Sitecore E-Commerce Services 2.0 for CMS 6.6
Order Manager Developer's Cookbook Rev: May 27, 2013

@ Sitecore

Sitecore E-Commerce Services 2.0 for CMS 6.6

Order Manager Developer's
Cookbook

A developer's guide to configuring the Order Manager.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ SlteCO re

Table of Contents

Chapter 1 INtrOQUCTION ... 3
Chapter 2 Setting up the APPIICALIONcoooiiiiiii 4
2.1 The Structure of the Order Manager Application in SPEAKuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiens 5
2.2 The Navigation Diagram Of SPEAKuuiiiiiiiiiiiiiiiiiiie ittt eeeeeeeeaeeeeeeeaeeeeeeaene 7
Chapter 3 Configuring the Order Manager Application in SPEAKccccci 8
3.1 Setting up the Controls on the DashDOArdeueeiiiiiiiiiiiiiiiiiiiiieieiieieeeeeeeeee e 9
3.1.1 Configuring Dat@ SOUICES........cooiiiiiiiiiieee e 9
3.1.2 Configuring @ SNOP CONEXE......ccoiiiiiiiiiieie e 10

3.2 Configuring the Navigation FiltErSuiiiiiiiiiiieiiiiiiiiei et reeaeeeene 12
3.2.1 Configuring Navigation Filters According to a User ROI€cccouvviiiiiiiiiiiiiiiiiiieeeeeeees 13

3.3 Configuring the LiSt PAgEuuuiiiiiiiiiiiiiiiiiiiiiiieeeee ettt eeeeseesaesseeeeseeesessneeeeenne 15
3.3.1 Configuring @ COlUMNoooiiiiii 15
3.3.2 Configuring the Predefined Filters............ooo i 15
Configuring an EXPreSSION GrOUPuuuuuuuuuuuuueuiiinnii s 16
Configuring a Value Based EXPrESSION.uuu i s 16
Configuring a Range Based EXPrESSIONuuuuuuuuuummiii s 17
Creating AN OPEIALOLuuuuuiuiiiiiiiiiiiieeeeee s 18

3.4 Configuring the Order Details TaSK PAge..........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiisieieseiieeseeeeeeeeeeneneennee 20
341 Adding @ Field EdItOrooooiiiiiii 20
3.4.2 Adding an Order Details LiSt........ccoouiiiiiiiiiiiii 20
3.4.3 Adding a Column to an Order Details LIStccooviiiiiiiiiiiiii 21
3.4.4 Adding a Field to the DetailS LiSt.........coiiiiiiiieiiiini e e e e e e e e e e eees 22
3.4.5 Extending the Order Manager to Show Multi-valued Fieldsccccoovvieiiiiiiiiiiin e, 24

3.5 Configuring the SMart Pan€l.............coiiiiiiiiiiiiis e e e e e e e eeanenan 27
3.5.1 Enabling the Smart Panel in your APPliCatioN...........ccoeveuueiiiiee e e 27
3.5.2 Configuring the ACtIONS PANEIS...........ciiiiiiiiieiis e e e e e e eees 28
ICTETRC TN (o 10 To Jr= WO U1 o] o 1A od 1] o IS 28
Chapter 4 Configuring the Order Report in SmuUlSOft..........cooovviiiii e, 30
4.1 Customizing the Order Details REPOIT..........coiiiiiiiiieiie e 31
4.2 Setting UP the Dat@ SOUICE........uuuiii it e aann e as 32
4.3 Creating @ Variable...........oooiiiiice e 33
4.3.1 Changing the Localization of the Variable ..., 35
Chapter 5 Using the Order Manager APl....... oo e e e e eaaaaaas 37
5.1 Using the Core Order Manager APcoooveiiiiii i e e e e e e e e e ananaaas 38
5.1.1 The COM API REEIENCE......ccoi i, 38
5.1.2 Using the Core API to Import and EXPOrt Orders...........ouuiiieieeeiiieiiiiie e e e 39

5.2 Using the Visitor Order Manager APl ... aaaaaa 41
5.2.1 Reading all Orders for a SPecific CUSIOMETccceeeiiiiiiiiiiie e e e eeeeens 41
5.2.2 Using the Visitor AP11t0 Cancel an Orderccoeiiiieiiiiiiiiee e e e 42
5.2.3 Using the Visitor AP1 10 Create an Order...........ccoiiiiieiiiiiiiiie e eeeeeeiee e e e e e 45
5.2.4 The Limitations of the ViIsitor APl ..., 46

5.3 Using the Merchant Order Manager APlooo oo e eeeaaaaaa 49
5.3.1 Using the MOM API to Create @a NeW Order..........ccoovviiiiiiiiiie e 49
5.3.2 Setting the Order State to SUSPICIOUSccooeiiiiiiiiiiiie e 51
5.3.3 Getting the Best-Selling ProducCtsS ..o, 52
5.3.4 Getting the Best Customers for a Webstore ... 52

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 2 of 53

Order Manager Developer's Cookbook @ sitecore

Introduction

The Order Manager is an application that is based on SPEAK, easy to use, and easy
to configure to suit your own requirements.

This guide describes how to customize and extend the Order Manager (OM)
application in the backend. It is useful for developers who are looking for information
about the Order Manager application.

This manual contains the following chapters:

e Chapter 1 — Introduction
This chapter is introduction to the guide.

e Chapter 2 — Setting up the Application
This chapter describes the different layouts of SPEAK and how to set up the OM
application in a certain layout.

e Chapter 3—Configuring the Order Manager Application in SPEAK
This chapter describes how to configure all the pages in the SPEAK layout.

e Chapter 4 — Configuring the Order Report in Stimulsoft
This chapter describes how to configure the order report in Stimulsoft.

e Chapter 5— Using the Order Manager API
This chapter is an API reference guide for OM.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 3 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teC0 re

Setting up the Application

This chapter provides an overview of the default pages and controls that are available
in the Order Manager. All the controls in the pages are customizable. It is also easy to
add more pages if the default configuration is not suitable for your business needs.
This chapter describes:

e The structure of the order manager application in SPEAK.

e The navigation diagram of SPEAK.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 4 of 53

Order Manager Developer's Cookbook @ sitecore

2.1 The Structure of the Order Manager Application in SPEAK

To work with the OM application, you must install the Order Manager package. For information about
installing the OM package, see the SES installation guide.

In the Content Editor, you can navigate to the Order Manager root item:
/sitecore/system/Modules/SPEAK/Order Manager

= 3 spEAK
= =z Order Manager
#® Purchase Orders
® ¥ Order Details
¥ Print Order
= L& Repositories
= LJ Action Panels
) *D Info Spots
® [List views
®) operators
= \U Predefined Filters
& \D Smart Panels
= lJ Login

®) Metadata

The following table describes the folders that you can configure in the Order Manager:

Folder Description

Purchase Orders This folder contains links to the navigation filters that appear on the left
side navigation panel.

Template: /sitecore/templates/SPEAK/Base
templates/Navigation

Order Details This folder contains definitions of the sections and fields on the order
details task page.

For more information, see Configuring the Order Details Task Page.
Template: /sitecore/templates/SPEAK/Pagetypes/Task page

Print Order This folder contains the definition of the task page that renders the order
details report. For more information, see Configuring the Order Report in
Stimulsoft.
Template: /sitecore/templates/SPEAK/Pagetypes/Task page
Repositories This folder contains miscellaneous SPEAK controls configurations.
Template: /sitecore/templates/SPEAK/Folders/Repositories
Repositories/Action This folder contains actions that appear in different action panels.
Panels Template: /sitecore/templates/SPEAK/Folders/Actions

Repositories/Info Spots | This folder contains the controls that appear in the right hand side of the
order details task page.
Template: /sitecore/templates/SPEAK/Folders/Info spots

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 5 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ SlteCO re

Folder Description

Repositories/List Views | This folder contains all the list controls that appear on the dashboard page
and the list page. It defines the filter options and list columns. For more
information see,
Configuring the Order Manager Application in SPEAK
This chapter describes the configuration options in all the
SPEAK pages. These configuration options are described
in the section The Navigation Diagram of SPEAK.
The following sections describes how to:
e Set up the controls on the Dashboard.
e Configure the navigation filters.
e Configure the list page.
e Configure the order details task page.
e Configure the smart panel.

Setting up the Controls on the Dashboard and Configuring the List Page.
Template: /sitecore/templates/SPEAK/Folders/List Views

Repositories/Operators | This folder contains the Order Manager specific operators for filtering
orders. By default, it contains the operators:
e Isequalto

e Search
e between
Note

You should not edit any of these operators because they are part of the
implementation details of the Order Manager. However, you can add more
operators.

Template: /sitecore/templates/Common/Folder

Repositories/Predefined | This folder contains the list views and filter controls. These are the
Filters predefined filter options through which you can filter the order. You can
add your own custom options here.

For more information, see Configuring the Predefined Filters.
Template: /sitecore/templates/SPEAK/Folders/List Views

filters
Repositories/Smart This folder contains the smart panels content also known as quick views.
Panels For more information, see the section Configuring the Smart Panel.

Template: /sitecore/templates/SPEAK/Folders/SmartPanels

Note
If you upgrade your installation, any configuration changes that you make are overwritten. Therefore,
you must always create a backup of your configuration settings in the Order Manager.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 6 of 53

Order Manager Developer's Cookbook @ sitecore

2.2 The Navigation Diagram of SPEAK

The following flow diagram illustrates how you navigate in a SPEAK based application.

Login Page Launch App page
|
C10110]

I

Category Search Result Page
will navigate tao List Page

Home Page (Dashboard) App List page App Task page
. =] = —
2 —
< ":! —
I 1
e —
[
.]
} |
— — |
=L | = ‘ ‘
~N —_— e | |
a | |
S —— | I
| | ! !
— | |
| |
] I
- |= b =
o |7 E—
2 ":! | E—
i]
|
<+ — —
§ ——
——

As illustrated in the previous image, you can configure the layouts of the SPEAK pages in different
ways but we have chosen the App 1 theme.

The following table describes every page in the navigation architecture:

SPEAK Page

Description

Login Page

To launch the SPEAK login page, enter its URL in your web browser.

Launch Application Page

Contains a list of the applications that are available in SPEAK.

Home Page (Dashboard)

Provides users with an overview of their tasks and what they are
currently working on. In the Order Manager, users can have their own
individual home page depending on the security roles they have been
assigned in Sitecore.

List Page Displays the results of saved navigation filters in the left hand navigation
panel. The default Order Manager application comes with the following
pre-defined navigation filters:

e Orders
e Open orders
e Orders in process
e Closed orders
e Cancelled orders
Task Page This page is also known as the order details page, displays the full

details of an order and enables you to complete specific order
management tasks

This guide describes how to configure the dashboard, list pages, and task pages.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 7 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ SlteCO re

Configuring the Order Manager Application in

SPEAK

This chapter describes the configuration options in all the SPEAK pages. These
configuration options are described in the section The Navigation Diagram of SPEAK.

The following sections describes how to:
e Set up the controls on the Dashboard.
e Configure the navigation filters.
e Configure the list page.
e Configure the order details task page.

e Configure the smart panel.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 8 of 53

Order Manager Developer's Cookbook

3.1

@ sitecore

Setting up the Controls on the Dashboard

The dashboard is the first page that you see when you choose the Order Manager application in
SPEAK. By default, the dashboard contains the navigation filters on the left hand panel, and the last
new orders created and the latest orders that are ready to be captured.

This section describes how to configure the dashboard on the Order Manager page.

3.1.1

Configuring Data Sources

You can configure the data source of an in item in the Order Manager. There are two types of data
source in SPEAK: fast query and object detail list. In the Order Manager, you use the object detail list
to access the order data that is stored in a separate order database.

To configure the data source of the purchase orders in the Content Editor:

1. Navigate to the Purchase Orders item: /sitecore/system/Modules/SPEAK/Order
Manager/Repositories/List Views/Purchase Orders

2. Right click Purchase Orders, click Insert, select ObjectDetailList and then call it Sample

Orders.

3. Inthe Content section, navigate to the ObjectDataSourceSettings section.

The following table describes the fields in the Object data source:

Field

Description

EnablePaging

Indicates whether or not the data source control supports
paging through the data that it retrieves.

TypeName The name of the class on which the ObjectbDataSource
object is based — for example, the type that is responsible for
handling the Select, Update, Delete, Insert operations.

DataObjectTypeName The name of a class that the ObjectDataSource object uses

as the return value in an update, insert, or delete data
operation.

SelectMethod

The name of the method that the ObjectDataSource control
invokes in the object that is specified in the TypeName
property, to retrieve data.

SelectParameterName

The name of the parameter that is used in the method
specified by the SelectMethod property.

SelectParameterValue

The value of the parameter that is used in the method
specified by the SelectMethod property.

UpdateMethod

The name of the method that the ObjectbataSource control
invokes to update the data.

OldValuesParameterFormatString

The format string that should be applied to the names of the
parameters for original values that are passed to the Delete or
Update methods.

DeleteMethod

The name of the method that the ObjectbataSource control
invokes on the object that is specified in TypeName to delete
data.

DeleteParameterName

The name of the parameter that is used by the
DeleteMethod method.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 9 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ SlteCO re

Field Description

DeleteParameterValue The parameters collection that is used by the DeleteMethod
method.

InsertMethod The name of the method or function that the

ObjectDataSource control invokes on the object that is
specified in TypeName to insert data.

SelectCountMethod The name of the method or function that the
ObjectDataSource control invokes to retrieve a row count.

You can also configure the data sources in:
e Lists in the dashboard.
e List pages.

e Order details that have one overall data source and another for each list control.

3.1.2 Configuring a Shop Context

In the Content Editor, a shop context represents a webshop that appears in the Web Store Selector
in the client interface. You must configure a shop context for each individual webshop. You can
configure as many shop contexts as you need.

To configure the Shop Contexts item in the Content Editor:

1. Inthe Content Editor, navigate to the Shop Contexts item:
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Shop
Contexts

1. Right click Shop Contexts, click Insert, and then click Shop Context.
Call it Third Web Store.

3. Onthe Content tab, assign values to the following fields.

Field Description
Name The logical name of the web shop. In this example, call it thirdwebstore.
Title The webshop name that appears in the client interface in the web store
selector.
In the previous step, you called it Third Web Store.
Tooltip The hint that describes the shop in the client interface.
You can enter third web shop for testing purposes.
Icon The icon that appears next to this shop context item in the Content
Editor.

You can leave it as business/32x32/shoppingcart.png.

4. In Visual Studio, open the Sitecore.Ecommerce.Examples.config file of the solution
and register the Third Web Store.

< sites>
<site name="thirdwebstore" .../>
</sites>
Once you have created a shop context, you must specify the users who have access to the webshop:
1. In Sitecore Desktop, click Sitecore Security Tools, and then select Role Manager.
2. Inthe Role Manager dialog box, click the New tab.

3. Inthe role Name field, enter Order Manager Third Web Store Processing and in the domain
field, enter Sitecore.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 10 of 53

Order Manager Developer's Cookbook @ sitecore

4. Click the Members tab, click Add, click Users, and then select the user who you want to
make a member of the role and then click OK.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 11 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teco re

3.2 Configuring the Navigation Filters

You can configure as many navigation filters as you want in your application so that you can search
for orders according to your own criteria.

To create a navigation filter:

1. Inthe Content Editor, navigate to the Order List Template
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/List
Views/ Order List Template

2. Create a clone of the Order List Template in the Purchase Orders repository.
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/List
Views/Purchase Orders

= J_s Repositories
H LJ Action Panels
4 .D Info Spots
= ([List views
E E __ Order List Template
& le Dashboard
= le Purchase Orders
4 El Crder list page
£ E Crders
EI Open arders
E Crders in process
EI Closed orders
E Cancelled orders

5
5
5
5

Note
You can also create the filter in the repository instead of cloning the _ Order List Template item.

However, we recommend that you use cloning for maintenance reasons. If you modify the template,
all of the clones are modified as well. For example, you can add a field to all the filters by adding it to
the _ Order List Template item.

3. Name the new repository Order list page. In the Content section, you can also configure the
following if you want:
o Enable Collapsing
o Inthe LoadDataWith field, enter PageScroll or ElementScroll.

Note
The recommended setting for LoadDataWith in SPEAK is PageScroll.
4. Select the EnableFiltering option.
In the ObjectDataSourceSettings group, configure the object data source.

For more information, see the section Configuring Data Sources.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 12 of 53

Order Manager Developer's Cookbook @ sitecore

6. Navigate to the Purchase Orders item.
/sitecore/system/Modules/SPEAK/Order Manager/Purchase Orders

= [speak
= Z: Order Manager

= 4® purchase Orders
E Crder list page
E Orders
E Cpen orders
E Orders in process
E Clozed orders
E Cancelled orders

7. Right click Purchase Orders, click Insert and then select List page and then call it Order

list page.
8. On the ribbon, click the Presentation tab, in the Layout group, click Details.
= Sitecore - Webpage Diah (o

Layout Details
The details of the assigned layouts, controls and placeholders,

gl) Default layout

Default E_D_\‘WDlS Placeholder Settings
@] two column right content

BreadCrumb

top

Actions

Shop Context Switcher
Menu

Messages

Default Detail List

| Edit 6 copy To

' Controls Placeholder Settings
Print

QEd\t E@CopyTo
J Controls Placeholder Settings
Feed

[Aedit FcopyTo

9. Onthe Layout Details dialog box, click Default Details List, and then enter the path to the

filter created in the Data Source field.
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/List

Views/Purchase Orders/Order list page

Note
You can create multiple navigation filters that refer to the same list view.

3.2.1 Configuring Navigation Filters According to a User Role
You can configure the Order Manager application to show or hide items according to the user's role.
To use the standard Sitecore security feature to show or hide navigation filters for different users:

1. Inthe Content Editor, navigate to the Order list page filter that you have just created.

2. Click the Security tab and then click Access Viewer.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 13 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teco re

3. Inthe Access Viewer, you can then deny any user read access to, for example, the Order
list page and the Cancelled orders page.

For more information about how to use the Access Viewer, see the Security Administrator's
Cookbook.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 14 of 53

Order Manager Developer's Cookbook @ sitecore

3.3 Configuring the List Page

Once you have created the navigation filter, you can configure the list page that the navigation filter
generates. This section describes how to:

e Configure the columns on the list page.

e Configure the predefined filters.

3.3.1 Configuring a Column
The list page contains the orders that result from the navigation filter.

You can present any information that belongs to the order on the list page. To add a column to the
table on the list page of a navigation filter:

1. Inthe Content Editor, locate the filter to which you want to add a new column, for example,
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/List
Views/Purchase Orders/Orders

2. Right click Orders, click Insert, and then select Column Field.
The default selection is the standard Column Field.
Name it Currency.

Enter a value for the HeaderText. You can use the same name as that of the Column Field
— Currency.

5. Inthe DataField general property, enter the property name that you want to fill the column
with — Currency.

Note
In the DataField, you can only enter a property that exists in the
Sitecore.Ecommerce.Apps.OrderManagement.Models class.

For more information, see the section Adding a Column to an Order Details List.

3.3.2 Configuring the Predefined Filters
You can use a predefined filter to further refine the list of orders that result from the navigation filter.
This section describes how to configure a predefined filter.
To navigate to the predefined filter options in the Order Manager:
1. Inthe Order Manager, navigate to the home page.

2. Click a navigation filter to navigate to a list page, for example, the Orders page.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 15 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teco re

3. Onthe Orders page, click Filters and you should see the following filters:

{ A
ORDERS o
5
ORDER DATE STATE CURRENCY
[Today - New * [EUR
[Yesterday =| [O] Open =| [usD
[] Lasthour [F] In process

Last3 days Closed
\ i . 0 5 y.
NO. DATE TIME STATE CUSTOM... TOTAL A... CURRENCY

1014 6/22/2012 9:26:01 AM Mew Alexander ... 2,119.79 usD

1040 6/22/2012 9:28:31 AM New John Connor 2,377.99 usD

1002 6/21/2012 12:00:00 AM Mew Sergey Sh. 2119.79 uso

1012 6/22/2012 9:25:59 AM MNew ‘Yana Pivov.. 3661.03 usD

1004 6/21/2012 12:00:00 AM New ‘Yana Pivov. 297477 usb

1005 6/21/2012 12:00:00 AM MHew Yana Pivov. 209729 usoD

1029 6/14/2012 9:26:27 AM New Sergey Sh.. 3,406.03 usD

Configuring an Expression Group
Expression groups are predefined filters.
To create an expression group:

1. Inthe content tree, navigate to the Purchase Orders item
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Predefined
Filters/Purchase Orders

Right click Purchase Orders, click Insert from Template.

In the Insert from Template dialog box, navigate to the template
/sitecore/templates/SPEAK/Expression Group and then call the new expression
group Total Amount.

4. Select Total Amount, click the Content tab and then assign values for the following fields.

Field Description

Title The name of the filter in the Ul. You called it Total Amount in the previous step.

Name The logical name of the filter. Call it TotalAmount.

Type The type of data that the expression group is filtering. You can set it to Date,
Enum or UTC Date. In this example, you must select Enum.

5. Navigate to the Orders filter: /sitecore/system/Modules/SPEAK/Order
Manager/Repositories/List Views/Purchase Orders/Orders

6. Click Orders, and on the Content tab, click DetailList settings, filters, and then add the
Total Amount expression group to the Orders navigation filter.

Configuring a Value Based Expression
To add a value based expression to a predefined filter:

1. Inthe Content Editor, navigate to the predefined filter that you want to add the criteria to —
for example, Currency

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 16 of 53

Order Manager Developer's Cookbook @ sitecore

/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Predefined
Filters/Purchase Orders/Currency

Right click Currency, and click Insert from Template.

In the Insert from Template dialog box, navigate to the template:
/sitecore/templates/Ecommerce/Order Manager/Filtering/Nonlocalizable
Expression, and name it GBP.

=N Q, -]~ ’-GCnntent
& [3) sitecore GBP
& Content [3
B Layout
&) Media Library

1@ Quick Info

=N] System Item ID: {C429BFB2-9506-44F 2-94C4-ABDGFAF TBAG 2}
L Mlizses

@ Dictionary

Languages

Item Name: GEP
Item Path: [sitecore/system,Madules/SPEAK fordermanager Repositories/Predefined Filters/Purchase Orders/Currency/GBP

) Marketing Center Template: Jsitecore ftemplates /Ecommerce /Order Manager /Filtering/Expression - {93868FA 1-095E-4E0F-972D-94D9E6 175CC 1}
2 (Z) Modules Created From: [unknown]
Wl E-Commerce Item Owner: sitecore\admin
= 3 speak -
1= =z Order Manager 3=
4" Purchase Orders Value [shared]:
% Order Details GBP
% print Order
= &) Repositories Operator [shared, standard value]:
) Action Panels is equal to
[£2) 1nfo Spots
1) List Views L Title:
1) Operators 1 GBP

= [[2) predefined Filters
[£2) Log Entries
= [Purchase Orders
& [F currency
@ ER
@ usp
[5) order Date
[stat=
[5) substate
(1) Smart Panels

4. On the webshop, navigate to the group orders and you can see that the new filter is added.

ORDERS A
5
ORDER DATE STATE CURRENCY

[] Today - [New - [EWR

] Yesterday ‘ I open | o

[Last nour LJ @ i process [] usp

[Last 2 days . [Closed 0

NO. DATE TIME STATE CUSTOME... TOTAL AM... CURRENCY
1041 71012012 41454 PM New Bob Jones 3,458.05 usD
1021 TTI2012 1:20:47 PM In process | ‘Yuriy Morozov 750.77 usD
1016 2012 1:20:41PM New Alexander B. 3,631.03 usD

Configuring a Range Based Expression

You can also configure the Total Amount predefined filter that you created in the section Configuring
an Expression Group.

To configure a range based expression:

1. Inthe content tree, navigate to the Total Amount predefined expression group:
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Predefined
Filters/Purchase Orders/Total Amount

2. Right click the Total Amount item, click Insert from Template.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 17 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ SlteCO re

3.

5.

In the Insert from Template dialog box, navigate to the template:
/sitecore/templates/Ecommerce/Order Manager/Filtering/Nonlocalizable

Expression , and name it 1000-2000

Click the1000-2000 item and on the Content section, assign values to the following fields:

Field Description
Value [1000,2000]
Title [1000,2000]

Operator | between — to select all the
orders that have a total
amount value within this
range.

Repeat the previous two steps for the expressions: 2001-4000 and 4001-5000.

Creating an Operator

This section describes how to create an operator to search for orders with certain state and substates.

To create a new operator that should be used in the predefined filters:

1.

In the content tree, navigate to the Operators item:
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Operators

Right click Operators, click Insert, select Operator and name it substate.

Click substate, and in the Content section, in the Default field, assign the following condition
code:

o.field.Substates.Any(s => (s.Code == "values[0]") && s.Active)
Create an expression group and name it Substates.

For more information about how to create an expression group, see the section Configuring
an Expression Group.

Select the Substates item and in the Content section, assign values to the following fields:

Field | Value

Title Substates

Name | State

Type | Enum

In Susbstates, create an expression and name it Captured in Full.

For information about how to create an expression, see the section Configuring a Value
Based Expression.

Click Captured in Full and in the Content section, assign values to the following fields:

Field Description
Value Captured In Full
Title Captured in full

Operator | Substate — the new operator that
you have created.

Repeat the previous two steps for the expressions: Packed in Full and Shipped in Full.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 18 of 53

Order Manager Developer's Cookbook @ sitecore

Note
The values in the Value fields are case sensitive. Use the same names in the Order Manager
database.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 19 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ SlteCO re

34 Configuring the Order Details Task Page

The Order Details Task Page is the page that you see after you have click on the order. It contains all
the information that is available for the order.

Once you have configured the list page, you can configure the task page. This section describes how
to:

e Add a field editor.

e Add an order details list.

e Add a column to the order details list.
e Add a field to the order details list.

o Extend the Order Manager to see the order details that have one-to-many relationships with
an order.

3.41 Adding a Field Editor
The field editor represents the details that have a one-to-one relationship with the order.
To add an Order Field Editor item:

1. Inthe Content Editor, navigate to the Order Details item
/sitecore/system/Modules/SPEAK/Order Manager/Order Details.

Right click Order Details and then click Insert from Template.

In the Insert from Template dialog box, navigate to the template
/sitecore/templates/Ecommerce/Order Manager/Web Controls/Order Field
Editor.

4, Callit Order.

= [sPEAK
=l Z=: Order Manager
#® Purchase Orders
= ¥ Order Details

= El Order

@ Order No

@ order Time
@ oOrder Date
@ Tax Currency
@ note

@ Price Currency
[] Country

@ state

You can also configure the following properties:
o EnableCollapsing

o 2 Columns

o DataKeyNames

5. Configure the object data source in the ObjectDataSourceSettings group. For more
information, see the section Configuring Data Sources.

3.4.2 Adding an Order Details List
The detail list represents the details that have a one-to-many relationship with the order.

To add an Order Detail List item:

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 20 of 53

Order Manager Developer's Cookbook

@ sitecore

1. Inthe Content Editor, right click Order Details and then click Insert from Template.

2. Inthe Insert from Template dialog box, navigate to the template

/sitecore/templates/Ecommerce/Order Manager/Web Controls/ Order
Detail List

3. Callit Order Lines.

= P spEAK

= =: Order

Manager

+ @® purchase Orders
= *‘f!“ Order Details

= E]

i E Buyer Customer Party

= H

Order

Order Lines

|E| Alias

|E| Description
|E| Product Code

|E| Product Name
Hay

[E] urit Price

You can also configure the following properties:

o EnableCollapsing

o LoadDataWith

o SmartPanel

o EnableFiltering

4. Configure the object data source in the ObjectDataSourceSettings group. For more

information, see the section Configuring Data Sources.

3.4.3 Adding a Column to an Order Details List

You can add a column to an order details item. You can take OrderLines as an example of the Order

Details Items.

To add a column to OrderLines:

1. Inthe Content Editor, navigate to the Order Lines item:

/sitecore/system/Modules/SPEAK/Order Manager/order/Order Lines

2. Right click Order Lines, click Insert, Column Field and then name it Description.

= % Order Details
® E] order
[E] Buyer Customer Party
= E Order*
\El Al Insert 3 |E| Column Field
e Duplicate [unk column
B & | Delete [H] Booalcolumn
\;IC Rename |E| DateTime column
%Q Copying ¥ |E| TimeSpan column
21 Un =
[E] peiv Sorting N [E] progressbar Column
H EDich @ Refresh D Insert from Template
= E] Charggg—l

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The

contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 21 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teco re

3. Click Description, in the Content tab, General, DataField, enter Description — the name of
the property that represents this column in the implementation.

= % Order Details ;:I E—

El order -

E] Buyer Customer Party HeaderText:

= E] order Lines Description
[Alias
B Description DataField
E Product Code
B Product Mame
Haty Sortable
(5 unit price]

3.4.4 Adding a Field to the Details List

You can add a column to an order details item. You can take Delivery as an example of the details
list.

To add afield to Delivery:

1. Inthe Content Editor, navigate to the Delivery details list
/sitecore/system/Modules/SPEAK/Order Manager/order/Delivery

Right click Delivery, click Insert, select Editor field and then name it Minimum Quantity.

Change the value of the Name field to the data property name whose value is displayed in
this field — DefaultDelivery.MinimumQuantity.

The following image shows the properties of a details item:

—
[e
D M Cikamaty
) ukk Inks
Them: I PTCIICEH (S -0 T IO DA
Ihom Mame= Brsurs Quantty
T Pathi: e v b= e T A i e Dy 7 e Quantity
Tegtr Jutrrore fteeplaten S NOILT coninoke Bdtor teld - {7008 3 174 20 2100 DR R B TR0

Created Fros: (juriemn]
liem Dmrer] pecornenden
| Eddatem e oplinery
FrekiTygs
Teat

Impoatance

Dot

Ry

7] opticas.
Tilthe=
M Quantity

Hame

D fauitDielnyery , MansmussiQuusn bty

Toaltip:

4. Insert the second Editor field, call it Maximum Quantity and then Change the value of the
Name field to DefaultDelivery.MaximumQuantity.

5. Insert the third Editor field, call it Quantity and then Change the value of the Name field to
DefaultDelivery.Quantity.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 22 of 53

Order Manager Developer's Cookbook @ sitecore

6. Inthe Order Manager application, navigate to the task page to see the editor fields you have
just created.

DELIVERY ~

The following table describes the properties of the details item:

Property Description
Field Type Describes the type of the field, for example, Text, Multi-Line Text and Date.
Importance The importance of the field. You can assign it one of the following values:
e High — the values of this property appear even if you collapse the accordion
group.
e Normal — the default appearance of the fields.
e Low — the values of this property only appear when you click on more.
ReadOnly Specifies if the field is Read-only.
Title The text to be displayed.
Name The property of the model that is that is used in the data source that is assigned to
the field editor.
Tooltip The tooltip for the field.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 23 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6

@ sitecore

3.4.5 Extending the Order Manager to Show Multi-valued Fields

The order details task page does not contain all of the fields that belong to an order. The following are
some examples of this limitation:

FreightForwarderParty

The Order Manager application shows only one freight forwarder party for each order. The following

class diagram shows the FreightForwarderParty relationship in the data model.

? IEntity

»|

(Party [

Class

= Properties
B Alias
ﬁ Contact
2 EndpointD
iy LanguageCode
=y LogoReferencelD
oy Partyldentification
sy PartylegalEntity
oy PartyMame
sy PartyTaxScheme
=7 Person
iy PhysicalLocation
% PostalAddress
#5 WebsitelRI

:T‘ DefaultFreightForwarderParty

' FreightForwarderParty

i Order

Class

Bl Fields

7 orderlines
ﬁ'f state

= Properties

= AccountingCustomerParty
)y AllowanceCharge

= AnticipatedMonetaryTotal
)y BuyerCustomerParty
=y DefaultDelivery

) Delivery

% DestinationCountryCode
=)

78 lssueDate

B IssueTime

75 Note

' Orderld

2 Orderlines

=y PaymentMeans

=y PricingCurrencyCode
% ReservationTicket

iy SellerSupplierParty

o ShopContext

BF State

2 TaxCurrencyCode

B TaxTotal

= Methods

% Crder

)

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The

contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 24 of 53

Order Manager Developer's Cookbook

Delivery

@ sitecore

The Order Manager application shows only one delivery destination for each order. The following

class diagram shows the Delivery relationship in the data model.

q) IEntity

[Delivery
Class

1= Properties
BT Alias
2 AlternativeDeliveryLocation
iy DeliveryAdress
iy DeliveryLocation
sy DeliveryParty
H Despatch
)y LatestDeliveryDate
sy LatestDeliveryTime
iy MaximumQuantity
f MinimumQuantity
B Quantity
H RequestedDeliveryPeriod
f TrackinglD

AllowanceCharge

»)

»|

| Order [
Class

=l Fields

J" orderLines
o state
= Properties
=) AccountingCustomerParty
iy AllowanceCharge
=y AnticipatedMonetaryTotal
= BuyerCustomerParty
iy DefaultDelivery
=y DefaultFreightForwarderParty
= DestinationCountryCode
oy FreightForwarderParty
]
5 IssueDate
ﬁ IszueTime
B Note
' Ordedd
F Orderlines
= PaymentMeans
i PricingCurrencyCode
F ResenvationTicket
= SellerSupplierParty
=y ShopContext
ﬁ State
= TaxCurrencyCode
#5 TaxTotal
Bl Methods

% Order

The Order Manager application shows only one delivery destination for each order. The following
class diagram shows the Al1lowanceCharge relationship in the data model.

)

Order
Class

= Fields
4% orderlines
;‘a"’ state
= Properties
i AccountingCustomerParty
i AnticipatedMonetaryTotal
i BuyerCustomerParty
i DefaultDelivery
i DefaultFreightForwarderParty
= Delivery
B DestinationCountryCode
=y FreightForwarderParty
D
% IssueDate
5 IssueTime
' Note
7' Orderd
% OrderLines
iy PaymentMeans
i PricingCurrencyCode
1 ReservationTicket
i SellerSupplierParty
= ShopContext
5 State
=y TaxCurrencyCode
5 TaxTotal
E Methods

% Order

? [Entity

(AllowanceCharge
Class

B Properties

ZF Alias

¥ AllowanceChargeReason

% BaseAmount

iy Chargelndicator

= D

i MultiplierFactorNumeric
i PrepaidIndicator

= SequenceNumeric

iy TaxCategory

B TaxTotal

N

»|

iy AllowanceChargeReasonCode
% AllowanceCharge “ Amount

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 25 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6

Sublineltem
The Order Manager application shows only one delivery destination for each order. The following

class diagram shows the SsublineItem relationship in the data model.

j Parentline

' Sublineltern

Q IEntity

Lineltem

Class

= Fields
;1'.’ sublines
= Properties

Item
LineExtensicnAmount
LineStatusCode
MaximumQuantity
MinimumQuantity
Mote
CrderedShipment
OrderlD

OrderLine
PartialDeliverylndicator
Price

Quantity

Substates

2 TotalTaxAmount

@ sitecore

If you want to show all the freight forwarder parties, delivery destinations, allowance charges, and

subline items for the order, you must

1. Extend the Order Manager application to base the corresponding items on Order details list

instead of Field editor

2. Add a Smart Panel. The following section describes how to configure the Smart Panel.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The

contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 26 of 53

Order Manager Developer's Cookbook @ sitecore

3.5 Configuring the Smart Panel

The Smart Panel is a detail control that is used to view or edit list pages and task pages. You can use
this control to edit a list, for example, orders and order lines. There is no inline functionality to edit a
list. This is a flexible way to edit the selected items and to edit multiple entities at the same time.

This chapter describes how to:
e Enable the smart panel in your application
e Configure the actions panel

e Add a custom action

3.5.1 Enabling the Smart Panel in your Application
Showpopup

You can use the showPopup method in the Order Manager APl to manipulate the smart panel.

The showPopup method has the following signature:
public static bool ShowPopup (
this ScriptManager scriptManager,
string url,
object parameters,
PopupType type,
out string result)
Parameters:
e url — the URL of the page that you want to open as the popup content.
e parameters — the custom parameters that you want to pass to the popup page.

e type — the type of the popup content.

If the popup is not opened yet, it returns false. If the popup is closed, it returns true. The popup
result must be processed if it returns true

There are also a few overloads for this method with fewer parameters.

The showpopup method is available as an extension method in the
System.Web.UI.ScriptManager class. To use it, add the
Sitecore.Marketing.Client.Web.UI.Controls hamespace to your code file.

var scriptManager = ScriptManager.GetCurrent (this.Page);
string result = null;
if (scriptManager.ShowPopup ("/order manager/edit order",
new { OrderId = "1V203E", DetailedView = true},
PopupType.Smart, out result))
{
// the dialog was closed

// do something with result here

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 27 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teco re

3.5.2

Configuring the Actions Panels

To configure the General or Order Details global actions in the Action panel:

1. Inthe Sitecore.Ecommerce.Apps.Web.UI.WebControls.Actions package, create a
handler.

2. Navigate to the Action Panels folder /sitecore/system/Modules/SPEAK/Order
Manager/Repositories/Action Panels/Global actions

3. Insert the new action in the folder that corresponds to the action place.

The following table describes the different folders in the Action Panels folder.

Folder Description

Global actions/General Contains the general actions that are displayed in the
Action Panel of the List Page.

Global actions/Order Details Contains the order details actions that are displayed
in the action panel of the List Page.

Order Details Actions/General Contains the general actions that are displayed in the
action panel of the Task Page.

Order Lines Actions/Order Line Contains the order line functions actions that are

Functions displayed in the action panel of the Order Lines

accordion group.

OrderLine Info Actions/Order Line | Contains the order line functions actions that are
Functions. displayed in the action panel of Order Line Details.

3.5.3

Adding a Custom Action

You can create a custom action in the Order Manager. The following code snippet is a Print Custom
Action example:

namespace Sitecore.Ecommerce.Apps.Web.UI.WebControls.Actions

{

using Speak.Extensions;

using Diagnostics;

using Ecommerce.OrderManagement.Orders;
using Logging;

using Sitecore.Web.UI.WebControls;

/
/

/

// <summary>
// Defines the print action class.
// </summary>

public class PrintAction : ScriptManagedAction

{

/// <summary>
/// Executes the specified order.
/// </summary>
/// <param name="order">The order.</param>
protected override void Execute ([NotNull] Order order)
{
Assert.ArgumentNotNull (order, "order");
this.OrderId = order.OrderId;

string url = string.Format (" {0}ordermanager/printorder?orderid={1}&sc_lang={2}",
Extensions.GetVirtualFolder (), this.OrderId, Sitecore.Context.Language.Name) ;
string script =

string.Format ("window.open ('{0}"', 'PrintMe’', 'resizable=yes, scrollbars=yes,
location=no');", url);

this.ScriptManager.RegisterStartupScript (script) ;
}

/// <summary>

/// Performs the post steps.

/// </summary>

protected override void PerformPostSteps ()

{

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 28 of 53

Order Manager Developer's Cookbook @ sitecore

LogEntry logEntry = new LogEntry
{
Details = new LogEntryDetails (Constants.OrderPrinted),
Action = Constants.PrintOrderAction,
EntityID = this.OrderId,
EntityType = Constants.OrderEntityType,
LevelCode = Constants.Userlevel,
Result = Constants.ApprovedResult
bi
this.Logger.Write (logEntry) ;

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 29 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ SlteCO re

Configuring the Order Report in

Stimulsoft

The Stimulsoft reporting tool is used by the Order Manager to render the order
confirmation and print the order.

This chapter is not a complete reference for how to configure the Stimulsoft reports, it
just contains the customizations you may need for the Order Manager.

To configure the order reports that are defined in Stimulsoft, you can:
e Customize the order details report.
e Set up the data source.

e Create a variable and change its localization.

For information about how to configure the reports, see the Report Designer
Cookbook.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 30 of 53

Order Manager Developer's Cookbook @ sitecore

4.1 Customizing the Order Details Report
To modify in the order details report:

1. Inthe folder /sitecore modules/shell/Ecommerce/Reports, create an Order Details
.mrt file

Note

We recommend cloning the Order Details file to preserve all of the properties in the report as we do in
our Examples packages which contains the OrderDetailsExtended report: /sitecore
modules/shell/Ecommerce/ReportsExtended/OrderDetailsExtended.mrt.

2. To set the path of the new report file, open the new file that you created with the Stimulsoft
Report Designer, apply your changes and then add the following elements to the
/App_Config/Unity.config file:

<alias alias="StiReportFactory"
type="Sitecore.Ecommerce.Report.StiReportFactory, Sitecore.Ecommerce.Kernel" />

<register type="StiReportFactory">
<property name="ReportFile" value="/sitecore
modules/shell/Ecommerce/ReportsExtended/OrderDetailsExtended.mrt" />
</register>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 31 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teCO re

4.2 Setting up the Data Source

By default, the data is read from the OrderReportModel class. This class contains a predefined set
of properties that represent variables.

To set up additional data variables for the Stimulsoft report:

1. Create a class, call it OrderReportModelExtended that inherits the OrderReportModel
class — see the Sitecore.Ecommerce.Custom assembly in the Examples package:

In the following example, we extend the order report model with the information about the
freight forwarder party.

public class OrderReportModelExtended : OrderReportModel
{
// Getting the account ID of the default freight forwarder party.
public virtual string FreightForwarderPartyIdentification
{
get
{
if ((this.Order != null) && (this.Order.DefaultFreightForwarderParty !=
null))
{
return this.Order.DefaultFreightForwarderParty.PartyIdentification;
}

return string.Empty;

}

2. Add the following aliases to register the OrderReportModelExtended class in the
/Bpp_ Config/Unity.config file:

<!—the default model-->

<alias alias="OrderReportModel" type="Sitecore.Ecommerce.Report.OrderReportModel,
Sitecore.Ecommerce.Kernel" />

<!—the new extended model ->

<alias alias="OrderReportModelExtended"
type="Sitecore.Ecommerce.Custom.Reports.OrderReportModelExtended,
Sitecore.Ecommerce.Custom" />

<!—Redirecting the mapping from default model to the extended model ->
<register type="OrderReportModel" mapTo="OrderReportModelExtended" />
<?xml version="1.0" encoding="utf-8"?>

3. Openthe OrderReportModel .mrt file in Visual Studio and then add the
FreightForwarderPartyIdentification data source variable:

<DataSources isList="true" count="10">

<Order isKey="true" Ref="2"

type="Stimulsoft.Report.Dictionary.StiBusinessObjectSource">
<Name>Order</Name>
<Dictionary isRef="1"/>
<Alias>Order</Alias>
<Parameters isList="true" count="0"/>
<NameInSource>Order</NameInSource>
<Columns isList="true" count="60">

<value>FreightForwarderPartyIdentification, System.String</value>
</Columns>
</Order>
</DataSources>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 32 of 53

Order Manager Developer's Cookbook @ sitecore

4.3

Creating a Variable

To start customizing the Stimulsoft report by inserting a variable, you should download and install the
Stimulsoft Report Designer from the Stimulsoft website.

For more information about the Stimulsoft Report Designer, see the Report Designer Cookbook.

To customize a variable:

1.

In the Content Editor, navigate to the Dictionary item:
/sitecore/system/Dictionary

Right click Dictionary, click Insert and then select Dictionary entry.
Call the new entry Party Identification.

In the Stimulsoft Report Designer, open the OrderDetailsExtended.mrt report with
Stimulsoft Report Designer.

Create a variable in the report, call it TEXT_Partyldentificatin and in the Value field enter the
name of the item that you have created — Party Indentification.

The following images show the dictionary and the properties of the new variable:

184 TEXT_UatPrice
4 TEXT_TotalPrice
4 TEXT_SubTotsls
84 TEXT_Before Tax
8 TEXT_DelivenCost
4 TEXT_TaxDeducted
¥ TEXT_Dscount
8 TEXT_Alowances
5 TEXT Total
89 TEXT_fgtertion
{84 TEXT_TrackingNumber
84 TEXT _TrackingWebste
{89 TEXT_Address
9 TEXT_EMsd
B8 TEXT_Phone
8 TEXT_Fax
@4 TEXT_CustomerNumber
8 TEXT_Page
8 TEXT Of
+)-\IS] Sysiem Vanad
4 fu Functions

Dictionary 3 x

Actions » 2 - [X & o+ 8] - p

0] Date Sowces . Edit Varizble =]

f_" \8"', ess Objects Name: TEXT_Partyldentfication

5 Baseld Alizs: TEXT_Patyldentfication
S TEXT_PostBe Description:
189 TEXT nweiceNumber
84 TEXT Dute e sting -
{84 TEXT_BaTo
4 X SeT it
- Im—"”“’ Value Party identfication
8 T oo s
I _Nome
{3 TEXT_Descripton [] Read Only
@4 TEXT_Quartty [Request from User
@4 TEXT_Tax
o TECT o

¢ Craste Feld on Double Cick
7 Creste Label
Use Mases

' Properies | 1 Dictionary |35 Report Tree

In the code view, the following snippet is the variable representation:

<Variables isList="true" count="33">

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 33 of 53

http://www.stimulsoft.com/

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ sitecore

<value>, TEXT PartyIdentification,TEXT PartyIdentification,System.String,Party x0
020 _identification,False,False</value>
</Variables>

The value of the constant in the OrderDetailsExtended.mrt file —
Party x0020 identification should be exactly the same as the key in the Sitecore
dictionary — Party identification — where x0020 _is the code of the space.

6. In the designer view, extend the markup of the OrderDetailsExtended.mrt file with the
information about freight forwarder party, as shown in the following image:

Pagetieate 1
< b2 W8 ! 1 ! e (Order.CompanyName)”
= {Order Comoary-amss.
> | 175 DOrder. CompanyCountyP " IHOrde CompanyCourty)
{Order.CompanyName} st80x >0, TEXT_PostBaxe" " ><o'a=wmm
- 40 s

"[TEXT_InvoiceNumber}: {Order.Orde ' (TEXT_Date}: {Order.IssueDate} mbet) {TEXT_Of} (TomlPageCount}

I
am mo) "{WF (Length{Order BuyarPartySupplierAssignedace (TEXT_SendTd [Order DelivaryPartyNams
{Order BuyerPartyName) - {Order DeliveryParty Streethame)
(Ordev BuyerPartyStresthame} {Order DelivaryPartyCityName}IIF (Length(Order.De
{Order BuyerPartyCityName}{WF (Length(Order. Buye {Order DeliveryPartyCounty)
{Order BuyerPartyCourty) {Order DeleveryParty T elephone)
{Order BuyerPartyTelephone) X Ordes DeliveryPartybal)
| {Order BuyerPartyMa} |
{UF (Lengin{Order.DeliveryPartyNote >0, TEXT _Note
{IF(Length{Order BuyerPartyPostalZone)>0 TEXT_} {IIF (Length(Order FreightF orwarderPartyldaniificat
Header J
EXT_ordert O o) Quantty) "EXT_Tax) 3XT_UnitPrice) T TotatPrice) '

. “n 4 .k “h 4

(om-om-t '{Order_OrderLines.OrderLineltemName) O necwermy L T) ommnmeexmm
45 ot it

(O«aev OrderLines OrderLineitemDescripton} -t et

| { i (TEXY BeforaT, dunw I

P nmmo«‘umumm
e | (TEXT,Nme Mulnm

(‘IEJ(T _Nlomnce Aum'rmm

(TEXT_Total 3yableAmount}

}
-

|
0

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 34 of 53

Order Manager Developer's Cookbook

The following image shows the designer view of the text field definition with the
TEXT_Partyldentification variable:

@ sitecore

& Text Editor

==

2 |

Expression |{OTder . DeliveryParcyName)
{Order.DeliveryPartyStreetName}
DataColumn || orger. DeliveryPartyCityName} {IIF (Length (Order.DeliveryPartyPostalZone)>0,", ", "")}{Order.DeliveryPartyPostalzone}
System Variable |{Order.DeliveryPartyCountry}
Summary ||{07der DeliveryPartyTelephone}
{Order.DeliveryPartyMail}
{IIF (Length (Order.DeliveryParcyNote) >0, TEXT Note=": ","")}{Order.DeliveryPartyNote}
{IIF (Length (Order.FreightForwarderPartyldentification) >0, TEXT Parcvidentificaction+": ","")}{Order.FreightForwarderPartyIdencification}

7] Data Sources

2 Business Cbjects

- Vanables

<

613 Baselt
[TEXT_PostBox

.

[58 TEXT_Invoice Numt.

8 TEXT_Date
13 TEXT_BilTo
-8 TEXT_SendTo
613 TEXT_Note

-~ (388 TEXT_OrderLineCo

[5b8 TEXT_Name

n »

The following snippet is the code view of the text field definition with the
TEXT_Partyldentification variable:

<Text>
{Order.DeliveryPartyName}
{Order.DeliveryPartyStreetName}
{Order.DeliveryPartyCityName} {IIF (Length (Order.DeliveryPartyPostalZone) >0,",
","")}{Order.DeliveryPartyPostalZone}
{Order.DeliveryPartyCountry}
{Order.DeliveryPartyTelephone}
{Order.DeliveryPartyMail}
{IIF (Length (Order.DeliveryPartyNote) >0, TEXT Note+":
","")}{Order.DeliveryPartyNote}
{IIF (Length (Order.FreightForwarderPartyIdentification) >0,
TEXT_PartyIdentification+": ","")}{Order.FreightForwarderPartyIdentification}
</Text>

You can create variables and fields that do not start with Text_.

4.3.1 Changing the Localization of the Variable

You can created a Stimulsoft report in different languages. By default, the customer receives the

order confirmation in the same language that they created the order in. In the Order Detaila page, you

can use the language value to change the language of the Buyer Customer Party. Sitecore OM
currently supports English, Danish, German, and Japanese.

The stiReportTranslator class looks up the entry in the Sitecore dictionary and maps it to the

corresponding variable in the order report.

To change the localization logic, create a custom version of the StiReportTranslator class and

register it in the /App Config/Unity.config. For more information about creating a custom
version of a class, see the section Setting up the Data Source.

The StiReportTranslator class uses the Sitecore default localization method:
Sitecore.Globalization.Translate.TextByLanguage (key, language)

The following snippet shows how the Translate method is implemented in the
StiReportTranslator

public virtual void Translate ([NotNull] StiReport report, string languageCode)
{

Assert.ArgumentNotNull (report, "report");

foreach (StiVariable variable in report.Dictionary.Variables)
{
if (this.MustBeTranslated(variable.Name))
{
variable.Value = this.TranslatePhraseByLanguage (variable.Value,
languageCode) ;
}

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 35 of 53

e

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teco re

}
protected virtual bool MustBeTranslated([NotNull] string key)

{
Assert.ArgumentNotNull (key, "key");
return key.StartsWith ("TEXT ");
}
protected virtual string TranslatePhraseByLanguage ([NotNull] string phrase, [NotNull]
string languageCode)
{
Assert.ArgumentNotNull (phrase, "phrase");
Assert.ArgumentNotNull (languageCode, "languageCode");
return Globalization.Translate.TextByLanguage (phrase,
Language.Parse (languageCode)) ;

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 36 of 53

Order Manager Developer's Cookbook @ sitecore

Using the Order Manager API

The API of the Oder Manager application consists of three modules: Core Order
Manager, Visitor Order Manager and Merchant Order Manager.

This chapter describes how to use the API of each these modules while processing
the order.

This chapter contains the following sections:
e Using the Core Order Manager API
e Using the Visitor Order Manager API

e Using the Merchant Order Manager API

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 37 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ SlteCO re

5.1 Using the Core Order Manager API
The Core Order Manager APl (COM):
e Is a data manipulation layer.

e |sthe first layer of abstraction above the actual data storage providers like the Entity
Framework or simple Sitecore content items.

e Allows developers to work directly with the entire domain model
e Does not contain any business logic.
e Supports logging of order processing transactions and changing the order properties.

The following sections describe the most important classes in the COM APl and how to use the API to
import and export orders.

511 The COM API Reference

The main classes in the COM API are:

Sitecore.Ecommerce.Data.Repository<Order>

This class acts as a layer of abstraction above the actual data storage and allows you to interact with
the Sitecore back-end. It checks security, sets the language, intercepts Create, Read, Update,
Delete (CRUD) operations on orders and uses OnOrderSaving and OnOrderSaved events to
performs some additional operations.

The OnOrderSaving and OnOrderSaved events are used to perform some additional actions
during and after order saving. You can use the 1ogger class to add the logging logic to these events.

Sitecore.Ecommerce.Logging.Logger

Almost all of the methods are intentionally marked as protected internal. This means that you
can only work with them after you create a new implementation that is inherited from the
Repository<Order> and make a new custom public API.

Developers should use MOM and VOM because they contain the security and business logic. They
should not use COM because it has unrestricted access to the historical transaction data.

The Logger class has the following methods:

e GetEntries () :IQueryable<LogEntry> —lists all the orders that the current user has
access to.

e Write (LogEntry) :void — writes information to the log immediately.

e Log(LogEntry) :void — writes information to the in-memory buffer.

e Flush () :void — moves the data from the buffer to the location where you store your data.
The last two methods support the transaction logic that manipulates an order.

When a visitor to the webshop updates some fields and creates a new order line in a session, this is
regarded as a single unit of work and must be logged with the same transaction ID or completely
rejected.

Sitecore.Ecommerce.OrderManagement.OrderProcessingStrategy

When an order is being processed, this layer performs robust logging of the operations during the
orders processing.

By default, no logging occurs. SES developers should use the COM API to handle the log on their
own.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 38 of 53

Order Manager Developer's Cookbook @ sitecore

The COM API has unrestricted access to the transaction data. You should be careful while using
COM API because you can destroy existing orders. You should preferably use a more high-level API
such as the VOM or MOM APIs.

5.1.2 Using the Core API to Import and Export Orders

One example of how to use the Core API is to extend the OrdersPresenter class in the MVP web
store to support the import and export of orders. In this example, you should not use the VOM and
MOM APIs, because the front-end validation and security checks that they perform degrades
performance.

To extend the OrdersPresenter class:

1. Create the public class SampleOrderManager that wraps the protected internal methods of
the Repository<Order> class.

These methods are internal and protected to force developers to use the VOM and MOM API:

public class SampleOrderManager : Repository<Order>
{
public SampleOrderManager (CoreOrderStateConfiguration orderStateConfiguration,
Repository<Order> repository)
{
this.StateConfiguration = orderStateConfiguration;
this.Repository = repository;
}
public virtual IQueryable<Order> GetAllOrders (Expression<tunc<Order, bool>>
expression)

{

return this.GetOrders (expression);

}

public virtual void SaveSingleOrder (Order order)

{

this.SaveOrder (order) ;
}
}

2. Register the sampleOrderManager class in the MvpWebStore.Unity.config file.

3. Override the constructor of the OrdersPresenter class in the MVPWebStore so that you
can receive the sampleOrderManager object as an additional parameter:
public OrdersPresenter (IOrdersView view, VisitorOrderRepositoryBase orderRepository,
SampleOrderManager orderManager): base (view)
{
}
For more information, see the MVPWebstore on the marketplace.

4. To export the orders, you must use the Core API to retrieve all the orders.

You can use the JSON.NET serializer to serialize them to the JSON format and write the data

to afile:
var orders = this.orderManager.GetAllOrders (o => true).ToArray();
this.View.Model.SerializedOrders = JsonConvert.SerializeObject (orders,
Formatting.None, this.settings);
using (var file = new FileStream(this.filePath, FileMode.Create, FileAccess.Write))
{

using (var stream = new StreamWriter (file))

{
stream.Write (this.View.Model.SerializedOrders) ;
}
}
this.HttpContext.Response.Clear () ;

this.HttpContext.Response.ContentType = "application/json";
this.HttpContext.Response.AddHeader ("content-disposition", "attachment;
filename=\"" + FileName + "\"");

this.HttpContext.Response.WriteFile (this.filePath) ;
this.HttpContext.Response.Flush();
this.HttpContext.Response.End() ;

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 39 of 53

http://marketplace.sitecore.net/en/Modules/Sitecore_E-Commerce_Services_MvpWebStore.aspx

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teco fe”

5. Toimport the orders , you should:
o upload the file to the server,
o read its content,
o deserialize the text from the JSON format to the collection of OIOUBL orders

o save it in the database:

var orders =
JsonConvert.DeserializeObject<IEnumerable<Order>>(this.View.Model.SerializedOrders,
this.settings) .AsQueryable () ;
foreach (var order in orders)
{

this.orderManager.SaveSingleOrder (order) ;

}

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 40 of 53

Order Manager Developer's Cookbook @ sitecore

5.2 Using the Visitor Order Manager API

When you create a Webshop, you should use the Visitor Order Manager (VOM) API to create and
view orders. The VOM API gives you access to the entire domain model.

The main class in the VOM APl is
Sitecore.Ecommerce.Visitor.OrderManagement.VisitorOrderRepository.

The VisitorOrderRepository class:

e |sthe current default implementation of the
Sitecore.Ecommerce.OrderManagement.VisitorOrderRepositoryBase abstract
class.

e Implements the Sitecore.Ecommerce.Visitor.OrderManagement.IUserAware
interface that contains the definition of the CustomerId property.

This value identifies the customer that created the order. You can also use the
implementation of the Sitecore.Ecommerce.Users.CustomerManager<T> class to
read the CustomerId property in the current user account.

e Manages the visitor who created the orders.

Note
You can also use the VOM API in the Sitecore MVPWebStore application which is based on the
WebFormsMVP framework. For more information, see the MVPWebStore Developer's Guide on the
Sitecore Market Place.
The following sections describe how to use the VOM API to:

e Read all orders for a specific customer.

e Cancel an order.

e Create an order.

The last section describes the limitations of the VOM API.

5.2.1 Reading all Orders for a Specific Customer

The MVP Webstore application contains some examples that use the VOM API. To allow visitors to
list their orders on the MvpWebstore, you should use the
Sitecore.Ecommerce.MvpWebStore.Presenters.OrdersPresenter class. It presents the
orders page. It also handles the user interaction with this page.

To read all the orders that were created by a specific customer and display them in a page:

e The constructor of the OrdersPresenters class takes instances of
VisitorOrderRepositoryBase and IOrdersView as initializing parameters and binds
the Load handler to the Load event of the view:

private readonly VisitorOrderRepositoryBase orderRepository;
public OrdersPresenter (IOrdersView view, VisitorOrderRepositoryBase
orderRepository) : base(view)

{
this.View.Load += this.Load;
this.orderRepository = orderRepository;

}

e When the user goes to the ~/orders?user=100500 page, the page parses the string value
of the user parameter.

This is a sample. In a real implementation, you should not pass the ID in a query parameter
because this could compromise security.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 41 of 53

http://webformsmvp.com/

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teco re

¢ Inthe page Load method, you should:
o Cast the repository to the IUserAware interface and assign a value for the customer ID,
o Retrieve all the orders that belong to this customer in the order repository,
o Assign the Orders collection of the viewModel to the retrieved orders.

private void Load(object sender, EventArgs e)
{
var userId = this.HttpContext.Request.QueryString["user"];
if (string.IsNullOrEmpty (userId))
{
return;
}
var aware = this.orderRepository as IUserAware;
if (aware != null)
{
aware.CustomerId = userId;
}
var orders = this.orderRepository.GetAll (o => true).ToArray();
this.View.Model.Orders = orders;

}

e The following image shows the result — it contains the order id, the shop context, and the link
to the order cancelation page.

&~ C [} mvpwebstore/orc

P Web Store Categories Orders

Cancel »

Cancel »

Cancel »

Cancel »

Cancel »

Cancel »

Cancel »

Cancel »

5.2.2 Using the Visitor API to Cancel an Order

In this example, we explain how to use the Visitor API to cancel an order if it is not already processed
by the business logic of the webshop.

To cancel the order, you can use the
Sitecore.Ecommerce.MvpWebStore.Presenters.CancelOrderPresenter class.

To use the visitor API to cancel an order:

e The constructor of the CancelOrderPresenter class takes instances of the
VisitorOrderRepositoryBase, ICancelOrderView and
VisitorOrderProcessorBase classes as initializing parameters and binds the Load
handler to the Load event of the view:

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 42 of 53

Order Manager Developer's Cookbook @ sitecore

private readonly VisitorOrderProcessorBase orderProcessor;

private readonly VisitorOrderRepositoryB orderRepository;
public CancelOrderPresenter (ICancelOrd iew view, VisitorOrderRepositoryBase
orderRepository, VisitorOrderProcessorBase orderProcessor) : base(view)

{
this.View.Load += this.Load;
this.orderRepository = orderRepository;
this.orderProcessor = orderProcessor;

Note

In this example, we have created a simple page that accepts the IDs of the user and the order in the
URL. In a real implementation, you should not pass the ID in a query parameter because this could
compromise security.

e When the user goes to the ~/orders/cancelorder?id=zzz&user=100500 page, the
page parses the value of the query string — the user and id parameters. If the order ID is
not provided, the presenter stops to work. If the order ID is provided, it casts the repository to
the TUserAware interface and sets the customer ID. The repository uses the order ID to
retrieve the full order and then tries to use the VisitorOrderProcessorBase instance to
cancel the order. At the end of the process, the presenter sets the label value of the result
message:

private void Load(object sender, EventArgs e)
{
try
{
var id = this.HttpContext.Request.QueryString["id"];
if (string.IsNullOrEmpty (id))
{
this.View.Model.Result = Texts.TheOrderIdIsNotSpecified;
return;
}
var userlId = this.HttpContext.Request.QueryString["user"];
var aware = this.orderRepository as IUserAware;
if (aware != null)
{
aware.CustomerId = userId;
}
var order = this.orderRepository.GetAll (o => o0.0rderId ==
id) .FirstOrDefault () ;
this.orderProcessor.CancelOrder (order) ;
this.View.Model.Result =
string.Format (Texts.TheOrderHasBeenCancelledSuccessfully, id);
}
catch (Exception exception)
{

this.View.Model.Result = exception.Message;
}
}

e In SES 2.0, we store the state and sub-states as items in the content tree. However, to keep
the MvpWebStore solution simple, we have not included them in the package.

e For simplicity, we use a custom implementation of the VisitorOrderSecurity and
ProcessingStrategy classes that do not read the information from the content tree to
check whether or not the transition between the states is valid. They only read the
Order.State.Code value to check that the order is not cancelled or closed.

o VisitorOrderSecurity applies security restrictions to the order and stops processing
if the security restrictions are not satisfied.

o ProcessingStrategy changes the order state and performs other operations.

The implementations of these classes are registered in the
~/App Config/MvpWebStore.Unity.config file:

<unity xmlns="http://schemas.microsoft.com/practices/2010/unity">

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 43 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teco re

<alias alias="VisitorOrderSecurity"
type="Sitecore.Ecommerce.Visitor.OrderManagement.VisitorOrderSecurity,
Sitecore.Ecommerce.Visitor" />
<alias alias="SampleOrderSecurity"
type="Sitecore.Ecommerce.MvpWebStore.Domain.SampleOrderSecurity,
Sitecore.Ecommerce.MvpWebStore" />
<alias alias="ProcessingStrategy"
type="Sitecore.Ecommerce.OrderManagement.ProcessingStrateqgy,
Sitecore.Ecommerce.Core" />
<alias alias="SampleOrderCancelationStrategy"
type="Sitecore.Ecommerce.MvpWebStore.Domain.SampleOrderCancelationStrateqgy,
Sitecore.Ecommerce.MvpWebStore" />
<container>
<register type="VisitorOrderSecurity" mapTo="SampleOrderSecurity" />
<register type="ProcessingStrategy" mapTo="SampleOrderCancelationStrategy" />
</container>
</unity>

e The following snippet implements the SampleOrderSecurity class to check if the order is
in one of the following states:

o New
o Open
o InProcess

If it returns true, you should allow the order to be cancelled. Otherwise, you should deny the
cancelation.

// <summary>

// The overrided version of the VisitorOrderSecurity class.

// The 'CanCancel (Order) :bool' method is simplified.

// It doesn't perform any sophisticated check like a default one and

// doesn't collaborate in any way with back-end.

// The decision whether to allow to cancel an order is taken when the State is not

// null
// and State.Code is within
// the following set: 'New', 'Open', 'InProcess'

// In opposite situation the cancellation is denied.
// The such is registered in the ~/App Config/MvpWebStore.Unity.config.
// </summary>
public class SampleOrderSecurity : VisitorOrderSecurity
{
// <summary>
// Determines whether this instance can cancel the specified order.
// </summary>
// <param name="order">The order</param>
// <returns>
// <c>true</c> if this instance can cancel the specified order; otherwise,
// <c>false</c>.
// </returns>
public override bool CanCancel (Order order)

{

if (order.State != null)

{
if ((order.State.Code == OrderStateCode.New) || (order.State.Code ==
OrderStateCode.Open) || (order.State.Code == OrderStateCode.InProcess))

{
return true;
}
}

return false;
}

e You can then build the SampleOrderCancellationStrategy class:

// <summary>

// The simple implementation of the ProcessingStrategy abstract class.
// It sets the State.Code of the provided order to the "Cancelled" value
// without any collaboration with back-end.

// </summary>

public class SampleOrderCancelationStrategy : ProcessingStrategy

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 44 of 53

Order Manager Developer's Cookbook @ sitecore

// <summary>

// Gets or sets StateManager.

// </summary>

public virtual CoreOrderStateConfiguration StateManager { get; set; }

// <summary>

// Processes the order.

// </summary>

// <param name="order">The order.</param>

public override void Process ([NotNull] Order order)

{
Assert.ArgumentNotNull (order, "order");
order.State.Code = OrderStateCode.Cancelled;

}

}

e |f the order is successfully cancelled, you should see the following message:

€« c mvpwebstore/order celorder.aspx?id=c71cf848-b402-47bc-a840-fcba559bfa8d&user=100500

Categories Orders

Cancellation result

The order ¢71cf848-b402-47bc-a840-fcba559bfa8d has been cancelled
successfully.

5.2.3 Using the Visitor API to Create an Order

To create an order, you must use the
Sitecore.Ecommerce.MvpWebStore.Presenters.ProductDetailsPresenter class.

In SES 2.0, we created an advanced checkout process. However, in MVPWebStore, you can use a
single page with a Buy button. MVPWebStore contains instances of the
VisitorOrderRepositoryBase, IProductRepository, IProductStockManager,
IProductPriceManager and VisitorOrderProcessorBase classes as the required
dependencies and binds the Load event handler and the Buy event handler of the view.

public ProductDetailsPresenter (IProductDetailsView view, IProductRepository
productRepository, IProductStockManager stockManager, IProductPriceManager
priceManager, VisitorOrderRepositoryBase orderRepository) : base(view)
{

this.productRepository = productRepository;

this.stockManager = stockManager;

this.priceManager = priceManager;

this.orderRepository = orderRepository;

this.View.Load += this.Load;

this.View.Buy += this.Buy;

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 45 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teCO re

When it is loaded, the view is initialized with the name, description, price, stock value of the product
and renders the Buy button:

C' | [mvpwebstore/products/viewproduct.aspx?p=Chardonnay

Categories Orders

Product info:

Name Chardonnay
Description Chardonnay

Price 132
Stock 10

Buy

If the stock value of the product is positive, the product is in stock and the order is created when you
click the Buy button:

private void Buy(object sender, EventArgs e)
{
ProductStockInfo productStockInfo = new ProductStockInfo { ProductCode =
this.View.Model.Product.Code };
ProductStock productStock = this.stockManager.GetStock (productStockInfo) ;
// checking if the product is in stock
if (productStock.Stock <= 0)
{
return;
}
// As a simple example, the value of the product stock is decremented
this.stockManager.Update (productStockInfo, productStock.Stock - 1);
// Initializing the order

Order order = new Order { State = new State { Code = "New", Name = "New" },
// Setting the shop context value of the order to mvpwebstore.

ShopContext = "mvpwebstore",

OrderId = Guid.NewGuid() .ToString(),

PricingCurrencyCode = "USD" };

OrderLine orderLine = new OrderLine

{
Order = order,
Lineltem = new LinelItem
{
Item = new Item { Code = this.View.Model.Product.Code },

Price = new Price(new Amount (this.View.Model.Price, "USD")),
Quantity = 1,
TotalTaxAmount = new Amount (),

}
}i
order.OrderLines.Add (orderLine) ;
// Setting the Supplier account ID to the predefined value "100500"
order.BuyerCustomerParty = new CustomerParty { SupplierAssignedAccountID =
Texts.MvpWebStoreCustomerId };
// The order is sent to the visitor order repository that saves it in the
// database.
this.orderRepository.Create (order) ;
this.HttpContext.Response.Redirect (this.HttpContext.Request.RawUrl) ;

524 The Limitations of the Visitor API

The VOM API only allows customers to perform some high-level business operations with orders such
as Create, Read and Cancel. The main aim is to give web shop visitors limited access to the orders
stored in the database.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 46 of 53

Order Manager Developer's Cookbook @ sitecore

The most common operations are to:
e Read the existing orders that were created by the current customer.
e Create an order at the end of the checkout process.
e Cancel an order before completing the purchase if necessary.
The VOM API is an additional layer of abstraction on top of the Core Order Manager API. COM
supports all CRUD operations, but VOM only supports Create, Read, and Cancel.
The VOM API is defined by the following class and interface definitions:

public abstract class VisitorOrderProcessorBase
{
public abstract void CancelOrder (Order order);

}

public abstract class VisitorOrderRepositoryBase
{
public abstract void Create (Order order);
public abstract IQueryable<Order> GetAll (Expression<Func<Order, bool>> expression);

}
The VisitorOrderProcessor class:
e Isthe default implementation of the VisitorOrderProcessorBase abstract class.

e Implements the VisitorOrderSecurity class to check whether or not the order is in the
appropriate state to be cancelled.

e Implements the VisitorOrderCancelationStrategy class to cancel the order.

The VisitorOrderRepository.Create () and VisitorOrderProcessor.CancelOrder ()
methods are marked with the custom LogThis attribute to make the loC container intercept their
work and log the creation and cancellation of the order in the ActionLog database.

[LogThis (Constants.CreateOrderAction, Constants.UserLevel)]
public override void Create (Order order)

{

}

[LogThis ("Cancel order", Constants.UserLevel)]

public override void CancelOrder (Order order)
{
}

The LogThis attribute uses the Sitecore.Ecommerce.Logging.LoggingHandler and
Sitecore.Ecommerce.Core classes. This class contains a reference to the Logger and calls it with
the provided parameters. You can use the unity.config file to configure the interception:

<register type="VisitorOrderManager" mapTo="DefaultVisitorOrderManager">
<lifetime type="hierarchical" />
<interceptor type="VirtualMethodInterceptor" />
<policyInjection />

</register>

<register type="VisitorOrderProcessorBase" mapTo="VisitorOrderProcessor">
<lifetime type="hierarchical" />
<interceptor type="VirtualMethodInterceptor" />
<policyInjection />

</register>

Note
If you use the default implementation, you should not worry about logging.
You cannot use the Visitor API to remove an order,

the only change that you can make with VOM is to change the Order.State to Cancelled. You
must use the VisitorOrderProcessor.CancelOrder method to cancel the order.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 47 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ sitecore

You must use the CancelOrder method to:

e Statically provide a list of orders on the page or use the Xm1HttpRequest XHR object and
send the list in JSON format from the server to the client.

XHR is a JavaScript object that is used to send asynchronous requests from the client code to
the server.

e Create the custom checkout process. In the last stage, you should use the accumulated
information to create the order.

e Cancel an existing order. For example, on the history page.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 48 of 53

Order Manager Developer's Cookbook @ sitecore

5.3 Using the Merchant Order Manager API

The Merchant Order Manager (MOM) API contains the business logic that is used by the OM web
application to manage the orders.

The Merchant Order Manager API is used to:
e Create a new order.
e Assign the order validation when the order is created.

e Update the order suspicious state.

5.3.1 Using the MOM API to Create a New Order
Before you can create an order with MOM, you must:
e Create a custom action class that contains the business logic.

e Create an action panel that is bundled with this class.

Creating a Custom Action Class
To implement the business logic for creating an order, you must create a custom action class:

1. Create aclass based on the Sitecore.Web.UI.WebControls.Actions class and call it
CreateOrderAction.

namespace Sitecore.Ecommerce.Apps.OrderManagement.Views

{

using Sitecore.Web.UI.WebControls;

/// <summary>
/// The create order action.
/// </summary>
public class CreateOrderAction : Action
{

/// <summary>

/// Executes the specified context.

/// </summary>

aram name="context">The context.</p

public override void Execute ([CanBeNull] Act

[/ /] ram>

ionContext context)

<summary>
Queries the state.
</summary>

me="context">The context.</param>

public override ElementState QueryState ([NotNull] ActionContext context)
{

return ElementState.Enabled;
}
}
}
2. To hide the action panel from users who are not members of the Order Processor role,
override the QueryState method to return the hidden state.

3. Override the Execute method with some custom logic.

To implement the business logic, use DefaultOrderFactory to create an order and set the
order State to Open.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 49 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teC0 re

You must use MerchantOrderManager to save the order and then redirect to the order
details page with the OrderId of the new order in the query string.

//Create new order using DefaultOrderFactory.
var order = this.orderFactory.Create();

//Change order state from New to Open.
order.State = new State { Code = OrderStateCode.Open };

//Save order with MerchantOrderManager.
this.orderManager.Save (order) ;

//Redirect to order details page.
this.view.RedirectToOrderDetails (order.OrderId) ;

Create an Action Panel

The previous section describes how to create the custom action class that contains the business
logic. The following a procedure describes how to create an action panel that calls the custom action
class:

1. Inthe Action Panels folder, create an item and call it Order Manager Actions
sitecore\content\system\Modules\SPEAK\Order
Manager\Repositories\Action Panels

2. Inthe Order Manager Actions folder, add the create order action that we just created and
enter a value in the Title, linkicon, and Click fields.

= | Data

Title:
Create Order

Open icon * Clear
linkicon

Applications/32x32/document_add.png

Click :
Sitecore.Ecommerce.Apps.OrderManagement.Views.CreateCQrderAction, Sitecore.Ecommerce.Apps

3. Navigate to the Order Manager root item
sitecore\content\system\Modules\SPEAK\Order Manager

4. Inthe Content Editor, click the Presentation group and then in the Layout group, click
Details and the Layout Details opens.

5. Inthe Layout Details dialog box, select the placeholder called top and in the Data Source
field, enter the path to the Order Manager Actions item that you just created.

You must assign the custom action class to the Create Order action item.

6. Inthe Click field, enter value to CreateOrderAction class name, for example
Sitecore.Ecommerce.Apps.OrderManagement.Views.CreateOrderAction,

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 50 of 53

Order Manager Developer's Cookbook @ sitecore

Sitecore.Ecommerce.Apps:

5.3.2

‘.';}General =

Placeholder
top

EBrowse - Clear
Data Source

/sitecore/system/Modules/SPEAK/ordermanager/Repositories/Action Panels/Crder Manager Actions

Setting the Order State to Suspicious

When you use the example pages to create an order, the orderCreated pipeline starts to perform
additional operations that are not part of the order creation process. To check whether or not the state
of the order should be set to suspicious, you can use the orderCreated pipeline to inject the custom
order validation logic.

For example, an order can be suspicious if the order line quantity is greater than a certain predefined
value or if the order has been placed by the same visitor within a predefined time interval.

The following example describes how to implement a new order validation pipeline that sets the order
to suspicious if it is created by the same visitor within ten seconds:

namespace Ses.Samples.Merchant.Pipelines.OrderCreated

{

}

using System;

using System.Ling;

using Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated;
using Sitecore.Pipelines;

// Create a CheckOrderFrequency processor to validate if order created with a proper
// frequency.
public class CheckOrderFrequency : CheckOrderProcessorBase

{

public TimeSpan Frequency { get; set; }

public void Process (PipelineArgs args)

{

// Read the created order using order number stored in pipeline args.
var order = this.GetOrder (args);

// Read the customer ID from the new order.
var customer = order.BuyerCustomerParty.SupplierAssignedAccountID;

// Read the allowed order creating frequency which is set in pipeline processor
// property and determine maximum allowed date.
var recentAllowedOrderDate = DateTime.Now - this.Frequency;

// Check if the customer has already placed an order recently and
// determine if the order is suspicious or not.

Var frequentOrders = this.OrderManager.GetOrders () .Where (o =>
o.BuyerCustomerParty.SupplierAssignedAccountID == customer &&
0.0rderId != order.OrderId &&

o.IssueDate >= recentAllowedOrderDate) ;

// Mark the order as suspicious if there are some orders found.
if (frequentOrders.Any())
{

this.MarkOrderAsSuspicious (args, "Order Frequency");

}

To run the pipeline, in the Sitecore.Ecommerce.configfile, in the orderCreated pipeline, add
the first processor in the following snippet.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 51 of 53

Sitecore E-Commerce Services 2.0 for CMS 6.6 @ S|teCO re

<orderCreated>

<processor
type="Ses.Samples.Merchant.Pipelines.OrderCreated.CheckOrderFrequency,
Sitecore.Ecommerce.Tests.Integration">
<Frequency>00:00:10</Frequency>

</processor>
<processor
type="Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated.TryOpenOrder,
Sitecore.Ecommerce.Merchant"/>

</orderCreated>

5.3.3 Getting the Best-Selling Products

To search for the best-selling products:

1. Enumerate all the order lines of all the orders in the repository to calculate the total quantity of
every purchased product.

2. Sort the products in descending order according to the evaluated total quantity values.
3. Usethe IProductRepository class to transform the product codes into a set of products.

The following code snippet describes how to implement this:

// Specify the webshop to get the products from.
const string WebShopName = "example'";

// Setup the environment for the webshop.

using (new SiteContextSwitcher (SiteContextFactory.GetSiteContext (WebShopName)))
{

// Get instance of MerchantOrderManager from IoCContainer.

MerchantOrderManager merchantOrderManager =
Context.Entity.Resolve<MerchantOrderManager> () ;

// Get instance of IProductRepository from IoCContainer.

IProductRepository productRepository = Context.Entity.Resolve<IProductRepository>();
// Defines number of top products to be selected.

const int SizeOfSelection = 5;

// Order product codes by total quantity and select products by ordered product codes.
IEnumerable<ProductBaseData> resultingProducts =

// Get orders first.

merchantOrderManager.GetOrders ()

//Select all order lines from the orders.

SelectMany (order => order.OrderLines)

// Group order lines by product code and calculate total quantity for each of the

// group.

.GroupBy (orderLine => orderLine.LinelItem.Item.Code, (productCode, orderLines) => new {
productCode, totalQuantity = orderLines.Sum(orderLine => orderLine.LinelItem.Quantity)
b

// Order groups by calculated total quantity.

.OrderByDescending (pair => pair.totalQuantity)

// Take only the records we need

.Take (SizeOfSelection)

// Force query execution on subsequent operations

.AsEnumerable ()

// and transform them to sequence of products.

.Select (pair => productRepository.Get<ProductBaseData> (pair.productCode)) ;

}

5.3.4 Getting the Best Customers for a Webstore
To search for the best customers for the web store:
1. To calculate the total purchase price for every customer, enumerate all the orders.
2. Sort the customer IDs in descending order according to the total value of their purchases.

3. Use ICustomerManager to transform the customer IDs into a set of CustomerInfo
objects.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 52 of 53

Order Manager Developer's Cookbook @ sitecore

The following code snippet describes how to implement this:

// Specify the webshop to get the orders from.
const string WebShopName = "example";

// Setup the environment for the webshop.

using (new SiteContextSwitcher (SiteContextFactory.GetSiteContext (WebShopName)))

{

// Get instance of MerchantOrderManager from IoCContainer.
MerchantOrderManager merchantOrderManager =
Context.Entity.Resolve<MerchantOrderManager> () ;

// Get instance of ICustomerManager from IoCContainer.
ICustomerManager<CustomerInfo> customerManager =
Context.Entity.Resolve<ICustomerManager<CustomerInfo>>();
// Defines number of top customers to be selected.

const int SizeOfSelection = 5;

// Order customers by total price of purchased products and select CustomerInfo.

IEnumerable<CustomerInfo> topBuyers =
// Get orders first.
merchantOrderManager.GetOrders ()

// Group orders by SupplierAssignedAccountID, compute total price of the purchases for

// each group.

// It is assumed that all prices are of the same currency, otherwise the prices must

// be converted to some common currency.

.GroupBy (order => order.BuyerCustomerParty.SupplierAssignedAccountID, (customerId,

orders) => new { customerId, totalPrice = orders.Sum(order =>
order.AnticipatedMonetaryTotal.PayableAmount.Value) })

// Order groups by calculated total price.

.OrderByDescending (pair => pair.totalPrice)

// Take only the records we need.

.Take (SizeOfSelection)

// Force query execution on subsequent operations

.AsEnumerable ()

// and transform them to sequence of objects providing customer information.
.Select (pair => customerManager.GetCustomerInfo (pair.customerld)) ;

}

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The

contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 53 of 53

	Chapter 1 Introduction
	Chapter 2 Setting up the Application
	2.1 The Structure of the Order Manager Application in SPEAK
	2.2 The Navigation Diagram of SPEAK

	Chapter 3 Configuring the Order Manager Application in SPEAK
	3.1 Setting up the Controls on the Dashboard
	3.1.1 Configuring Data Sources
	3.1.2 Configuring a Shop Context

	3.2 Configuring the Navigation Filters
	3.2.1 Configuring Navigation Filters According to a User Role

	3.3 Configuring the List Page
	3.3.1 Configuring a Column
	3.3.2 Configuring the Predefined Filters
	Configuring an Expression Group
	Configuring a Value Based Expression
	Configuring a Range Based Expression
	Creating an Operator

	3.4 Configuring the Order Details Task Page
	3.4.1 Adding a Field Editor
	3.4.2 Adding an Order Details List
	3.4.3 Adding a Column to an Order Details List
	3.4.4 Adding a Field to the Details List
	3.4.5 Extending the Order Manager to Show Multi-valued Fields

	3.5 Configuring the Smart Panel
	3.5.1 Enabling the Smart Panel in your Application
	3.5.2 Configuring the Actions Panels
	3.5.3 Adding a Custom Action

	Chapter 4 Configuring the Order Report in Stimulsoft
	4.1 Customizing the Order Details Report
	4.2 Setting up the Data Source
	4.3 Creating a Variable
	4.3.1 Changing the Localization of the Variable

	Chapter 5 Using the Order Manager API
	5.1 Using the Core Order Manager API
	5.1.1 The COM API Reference
	5.1.2 Using the Core API to Import and Export Orders

	5.2 Using the Visitor Order Manager API
	5.2.1 Reading all Orders for a Specific Customer
	5.2.2 Using the Visitor API to Cancel an Order
	5.2.3 Using the Visitor API to Create an Order
	5.2.4 The Limitations of the Visitor API

	5.3 Using the Merchant Order Manager API
	5.3.1 Using the MOM API to Create a New Order
	5.3.2 Setting the Order State to Suspicious
	5.3.3 Getting the Best-Selling Products
	5.3.4 Getting the Best Customers for a Webstore

