class ProductsSource :

Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.ProductsSource

 {

 // <summary>

 // Gets the entries.

 // </summary>

 // <param name="pageIndex">Index of the page.</param>

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 49 of 51

 // <param name="pageSize">Size of the page.</param>

 // <returns>Returns Entries</returns>

 public override IEnumerable<List<string>> GetEntries(int pageIndex, int pageSize)

 {

 // Let’s get the query

 var builder = new CatalogQueryBuilder();

 var query = builder.BuildQuery(SearchOptions);

 // Let’s resolve the product repository

 var productRepository = Context.Entity.Resolve<IProductRepository>();

 //// Let’s do the search

 var products = productRepository.Get<ProductBaseData, Query>(query,

pageIndex, pageSize);

 // let’s return the result

 return !products.IsNullOrEmpty() ? new

EntityResultDataConverter<ProductBaseData>().Convert(products, SearchOptions.GridColumns).Rows :

new GridData().Rows;

 }

 // <summary>

 // Gets the entry count

 // </summary>

 // <returns>Returns enties count.</returns>

 public override int GetEntryCount()

 {

 // Let’s get the query

 var builder = new CatalogQueryBuilder();

 var query = builder.BuildQuery(SearchOptions);

 // Let’s resolve the product repository

 var productRepository = Context.Entity.Resolve<IProductRepository>();

 return productRepository.Get<ProductBaseData, Query>(query).Count();

 }

 }

}

Defining a New Editor in the Core Database

When you create a product catalog, you must also define a new editor in the Core database. The editor is
the location where you place the search catalog.

To create the editor:

1. Switch to the Core database.

2. Log in to the Content Editor.

3. Browse to the My Product Page item (Sitecore/content/Content

Editor/Ecommerce/My Product Page) and insert from template.

Sitecore E-Commerce Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 50 of 51

4. Select Editor as the template (/Sitecore Client/Content editor/Editor).

You should now be able to see the new editor created under Ecommerce as follows.

Creating a Product catalog

The last part of this task is to create a product catalog. You should also reference the product source and
the editor defined in the core database.

To create a product catalog:

1. Switch to the Master database.

2. Under Sitecore/System/Modules/E-Commerce/Catalogs, create a new catalog and call it
My Product Catalog.

Sitecore E-Commerce Fundamental Edition 1.1

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2011 Sitecore. All rights reserved.

Page 51 of 51

3. In the My Product Catalog item, in the Catalog Data Source field, enter the products source
reference as illustrated in the following image.

4. Browse to the standard values of the My Product Search Group template

(Sitecore/Templates/My Sample Site/Products categories/ My Product

Search Group /_Standard Values) and in the Content menu, in the Editors field, click
Edit and select the editor you defined in the last section — My Product Page.

	Chapter 1 Introduction
	Chapter 2 SEFE Technical Overview
	2.1 The SEFE Domain Model
	2.2 Unity Application Block Overview
	2.2.1 The Unity Configuration File
	2.2.2 The initialize Pipeline
	2.2.3 Dependency Injection
	2.2.4 How to Resolve a SEFE Component
	2.2.5 How to Add an Implementation to the Unity Configuration
	2.2.6 How to Add a Contract to the Unity Configuration
	2.2.7 How to Replace a SEFE Component
	2.2.8 How to Configure SEFE for Multiple Managed Websites

	2.3 SEFE Product Management
	2.3.1 Product URLs and Product Resolution
	How to Specify the Product URL Format

	2.3.2 Product Presentation
	How to Specify a Product Presentation Format
	How to Update a Product Presentation Format
	How to Define a New Product Presentation Format

	Chapter 3 The SEFE Contracts
	3.1 SEFE Configuration Contracts
	3.1.1 The SEFE BusinessCatalogSettings Contract
	3.1.2 The SEFE DesignSettings Contract
	3.1.3 The SEFE GeneralSettings Contract
	3.1.4 The SEFE ShoppingCartSettings Contract
	3.1.5 The SEFE ShoppingCartSpotSettings Contract

	3.2 SEFE Business Object Contracts
	3.2.1 The SEFE AddressInfo Contract
	3.2.2 The SEFE Country Contract
	3.2.3 The SEFE Currency Contract
	3.2.4 The SEFE CustomerInfo Contract
	3.2.5 The SEFE IProductRepositoryItem Contract
	3.2.6 The SEFE NotificationOption Contract
	3.2.7 The SEFE Order Contract
	How to Implement the Order Contract

	3.2.8 The SEFE OrderLine Contract
	3.2.9 The SEFE OrderStatus Contract
	How to Override an OrderStatus Implementation
	How to Implement a New Order Status
	How to Resolve an Order Status

	3.2.10 The SEFE PaymentSystem Contract
	3.2.11 The SEFE ProductBaseData Contract
	3.2.12 The SEFE ProductCategory Contract
	3.2.13 The SEFE ProductLine Contract
	3.2.14 The SEFE ShippingProvider Contract
	3.2.15 The SEFE ShoppingCart Contract
	3.2.16 The SEFE ShoppingCartLine Contract
	3.2.17 The SEFE Totals Contract
	3.2.18 The SEFE VatRegion Contract

	3.3 SEFE Business Logic Contracts
	3.3.1 The SEFE ICheckOut Contract
	3.3.2 The SEFE ICurrencyManager Contract
	3.3.3 The SEFE ICustomerManager Contract
	3.3.4 The SEFE IMail Contract
	3.3.5 The SEFE IOrderManager Contract
	How to Integrate an Order Management System

	3.3.6 The SEFE IProductRepository Contract
	3.3.7 The SEFE IProductPriceManager Contract
	How to Add a Price Type to the Default IProductPriceManager Implementation

	3.3.8 The SEFE IShoppingCartManager Contract
	3.3.9 The SEFE ITransactionData Contract

	3.4 SEFE Payment Providers
	3.4.1 SEFE Online Payment Providers
	3.4.2 SEFE Offline Payment Providers

	3.5 SEFE Data Contracts
	3.5.1 The SEFE IDataMapper Contract
	3.5.2 The SEFE EntityHelper Contract
	3.5.3 The SEFE IEntityProvider Contract
	3.5.4 The SEFE IMappingRule Contract

	3.6 The SEFE ISearchProvider Contract
	3.7 The SEFE ICatalogProductResolveStrategy Contract
	3.8 The SEFE AnalyticsHelper Contract
	3.9 The SEFE ProductUrlProcessor Contract
	3.9.1 The SEFE VirtualProductResolver Contract
	3.9.2 How to Add a ProductUrlProcessor Implementation

	Chapter 4 Adding Customized Product Search Criteria
	4.1 The Need for the Product Search Configuration and Extensibility
	4.1 Extending the Product Search Group Template
	4.2 Extending the Resolve Strategy
	Extending the DatabaseCrawler
	Extending the ICatalogProductResolveStrategy Class
	Configuring SEFE and Lucene

	4.3 Extending the Product Search Catalog
	Extending the CatalogQueryBuilder
	Creating a Products Source
	Defining a New Editor in the Core Database
	Creating a Product catalog

