
Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later
Order Manager Developer's Cookbook Rev: May 10, 2014

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Order Manager Developer's
Cookbook
A developer's guide to configuring the Order Manager.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 2 of 61

Table of Contents

Chapter 1 Introduction .. 3
Chapter 2 Setting up the Application ... 4

2.1 The Structure of the Order Manager Application in SPEAK ... 5
2.2 The Navigation Diagram of SPEAK .. 7

Chapter 3 Configuring the Order Manager Application in SPEAK ... 8
3.1 Setting up the Controls on the Dashboard .. 9

3.1.1 Configuring Data Sources ... 9
3.1.2 Configuring a Shop Context .. 10

3.2 Configuring the Navigation Filters ... 12
3.2.1 Configuring Navigation Filters According to a User Role .. 14

3.3 Configuring the List Page .. 15
3.3.1 Configuring a Column ... 15
3.3.2 Configuring the Predefined Filters... 15

Configuring an Expression Group .. 16
Configuring a Value Based Expression ... 17
Configuring a Range Based Expression .. 18
Creating an Operator ... 18

3.4 Configuring the Order Details Task Page ... 20
3.4.1 Adding a Field Editor ... 20
3.4.2 Adding an Order Details List ... 21
3.4.3 Adding a Column to an Order Details List ... 21
3.4.4 Adding a Field to the Details List... 22
3.4.5 Extending the Order Manager to Show Multi-valued Fields ... 25

3.5 Configuring the Smart Panel ... 29
3.5.1 Enabling the Smart Panel in your Application ... 29
3.5.2 Configuring the Actions Panels ... 30
3.5.3 Adding a Custom Action .. 30

Chapter 4 Configuring the Order Report in Stimulsoft ... 32
4.1 Customizing the Order Details Report .. 33
4.2 Setting up the Data Source ... 34
4.3 Creating a Variable ... 35

4.3.1 Changing the Localization of the Variable .. 37
Chapter 5 Using the Order Manager API ... 39

5.1 Using the Core Order Manager API .. 40
5.1.1 The COM API Reference .. 40
5.1.2 Using the Core API to Import and Export Orders .. 41

5.2 Using the Visitor Order Manager API .. 43
5.2.1 Reading all Orders for a Specific Customer .. 43
5.2.2 Using the Visitor API to Cancel an Order .. 44
5.2.3 Using the Visitor API to Create an Order .. 47
5.2.4 The Limitations of the Visitor API .. 49

5.3 Using the Merchant Order Manager API ... 51
5.3.1 Using the MOM API to Create an Order ... 51
5.3.2 Using the MOM API to validate Orders ... 53

Setting the Order State to Suspicious .. 54
Setting the Order State to Open... 58

5.3.3 Getting the Best-Selling Products ... 59
5.3.4 Getting the Best Customers for a Webstore ... 60

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 3 of 61

Chapter 1

Introduction

The Order Manager is an application that is based on SPEAK, easy to use, and easy to
configure to suit your own requirements.

This guide describes how to customize and extend the Order Manager (OM) application
in the backend. It is useful for developers who are looking for information about the Order
Manager application.

This manual contains the following chapters:

 Chapter 1 — Introduction
This chapter is introduction to the guide.

 Chapter 2 — Setting up the Application
This chapter describes the different layouts of SPEAK and how to set up the OM
application in a certain layout.

 Chapter 3 —Configuring the Order Manager Application in SPEAK
This chapter describes how to configure all the pages in the SPEAK layout.

 Chapter 4 — Configuring the Order Report in Stimulsoft
This chapter describes how to configure the order report in Stimulsoft.

 Chapter 5 — Using the Order Manager API
This chapter is an API reference guide for OM.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 4 of 61

Chapter 2

Setting up the Application

This chapter provides an overview of the default pages and controls that are available in
the Order Manager. All the controls in the pages are customizable. It is also easy to add
more pages if the default configuration is not suitable for your business needs.

This chapter describes:

 The structure of the order manager application in SPEAK.

 The navigation diagram of SPEAK.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 5 of 61

2.1 The Structure of the Order Manager Application in SPEAK

To work with the OM application, you must install the Order Manager package. For information about
installing the OM package, see the SES installation guide.

In the Content Editor, you can navigate to the Order Manager root item:
/sitecore/system/Modules/SPEAK/Order Manager

The following table describes the folders that you can configure in the Order Manager:

Folder Description

Purchase Orders This folder contains links to the navigation filters that appear on the left
side navigation panel.

Template: /sitecore/templates/SPEAK/Base
templates/Navigation

Order Details This folder contains definitions of the sections and fields on the order
details task page.
For more information, see Configuring the Order Details Task Page.

Template: /sitecore/templates/SPEAK/Pagetypes/Task page

Print Order This folder contains the definition of the task page that renders the order
details report. For more information, see
Configuring the Order Report in Stimulsoft.

Template: /sitecore/templates/SPEAK/Pagetypes/Task page

Repositories This folder contains miscellaneous SPEAK controls configurations.

Template: /sitecore/templates/SPEAK/Folders/Repositories

Repositories/Action
Panels

This folder contains actions that appear in different action panels.

Template: /sitecore/templates/SPEAK/Folders/Actions

Repositories/Info Spots This folder contains the controls that appear in the right hand side of the
order details task page.

Template: /sitecore/templates/SPEAK/Folders/Info spots

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 6 of 61

Folder Description

Repositories/List Views This folder contains all the list controls that appear on the dashboard page
and the list page. It defines the filter options and list columns. For more
information see,
Configuring the Order Manager Application in SPEAK

This chapter describes the configuration options in all the
SPEAK pages. These configuration options are described
in the section The Navigation Diagram of SPEAK.

The following sections describes how to:

 Set up the controls on the Dashboard.

 Configure the navigation filters.

 Configure the list page.

 Configure the order details task page.

 Configure the smart panel.

Setting up the Controls on the Dashboard and Configuring the List Page.

Template: /sitecore/templates/SPEAK/Folders/List Views

Repositories/Operators This folder contains the Order Manager specific operators for filtering
orders. By default, it contains the operators:

 Is equal to

 Search

 between

Note
You should not edit any of these operators because they are part of the
implementation details of the Order Manager. However, you can add more
operators.

Template: /sitecore/templates/Common/Folder

Repositories/Predefined
Filters

This folder contains the list views and filter controls. These are the
predefined filter options through which you can filter the order. You can
add your own custom options here.
For more information, see Configuring the Predefined Filters.

Template: /sitecore/templates/SPEAK/Folders/List Views
filters

Repositories/Smart
Panels

This folder contains the smart panels content also known as quick views.
For more information, see the section Configuring the Smart Panel.

Template: /sitecore/templates/SPEAK/Folders/SmartPanels

Note
If you upgrade your installation, any configuration changes that you make are overwritten. Therefore, you
must always create a backup of your configuration settings in the Order Manager.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 7 of 61

2.2 The Navigation Diagram of SPEAK

The following flow diagram illustrates how you navigate in a SPEAK based application.

As illustrated in the previous image, you can configure the layouts of the SPEAK pages in different ways
but we have chosen the App 1 theme.

The following table describes every page in the navigation architecture:

SPEAK Page Description

Login Page To launch the SPEAK login page, enter its URL in your web browser.

Launch Application Page Contains a list of the applications that are available in SPEAK.

Home Page (Dashboard) Provides users with an overview of their tasks and what they are currently
working on. In the Order Manager, users can have their own individual home
page depending on the security roles they have been assigned in Sitecore.

List Page Displays the results of saved navigation filters in the left hand navigation
panel. The default Order Manager application comes with the following pre-
defined navigation filters:

 Orders

 Open orders

 Orders in process

 Closed orders

 Cancelled orders

Task Page This page is also known as the order details page, displays the full details of
an order and enables you to complete specific order management tasks

This guide describes how to configure the dashboard, list pages, and task pages.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 8 of 61

Chapter 3

Configuring the Order Manager Application in

SPEAK

This chapter describes the configuration options in all the SPEAK pages. These
configuration options are described in the section The Navigation Diagram of SPEAK.

The following sections describes how to:

 Set up the controls on the Dashboard.

 Configure the navigation filters.

 Configure the list page.

 Configure the order details task page.

 Configure the smart panel.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 9 of 61

3.1 Setting up the Controls on the Dashboard

The dashboard is the first page that you see when you choose the Order Manager application in SPEAK.
By default, the dashboard contains the navigation filters on the left hand panel, and the last new orders
created and the latest orders that are ready to be captured.

This section describes how to configure the dashboard on the Order Manager page.

3.1.1 Configuring Data Sources

You can configure the data source of an in item in the Order Manager. There are two types of data source
in SPEAK: fast query and object detail list. In the Order Manager, you use the object detail list to access
the order data that is stored in a separate order database.

To configure the data source of the purchase orders in the Content Editor:

1. Navigate to the Purchase Orders item: /sitecore/system/Modules/SPEAK/Order
Manager/Repositories/List Views/Purchase Orders

2. Right click Purchase Orders, click Insert, select ObjectDetailList and then call it Sample
Orders.

3. In the Content section, navigate to the ObjectDataSourceSettings section.

The following table describes the fields in the Object data source:

Field Description

EnablePaging Indicates whether or not the data source control supports
paging through the data that it retrieves.

TypeName The name of the class on which the ObjectDataSource

object is based — for example, the type that is responsible for
handling the Select, Update, Delete, Insert operations.

DataObjectTypeName The name of a class that the ObjectDataSource object uses

as the return value in an update, insert, or delete data
operation.

SelectMethod The name of the method that the ObjectDataSource control

invokes in the object that is specified in the TypeName

property, to retrieve data.

SelectParameterName The name of the parameter that is used in the method

specified by the SelectMethod property.

SelectParameterValue The value of the parameter that is used in the method

specified by the SelectMethod property.

UpdateMethod The name of the method that the ObjectDataSource control

invokes to update the data.

OldValuesParameterFormatString The format string that should be applied to the names of the
parameters for original values that are passed to the Delete or
Update methods.

DeleteMethod The name of the method that the ObjectDataSource control

invokes on the object that is specified in TypeName to delete

data.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 10 of 61

Field Description

DeleteParameterName The name of the parameter that is used by the

DeleteMethod method.

DeleteParameterValue The parameters collection that is used by the DeleteMethod

method.

InsertMethod The name of the method or function that the

ObjectDataSource control invokes on the object that is

specified in TypeName to insert data.

SelectCountMethod The name of the method or function that the

ObjectDataSource control invokes to retrieve a row count.

You can also configure the data sources in:

 Lists in the dashboard.

 List pages.

 Order details that have one overall data source and another for each list control.

3.1.2 Configuring a Shop Context

In the Content Editor, a shop context represents a webshop that appears in the Web Store Selector in
the client interface. You must configure a shop context for each individual webshop. You can configure as
many shop contexts as you need.

To configure the Shop Contexts item in the Content Editor:

1. In the Content Editor, navigate to the Shop Contexts item:
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Shop Contexts

1. Right click Shop Contexts, click Insert, and then click Shop Context.

2. Call it Third Web Store.

3. On the Content tab, assign values to the following fields.

Field Description

Name The logical name of the web shop. In this example, call it thirdwebstore.

Title The webshop name that appears in the client interface in the web store
selector.
In the previous step, you called it Third Web Store.

Tooltip The hint that describes the shop in the client interface.
You can enter third web shop for testing purposes.

Icon The icon that appears next to this shop context item in the Content
Editor.
You can leave it as business/32x32/shoppingcart.png.

4. In Visual Studio, open the Sitecore.Ecommerce.Examples.config file of the solution and

register the Third Web Store.

< sites>

 <site name="thirdwebstore" .../>

</sites>

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 11 of 61

Once you have created a shop context, you must specify the users who have access to the webshop:

1. In Sitecore Desktop, click Sitecore Security Tools, and then select Role Manager.

2. In the Role Manager dialog box, click the New tab.

3. In the role Name field, enter Order Manager Third Web Store Processing and in the domain field,
enter Sitecore.

4. Click the Members tab, click Add, click Users, and then select the user who you want to make a
member of the role and then click OK.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 12 of 61

3.2 Configuring the Navigation Filters

You can configure as many navigation filters as you want in your application so that you can search for
orders according to your own criteria.

To create a navigation filter:

1. In the Content Editor, navigate to the Order List Template
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/List

Views/__Order List Template

2. Create a clone of the Order List Template in the Purchase Orders repository.
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/List

Views/Purchase Orders

Note
You can also create the filter in the repository instead of cloning the __Order List Template item.
However, we recommend that you use cloning for maintenance reasons. If you modify the template, all of
the clones are modified as well. For example, you can add a field to all the filters by adding it to the
__Order List Template item.

3. Name the new repository Order list page. In the Content section, you can also configure the
following if you want:

o Enable Collapsing

o In the LoadDataWith field, enter PageScroll or ElementScroll.

Note
The recommended setting for LoadDataWith in SPEAK is PageScroll.

4. Select the EnableFiltering option.

5. In the ObjectDataSourceSettings group, configure the object data source.

For more information, see the section Configuring Data Sources.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 13 of 61

6. Navigate to the Purchase Orders item.
/sitecore/system/Modules/SPEAK/Order Manager/Purchase Orders

7. Right click Purchase Orders, click Insert and then select List page and then call it Order list
page.

8. On the ribbon, click the Presentation tab, in the Layout group, click Details.

9. On the Layout Details dialog box, click Default Details List, and then enter the path to the filter
created in the Data Source field.
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/List

Views/Purchase Orders/Order list page

Note
You can create multiple navigation filters that refer to the same list view.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 14 of 61

3.2.1 Configuring Navigation Filters According to a User Role

You can configure the Order Manager application to show or hide items according to the user's role.

To use the standard Sitecore security feature to show or hide navigation filters for different users:

1. In the Content Editor, navigate to the Order list page filter that you have just created.

2. Click the Security tab and then click Access Viewer.

3. In the Access Viewer, you can then deny any user read access to, for example, the Order list
page and the Cancelled orders page.

For more information about how to use the Access Viewer, see the Security Administrator's
Cookbook.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 15 of 61

3.3 Configuring the List Page

Once you have created the navigation filter, you can configure the list page that the navigation filter
generates. This section describes how to:

 Configure the columns on the list page.

 Configure the predefined filters.

3.3.1 Configuring a Column

The list page contains the orders that result from the navigation filter.

You can present any information that belongs to the order on the list page. To add a column to the table
on the list page of a navigation filter:

4. In the Content Editor, locate the filter to which you want to add a new column, for example,
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/List

Views/Purchase Orders/Orders

5. Right click Orders, click Insert, and then select Column Field.

The default selection is the standard Column Field.

6. Name it Currency.

7. Enter a value for the HeaderText. You can use the same name as that of the Column Field —
Currency.

8. In the DataField general property, enter the property name that you want to fill the column with —
Currency.

Note
In the DataField, you can only enter a property that exists in the

Sitecore.Ecommerce.Apps.OrderManagement.Models class.

For more information, see the section Adding a Column to an Order Details List.

3.3.2 Configuring the Predefined Filters

You can use a predefined filter to further refine the list of orders that result from the navigation filter.

This section describes how to configure a predefined filter.

To navigate to the predefined filter options in the Order Manager:

1. In the Order Manager, navigate to the home page.

2. Click a navigation filter to navigate to a list page, for example, the Orders page.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 16 of 61

3. On the Orders page, click Filters and you should see the following filters:

Configuring an Expression Group

Expression groups are predefined filters.

To create an expression group:

1. In the content tree, navigate to the Purchase Orders item
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Predefined

Filters/Purchase Orders

2. Right click Purchase Orders, click Insert from Template.

3. In the Insert from Template dialog box, navigate to the template

/sitecore/templates/SPEAK/Expression Group and then call the new expression group

Total Amount.

4. Select Total Amount, click the Content tab and then assign values for the following fields.

Field Description

Title The name of the filter in the UI. You called it Total Amount in the previous step.

Name The logical name of the filter. Call it TotalAmount.

Type The type of data that the expression group is filtering. You can set it to Date,
Enum or UTC Date. In this example, you must select Enum.

5. Navigate to the Orders filter: /sitecore/system/Modules/SPEAK/Order
Manager/Repositories/List Views/Purchase Orders/Orders

6. Click Orders, and on the Content tab, click DetailList settings, filters, and then add the Total
Amount expression group to the Orders navigation filter.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 17 of 61

Configuring a Value Based Expression

To add a value based expression to a predefined filter:

1. In the Content Editor, navigate to the predefined filter that you want to add the criteria to — for
example, Currency
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Predefined

Filters/Purchase Orders/Currency

2. Right click Currency, and click Insert from Template.

3. In the Insert from Template dialog box, navigate to the template:
/sitecore/templates/Ecommerce/Order Manager/Filtering/Nonlocalizable

Expression, and name it GBP.

4. On the webshop, navigate to the group orders and you can see that the new filter is added.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 18 of 61

Configuring a Range Based Expression

You can also configure the Total Amount predefined filter that you created in the section Configuring an
Expression Group.

To configure a range based expression:

1. In the content tree, navigate to the Total Amount predefined expression group:
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Predefined

Filters/Purchase Orders/Total Amount

2. Right click the Total Amount item, click Insert from Template.

3. In the Insert from Template dialog box, navigate to the template:
/sitecore/templates/Ecommerce/Order Manager/Filtering/Nonlocalizable

Expression , and name it 1000-2000

4. Click the1000-2000 item and on the Content section, assign values to the following fields:

Field Description

Value [1000,2000]

Title [1000,2000]

Operator between — to select all the
orders that have a total
amount value within this
range.

5. Repeat the previous two steps for the expressions: 2001-4000 and 4001-5000.

Creating an Operator

This section describes how to create an operator to search for orders with certain state and substates.

To create a new operator that should be used in the predefined filters:

1. In the content tree, navigate to the Operators item:
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Operators

2. Right click Operators, click Insert, select Operator and name it substate.

3. Click substate, and in the Content section, in the Default field, assign the following condition
code:

o.field.Substates.Any(s => (s.Code == "values[0]") && s.Active)

4. Create an expression group and name it Substates.

For more information about how to create an expression group, see the section Configuring an
Expression Group.

5. Select the Substates item and in the Content section, assign values to the following fields:

Field Value

Title Substates

Name State

Type Enum

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 19 of 61

6. In Susbstates, create an expression and name it Captured in Full.

For information about how to create an expression, see the section Configuring a Value Based
Expression.

7. Click Captured in Full and in the Content section, assign values to the following fields:

Field Description

Value Captured In Full

Title Captured in full

Operator Substate — the new operator that
you have created.

8. Repeat the previous two steps for the expressions: Packed in Full and Shipped in Full.

Note
The values in the Value fields are case sensitive. Use the same names in the Order Manager database.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 20 of 61

3.4 Configuring the Order Details Task Page

The Order Details Task Page is the page that you see after you have click on the order. It contains all the
information that is available for the order.

Once you have configured the list page, you can configure the task page. This section describes how to:

 Add a field editor.

 Add an order details list.

 Add a column to the order details list.

 Add a field to the order details list.

 Extend the Order Manager to see the order details that have one-to-many relationships with an
order.

3.4.1 Adding a Field Editor

The field editor represents the details that have a one-to-one relationship with the order.

To add an Order Field Editor item:

1. In the Content Editor, navigate to the Order Details item

/sitecore/system/Modules/SPEAK/Order Manager/Order Details.

2. Right click Order Details and then click Insert from Template.

3. In the Insert from Template dialog box, navigate to the template

/sitecore/templates/Ecommerce/Order Manager/Web Controls/Order Field

Editor.

4. Call it Order.

You can also configure the following properties:

o EnableCollapsing

o 2 Columns

o DataKeyNames

5. Configure the object data source in the ObjectDataSourceSettings group. For more information,
see the section Configuring Data Sources.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 21 of 61

3.4.2 Adding an Order Details List

The detail list represents the details that have a one-to-many relationship with the order.

To add an Order Detail List item:

1. In the Content Editor, right click Order Details and then click Insert from Template.

2. In the Insert from Template dialog box, navigate to the template

/sitecore/templates/Ecommerce/Order Manager/Web Controls/ Order Detail
List

3. Call it Order Lines.

You can also configure the following properties:

o EnableCollapsing

o LoadDataWith

o SmartPanel

o EnableFiltering

4. Configure the object data source in the ObjectDataSourceSettings group. For more information,
see the section Configuring Data Sources.

3.4.3 Adding a Column to an Order Details List

You can add a column to an order details item. You can take OrderLines as an example of the Order
Details Items.

To add a column to OrderLines:

1. In the Content Editor, navigate to the Order Lines item:
/sitecore/system/Modules/SPEAK/Order Manager/order/Order Lines

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 22 of 61

2. Right click Order Lines, click Insert, Column Field and then name it Description.

3. Click Description, in the Content tab, General, DataField, enter Description — the name of the
property that represents this column in the implementation.

3.4.4 Adding a Field to the Details List

You can add a column to an order details item. You can take Delivery as an example of the details list.

To add a field to Delivery:

1. In the Content Editor, navigate to the Delivery details list
/sitecore/system/Modules/SPEAK/Order Manager/order/Delivery

2. Right click Delivery, click Insert, select Editor field and then name it Minimum Quantity.

3. Change the value of the Name field to the data property name whose value is displayed in this
field — DefaultDelivery.MinimumQuantity.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 23 of 61

The following image shows the properties of a details item:

4. Insert the second Editor field, call it Maximum Quantity and then Change the value of the
Name field to DefaultDelivery.MaximumQuantity.

5. Insert the third Editor field, call it Quantity and then Change the value of the Name field to
DefaultDelivery.Quantity.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 24 of 61

6. In the Order Manager application, navigate to the task page to see the editor fields you have just
created.

The following table describes the properties of the details item:

Property Description

Field Type Describes the type of the field, for example, Text, Multi-Line Text and Date.

Importance The importance of the field. You can assign it one of the following values:

 High — the values of this property appear even if you collapse the accordion
group.

 Normal — the default appearance of the fields.

 Low — the values of this property only appear when you click on more.

ReadOnly Specifies if the field is Read-only.

Title The text to be displayed.

Name The property of the model that is that is used in the data source that is assigned to the
field editor.

Tooltip The tooltip for the field.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 25 of 61

3.4.5 Extending the Order Manager to Show Multi-valued Fields

The order details task page does not contain all of the fields that belong to an order. The following are
some examples of this limitation:

FreightForwarderParty

The Order Manager application shows only one freight forwarder party for each order. The following class

diagram shows the FreightForwarderParty relationship in the data model.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 26 of 61

Delivery

The Order Manager application shows only one delivery destination for each order. The following class

diagram shows the Delivery relationship in the data model.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 27 of 61

AllowanceCharge

The Order Manager application shows only one delivery destination for each order. The following class

diagram shows the AllowanceCharge relationship in the data model.

SublineItem

The Order Manager application shows only one delivery destination for each order. The following class

diagram shows the SublineItem relationship in the data model.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 28 of 61

If you want to show all the freight forwarder parties, delivery destinations, allowance charges, and subline
items for the order, you must:

1. Extend the Order Manager application to base the corresponding items on Order details list
instead of Field editor

2. Add a Smart Panel. The following section describes how to configure the Smart Panel.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 29 of 61

3.5 Configuring the Smart Panel

The Smart Panel is a detail control that is used to view or edit list pages and task pages. You can use this
control to edit a list, for example, orders and order lines. There is no inline functionality to edit a list. This
is a flexible way to edit the selected items and to edit multiple entities at the same time.

This chapter describes how to:

 Enable the smart panel in your application

 Configure the actions panel

 Add a custom action

3.5.1 Enabling the Smart Panel in your Application

Showpopup

You can use the ShowPopup method in the Order Manager API to manipulate the smart panel.

The ShowPopup method has the following signature:

public static bool ShowPopup(

 this ScriptManager scriptManager,

 string url,

 object parameters,

 PopupType type,

 out string result)

Parameters:

 url — the URL of the page that you want to open as the popup content.

 parameters — the custom parameters that you want to pass to the popup page.

 type — the type of the popup content.

If the popup is not opened yet, it returns false. If the popup is closed, it returns true. The popup result

must be processed if it returns true

There are also a few overloads for this method with fewer parameters.

The Showpopup method is available as an extension method in the System.Web.UI.ScriptManager

class. To use it, add the Sitecore.Marketing.Client.Web.UI.Controls namespace to your code

file.

var scriptManager = ScriptManager.GetCurrent(this.Page);

string result = null;

if (scriptManager.ShowPopup("/order manager/edit order",

new { OrderId = "1V203E", DetailedView = true},

PopupType.Smart, out result))

 {

 // the dialog was closed

 // do something with result here

 }

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 30 of 61

3.5.2 Configuring the Actions Panels

To configure the General or Order Details global actions in the Action panel:

3. In the Sitecore.Ecommerce.Apps.Web.UI.WebControls.Actions package, create a

handler.

4. Navigate to the Action Panels folder /sitecore/system/Modules/SPEAK/Order
Manager/Repositories/Action Panels/Global actions

5. Insert the new action in the folder that corresponds to the action place.

The following table describes the different folders in the Action Panels folder.

Folder Description

Global actions/General Contains the general actions that are displayed in the
Action Panel of the List Page.

Global actions/Order Details Contains the order details actions that are displayed
in the action panel of the List Page.

Order Details Actions/General Contains the general actions that are displayed in the
action panel of the Task Page.

Order Lines Actions/Order Line
Functions

Contains the order line functions actions that are
displayed in the action panel of the Order Lines
accordion group.

OrderLine Info Actions/Order Line
Functions.

Contains the order line functions actions that are
displayed in the action panel of Order Line Details.

3.5.3 Adding a Custom Action

You can create a custom action in the Order Manager. The following code snippet is a Print Custom
Action example:

namespace Sitecore.Ecommerce.Apps.Web.UI.WebControls.Actions

{

 using Speak.Extensions;

 using Diagnostics;

 using Ecommerce.OrderManagement.Orders;

 using Logging;

 using Sitecore.Web.UI.WebControls;

 /// <summary>

 /// Defines the print action class.

 /// </summary>

 public class PrintAction : ScriptManagedAction

 {

 /// <summary>

 /// Executes the specified order.

 /// </summary>

 /// <param name="order">The order.</param>

 protected override void Execute([NotNull] Order order)

 {

 Assert.ArgumentNotNull(order, "order");

 this.OrderId = order.OrderId;

 string url = string.Format("{0}ordermanager/printorder?orderid={1}&sc_lang={2}",

 Extensions.GetVirtualFolder(), this.OrderId, Sitecore.Context.Language.Name);

 string script =

 string.Format("window.open('{0}','PrintMe','resizable=yes,scrollbars=yes,

 location=no');", url);

 this.ScriptManager.RegisterStartupScript(script);

 }

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 31 of 61

 /// <summary>

 /// Performs the post steps.

 /// </summary>

 protected override void PerformPostSteps()

 {

 LogEntry logEntry = new LogEntry

 {

 Details = new LogEntryDetails(Constants.OrderPrinted),

 Action = Constants.PrintOrderAction,

 EntityID = this.OrderId,

 EntityType = Constants.OrderEntityType,

 LevelCode = Constants.UserLevel,

 Result = Constants.ApprovedResult

 };

 this.Logger.Write(logEntry);

 }

 }

}

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 32 of 61

Chapter 4

Configuring the Order Report in Stimulsoft

The Stimulsoft reporting tool is used by the Order Manager to render the order
confirmation and print the order.

This chapter is not a complete reference for how to configure the Stimulsoft reports, it just
contains the customizations you may need for the Order Manager.

To configure the order reports that are defined in Stimulsoft, you can:

 Customize the order details report.

 Set up the data source.

 Create a variable and change its localization.

For information about how to configure the reports, see the Report Designer Cookbook.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 33 of 61

4.1 Customizing the Order Details Report

To modify in the order details report:

1. In the folder /sitecore modules/shell/Ecommerce/Reports, create an Order Details

.mrt file

Note
We recommend cloning the Order Details file to preserve all of the properties in the report as we do in our

Examples packages which contains the OrderDetailsExtended report: /sitecore

modules/shell/Ecommerce/ReportsExtended/OrderDetailsExtended.mrt.

2. To set the path of the new report file, open the new file that you created with the Stimulsoft
Report Designer, apply your changes and then add the following elements to the

/App_Config/Unity.config file:

<alias alias="StiReportFactory"

type="Sitecore.Ecommerce.Report.StiReportFactory, Sitecore.Ecommerce.Kernel" />

…

<register type="StiReportFactory">

 <property name="ReportFile" value="/sitecore

 modules/shell/Ecommerce/ReportsExtended/OrderDetailsExtended.mrt" />

</register>

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 34 of 61

4.2 Setting up the Data Source

By default, the data is read from the OrderReportModel class. This class contains a predefined set of

properties that represent variables.

To set up additional data variables for the Stimulsoft report:

1. Create a class, call it OrderReportModelExtended that inherits the OrderReportModel

class — see the Sitecore.Ecommerce.Custom assembly in the Examples package:

In the following example, we extend the order report model with the information about the freight
forwarder party.

public class OrderReportModelExtended : OrderReportModel

{

 // Getting the account ID of the default freight forwarder party.

 public virtual string FreightForwarderPartyIdentification

 {

 get

 {

 if ((this.Order != null) && (this.Order.DefaultFreightForwarderParty !=

 null))

 {

 return this.Order.DefaultFreightForwarderParty.PartyIdentification;

 }

 return string.Empty;

 }

 }

}

2. Add the following aliases to register the OrderReportModelExtended class in the

/App_Config/Unity.config file:

<!—the default model-->

<alias alias="OrderReportModel" type="Sitecore.Ecommerce.Report.OrderReportModel,

Sitecore.Ecommerce.Kernel" />

<!—the new extended model ->

<alias alias="OrderReportModelExtended"

type="Sitecore.Ecommerce.Custom.Reports.OrderReportModelExtended,

Sitecore.Ecommerce.Custom" />

…

<!—Redirecting the mapping from default model to the extended model ->

<register type="OrderReportModel" mapTo="OrderReportModelExtended" />

<?xml version="1.0" encoding="utf-8"?>

3. Open the OrderReportModel.mrt file in Visual Studio and then add the

FreightForwarderPartyIdentification data source variable:

<DataSources isList="true" count="10">

 <Order isKey="true" Ref="2"

 type="Stimulsoft.Report.Dictionary.StiBusinessObjectSource">

 <Name>Order</Name>

 <Dictionary isRef="1"/>

 <Alias>Order</Alias>

 <Parameters isList="true" count="0"/>

 <NameInSource>Order</NameInSource>

 <Columns isList="true" count="60">

 ...

 <value>FreightForwarderPartyIdentification, System.String</value>

 </Columns>

 </Order>

</DataSources>

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 35 of 61

4.3 Creating a Variable

To start customizing the Stimulsoft report by inserting a variable, you should download and install the
Stimulsoft Report Designer from the Stimulsoft website.

For more information about the Stimulsoft Report Designer, see the Report Designer Cookbook.

To customize a variable:

1. In the Content Editor, navigate to the Dictionary item:
/sitecore/system/Dictionary

2. Right click Dictionary, click Insert and then select Dictionary entry.

3. Call the new entry Party Identification.

4. In the Stimulsoft Report Designer, open the OrderDetailsExtended.mrt report with

Stimulsoft Report Designer.

5. Create a variable in the report, call it TEXT_PartyIdentificatin and in the Value field enter the
name of the item that you have created — Party Indentification.

The following images show the dictionary and the properties of the new variable:

http://www.stimulsoft.com/

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 36 of 61

In the code view, the following snippet is the variable representation:

<Variables isList="true" count="33">

 ...

<value>,TEXT_PartyIdentification,TEXT_PartyIdentification,System.String,Party_x0

020_identification,False,False</value>

</Variables>

The value of the constant in the OrderDetailsExtended.mrt file —

Party_x0020_identification should be exactly the same as the key in the Sitecore

dictionary — Party identification — where _x0020_ is the code of the space.

6. In the designer view, extend the markup of the OrderDetailsExtended.mrt file with the

information about freight forwarder party, as shown in the following image:

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 37 of 61

The following image shows the designer view of the text field definition with the
TEXT_PartyIdentification variable:

The following snippet is the code view of the text field definition with the TEXT_PartyIdentification
variable:

<Text>

 {Order.DeliveryPartyName}

 {Order.DeliveryPartyStreetName}

 {Order.DeliveryPartyCityName}{IIF(Length(Order.DeliveryPartyPostalZone)>0,",

 ","")}{Order.DeliveryPartyPostalZone}

 {Order.DeliveryPartyCountry}

 {Order.DeliveryPartyTelephone}

 {Order.DeliveryPartyMail}

 {IIF(Length(Order.DeliveryPartyNote)>0,TEXT_Note+":

 ","")}{Order.DeliveryPartyNote}

 {IIF(Length(Order.FreightForwarderPartyIdentification)>0,

 TEXT_PartyIdentification+": ","")}{Order.FreightForwarderPartyIdentification}

</Text>

You can create variables and fields that do not start with Text_.

4.3.1 Changing the Localization of the Variable

You can created a Stimulsoft report in different languages. By default, the customer receives the order
confirmation in the same language that they created the order in. In the Order Detaila page, you can use
the language value to change the language of the Buyer Customer Party. Sitecore OM currently supports
English, Danish, German, and Japanese.

The StiReportTranslator class looks up the entry in the Sitecore dictionary and maps it to the

corresponding variable in the order report.

To change the localization logic, create a custom version of the StiReportTranslator class and

register it in the /App_Config/Unity.config. For more information about creating a custom version

of a class, see the section Setting up the Data Source.

The StiReportTranslator class uses the Sitecore default localization method:
Sitecore.Globalization.Translate.TextByLanguage(key, language)

The following snippet shows how the Translate method is implemented in the

StiReportTranslator:

public virtual void Translate([NotNull] StiReport report, string languageCode)

 {

 Assert.ArgumentNotNull(report, "report");

 foreach (StiVariable variable in report.Dictionary.Variables)

 {

 if (this.MustBeTranslated(variable.Name))

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 38 of 61

 {

 variable.Value = this.TranslatePhraseByLanguage(variable.Value,

 languageCode);

 }

 }

 }

protected virtual bool MustBeTranslated([NotNull] string key)

 {

 Assert.ArgumentNotNull(key, "key");

 return key.StartsWith("TEXT_");

 }

protected virtual string TranslatePhraseByLanguage([NotNull] string phrase, [NotNull]

string languageCode)

 {

 Assert.ArgumentNotNull(phrase, "phrase");

 Assert.ArgumentNotNull(languageCode, "languageCode");

 return Globalization.Translate.TextByLanguage(phrase,

 Language.Parse(languageCode));

 }

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 39 of 61

Chapter 5

Using the Order Manager API

The API of the Oder Manager application consists of three modules: Core Order
Manager, Visitor Order Manager and Merchant Order Manager.

This chapter describes how to use the API of each these modules while processing the
order.

This chapter contains the following sections:

 Using the Core Order Manager API

 Using the Visitor Order Manager API

 Using the Merchant Order Manager API

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 40 of 61

5.1 Using the Core Order Manager API

The Core Order Manager API (COM):

 Is a data manipulation layer.

 Is the first layer of abstraction above the actual data storage providers like the Entity Framework
or simple Sitecore content items.

 Allows developers to work directly with the entire domain model

 Does not contain any business logic.

 Supports logging of order processing transactions and changing the order properties.

The following sections describe the most important classes in the COM API and how to use the API to
import and export orders.

5.1.1 The COM API Reference

The main classes in the COM API are:

Sitecore.Ecommerce.Data.Repository<Order>

This class acts as a layer of abstraction above the actual data storage and allows you to interact with the

Sitecore back-end. It checks security, sets the language, intercepts Create, Read, Update, Delete

(CRUD) operations on orders and uses OnOrderSaving and OnOrderSaved events to performs some

additional operations.

The OnOrderSaving and OnOrderSaved events are used to perform some additional actions during

and after order saving. You can use the logger class to add the logging logic to these events.

Sitecore.Ecommerce.Logging.Logger

Almost all of the methods are intentionally marked as protected internal. This means that you can

only work with them after you create a new implementation that is inherited from the

Repository<Order> and make a new custom public API.

Developers should use MOM and VOM because they contain the security and business logic. They
should not use COM because it has unrestricted access to the historical transaction data.

The Logger class has the following methods:

 GetEntries():IQueryable<LogEntry> —lists all the orders that the current user has

access to.

 Write(LogEntry):void — writes information to the log immediately.

 Log(LogEntry):void — writes information to the in-memory buffer.

 Flush():void — moves the data from the buffer to the location where you store your data.

The last two methods support the transaction logic that manipulates an order.

When a visitor to the webshop updates some fields and creates a new order line in a session, this is
regarded as a single unit of work and must be logged with the same transaction ID or completely rejected.

Sitecore.Ecommerce.OrderManagement.OrderProcessingStrategy

When an order is being processed, this layer performs robust logging of the operations during the orders
processing.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 41 of 61

By default, no logging occurs. SES developers should use the COM API to handle the log on their own.

The COM API has unrestricted access to the transaction data. You should be careful while using COM
API because you can destroy existing orders. You should preferably use a more high-level API such as
the VOM or MOM APIs.

5.1.2 Using the Core API to Import and Export Orders

One example of how to use the Core API is to extend the OrdersPresenter class in the MVP web

store to support the import and export of orders. In this example, you should not use the VOM and MOM
APIs, because the front-end validation and security checks that they perform degrades performance.

To extend the OrdersPresenter class:

1. Create the public class SampleOrderManager that wraps the protected internal methods of the

Repository<Order> class.

These methods are internal and protected to force developers to use the VOM and MOM API:

public class SampleOrderManager : Repository<Order>

{

 public SampleOrderManager(CoreOrderStateConfiguration orderStateConfiguration,

 Repository<Order> repository)

 {

 this.StateConfiguration = orderStateConfiguration;

 this.Repository = repository;

 }

 public virtual IQueryable<Order> GetAllOrders(Expression<Func<Order, bool>>

 expression)

 {

 return this.GetOrders(expression);

 }

 public virtual void SaveSingleOrder(Order order)

 {

 this.SaveOrder(order);

 }

}

2. Register the SampleOrderManager class in the MvpWebStore.Unity.config file.

3. Override the constructor of the OrdersPresenter class in the MVPWebStore so that you can

receive the SampleOrderManager object as an additional parameter:

public OrdersPresenter(IOrdersView view, VisitorOrderRepositoryBase orderRepository,

SampleOrderManager orderManager): base(view)

{

}

For more information, see the MVPWebstore on the marketplace.

4. To export the orders, you must use the Core API to retrieve all the orders.

You can use the JSON.NET serializer to serialize them to the JSON format and write the data to
a file:

var orders = this.orderManager.GetAllOrders(o => true).ToArray();

this.View.Model.SerializedOrders = JsonConvert.SerializeObject(orders,

Formatting.None, this.settings);

using (var file = new FileStream(this.filePath, FileMode.Create, FileAccess.Write))

{

 using (var stream = new StreamWriter(file))

 {

 stream.Write(this.View.Model.SerializedOrders);

 }

}

this.HttpContext.Response.Clear();

http://marketplace.sitecore.net/en/Modules/Sitecore_E-Commerce_Services_MvpWebStore.aspx

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 42 of 61

this.HttpContext.Response.ContentType = "application/json";

this.HttpContext.Response.AddHeader("content-disposition", "attachment;

filename=\"" + FileName + "\"");

this.HttpContext.Response.WriteFile(this.filePath);

this.HttpContext.Response.Flush();

this.HttpContext.Response.End();

5. To import the orders , you should:

o upload the file to the server,

o read its content,

o deserialize the text from the JSON format to the collection of OIOUBL orders

o save it in the database:

var orders =

JsonConvert.DeserializeObject<IEnumerable<Order>>(this.View.Model.SerializedOrders,

this.settings).AsQueryable();

foreach (var order in orders)

{

 this.orderManager.SaveSingleOrder(order);

}

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 43 of 61

5.2 Using the Visitor Order Manager API

When you create a Webshop, you should use the Visitor Order Manager (VOM) API to create and view
orders. The VOM API gives you access to the entire domain model.

The main class in the VOM API is

Sitecore.Ecommerce.Visitor.OrderManagement.VisitorOrderRepository.

The VisitorOrderRepository class:

 Is the current default implementation of the

Sitecore.Ecommerce.OrderManagement.VisitorOrderRepositoryBase abstract

class.

 Implements the Sitecore.Ecommerce.Visitor.OrderManagement.IUserAware interface

that contains the definition of the CustomerId property.

This value identifies the customer that created the order. You can also use the implementation of

the Sitecore.Ecommerce.Users.CustomerManager<T> class to read the CustomerId

property in the current user account.

 Manages the visitor who created the orders.

Note
You can also use the VOM API in the Sitecore MVPWebStore application which is based on the
WebFormsMVP framework. For more information, see the MVPWebStore Developer's Guide on the
Sitecore Market Place.

The following sections describe how to use the VOM API to:

 Read all orders for a specific customer.

 Cancel an order.

 Create an order.

The last section describes the limitations of the VOM API.

5.2.1 Reading all Orders for a Specific Customer

The MVP Webstore application contains some examples that use the VOM API. To allow visitors to list
their orders on the MvpWebstore, you should use the

Sitecore.Ecommerce.MvpWebStore.Presenters.OrdersPresenter class. It presents the orders

page. It also handles the user interaction with this page.

To read all the orders that were created by a specific customer and display them in a page:

 The constructor of the OrdersPresenters class takes instances of

VisitorOrderRepositoryBase and IOrdersView as initializing parameters and binds the

Load handler to the Load event of the view:

private readonly VisitorOrderRepositoryBase orderRepository;

public OrdersPresenter(IOrdersView view, VisitorOrderRepositoryBase

orderRepository) : base(view)

{

 this.View.Load += this.Load;

 this.orderRepository = orderRepository;

}

 When the user goes to the ~/orders?user=100500 page, the page parses the string value of

the user parameter.

http://webformsmvp.com/

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 44 of 61

This is a sample. In a real implementation, you should not pass the ID in a query parameter
because this could compromise security.

 In the page Load method, you should:

o Cast the repository to the IUserAware interface and assign a value for the customer ID,

o Retrieve all the orders that belong to this customer in the order repository,

o Assign the Orders collection of the ViewModel to the retrieved orders.

private void Load(object sender, EventArgs e)

{

 var userId = this.HttpContext.Request.QueryString["user"];

 if (string.IsNullOrEmpty(userId))

 {

 return;

 }

 var aware = this.orderRepository as IUserAware;

 if (aware != null)

 {

 aware.CustomerId = userId;

 }

 var orders = this.orderRepository.GetAll(o => true).ToArray();

 this.View.Model.Orders = orders;

}

 The following image shows the result — it contains the order id, the shop context, and the link to
the order cancelation page.

5.2.2 Using the Visitor API to Cancel an Order

In this example, we explain how to use the Visitor API to cancel an order if it is not already processed by
the business logic of the webshop.

To cancel the order, you can use the

Sitecore.Ecommerce.MvpWebStore.Presenters.CancelOrderPresenter class.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 45 of 61

To use the visitor API to cancel an order:

 The constructor of the CancelOrderPresenter class takes instances of the

VisitorOrderRepositoryBase, ICancelOrderView and VisitorOrderProcessorBase

classes as initializing parameters and binds the Load handler to the Load event of the view:

private readonly VisitorOrderProcessorBase orderProcessor;

private readonly VisitorOrderRepositoryBase orderRepository;

public CancelOrderPresenter(ICancelOrderView view, VisitorOrderRepositoryBase

orderRepository, VisitorOrderProcessorBase orderProcessor) : base(view)

{

 this.View.Load += this.Load;

 this.orderRepository = orderRepository;

 this.orderProcessor = orderProcessor;

}

Note
In this example, we have created a simple page that accepts the IDs of the user and the order in the URL.
In a real implementation, you should not pass the ID in a query parameter because this could
compromise security.

 When the user goes to the ~/orders/cancelorder?id=zzz&user=100500 page, the page

parses the value of the query string — the user and id parameters. If the order ID is not

provided, the presenter stops to work. If the order ID is provided, it casts the repository to the

IUserAware interface and sets the customer ID. The repository uses the order ID to retrieve the

full order and then tries to use the VisitorOrderProcessorBase instance to cancel the order.

At the end of the process, the presenter sets the label value of the result message:

private void Load(object sender, EventArgs e)

{

 try

 {

 var id = this.HttpContext.Request.QueryString["id"];

 if (string.IsNullOrEmpty(id))

 {

 this.View.Model.Result = Texts.TheOrderIdIsNotSpecified;

 return;

 }

 var userId = this.HttpContext.Request.QueryString["user"];

 var aware = this.orderRepository as IUserAware;

 if (aware != null)

 {

 aware.CustomerId = userId;

 }

 var order = this.orderRepository.GetAll(o => o.OrderId ==

 id).FirstOrDefault();

 this.orderProcessor.CancelOrder(order);

 this.View.Model.Result =

 string.Format(Texts.TheOrderHasBeenCancelledSuccessfully, id);

 }

 catch (Exception exception)

 {

 this.View.Model.Result = exception.Message;

 }

}

 In SES 2.0.0 and later, we store the state and sub-states as items in the content tree. However,
to keep the MvpWebStore solution simple, we have not included them in the package.

 For simplicity, we use a custom implementation of the VisitorOrderSecurity and

ProcessingStrategy classes that do not read the information from the content tree to check

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 46 of 61

whether or not the transition between the states is valid. They only read the Order.State.Code

value to check that the order is not cancelled or closed.

o VisitorOrderSecurity applies security restrictions to the order and stops processing if

the security restrictions are not satisfied.

o ProcessingStrategy changes the order state and performs other operations.

The implementations of these classes are registered in the

~/App_Config/MvpWebStore.Unity.config file:

<unity xmlns="http://schemas.microsoft.com/practices/2010/unity">

 <alias alias="VisitorOrderSecurity"

 type="Sitecore.Ecommerce.Visitor.OrderManagement.VisitorOrderSecurity,

 Sitecore.Ecommerce.Visitor" />

 <alias alias="SampleOrderSecurity"

 type="Sitecore.Ecommerce.MvpWebStore.Domain.SampleOrderSecurity,

 Sitecore.Ecommerce.MvpWebStore" />

 <alias alias="ProcessingStrategy"

 type="Sitecore.Ecommerce.OrderManagement.ProcessingStrategy,

 Sitecore.Ecommerce.Core" />

 <alias alias="SampleOrderCancelationStrategy"

 type="Sitecore.Ecommerce.MvpWebStore.Domain.SampleOrderCancelationStrategy,

 Sitecore.Ecommerce.MvpWebStore" />

 <container>

 <register type="VisitorOrderSecurity" mapTo="SampleOrderSecurity" />

 <register type="ProcessingStrategy" mapTo="SampleOrderCancelationStrategy" />

 </container>

</unity>

 The following snippet implements the SampleOrderSecurity class to check if the order is in

one of the following states:

o New

o Open

o InProcess

If it returns true, you should allow the order to be cancelled. Otherwise, you should deny the
cancelation.

// <summary>

// The overrided version of the VisitorOrderSecurity class.

// The 'CanCancel(Order):bool' method is simplified.

// It doesn't perform any sophisticated check like a default one and

// doesn't collaborate in any way with back-end.

// The decision whether to allow to cancel an order is taken when the State is not

// null

// and State.Code is within

// the following set: 'New', 'Open', 'InProcess'

// In opposite situation the cancellation is denied.

// The such is registered in the ~/App_Config/MvpWebStore.Unity.config.

// </summary>

public class SampleOrderSecurity : VisitorOrderSecurity

{

 // <summary>

 // Determines whether this instance can cancel the specified order.

 // </summary>

 // <param name="order">The order</param>

 // <returns>

 // <c>true</c> if this instance can cancel the specified order; otherwise,

 // <c>false</c>.

 // </returns>

 public override bool CanCancel(Order order)

 {

 if (order.State != null)

 {

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 47 of 61

 if ((order.State.Code == OrderStateCode.New) || (order.State.Code ==

 OrderStateCode.Open) || (order.State.Code == OrderStateCode.InProcess))

 {

 return true;

 }

 }

 return false;

 }

}

 You can then build the SampleOrderCancellationStrategy class:

// <summary>

// The simple implementation of the ProcessingStrategy abstract class.

// It sets the State.Code of the provided order to the "Cancelled" value

// without any collaboration with back-end.

// </summary>

public class SampleOrderCancelationStrategy : ProcessingStrategy

{

 // <summary>

 // Gets or sets StateManager.

 // </summary>

 public virtual CoreOrderStateConfiguration StateManager { get; set; }

 // <summary>

 // Processes the order.

 // </summary>

 // <param name="order">The order.</param>

 public override void Process([NotNull] Order order)

 {

 Assert.ArgumentNotNull(order, "order");

 order.State.Code = OrderStateCode.Cancelled;

 }

}

 If the order is successfully cancelled, you should see the following message:

5.2.3 Using the Visitor API to Create an Order

To create an order, you must use the

Sitecore.Ecommerce.MvpWebStore.Presenters.ProductDetailsPresenter class.

In SES 2.0.0 and later, we created an advanced checkout process. However, in MVPWebStore, you can
use a single page with a Buy button. MVPWebStore contains instances of the

VisitorOrderRepositoryBase, IProductRepository, IProductStockManager,

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 48 of 61

IProductPriceManager and VisitorOrderProcessorBase classes as the required dependencies

and binds the Load event handler and the Buy event handler of the view.

public ProductDetailsPresenter(IProductDetailsView view, IProductRepository

productRepository, IProductStockManager stockManager, IProductPriceManager

priceManager, VisitorOrderRepositoryBase orderRepository) : base(view)

{

 this.productRepository = productRepository;

 this.stockManager = stockManager;

 this.priceManager = priceManager;

 this.orderRepository = orderRepository;

 this.View.Load += this.Load;

 this.View.Buy += this.Buy;

}

When it is loaded, the view is initialized with the name, description, price, stock value of the product and
renders the Buy button:

If the stock value of the product is positive, the product is in stock and the order is created when you click
the Buy button:

private void Buy(object sender, EventArgs e)

{

 ProductStockInfo productStockInfo = new ProductStockInfo { ProductCode =

 this.View.Model.Product.Code };

 ProductStock productStock = this.stockManager.GetStock(productStockInfo);

 // checking if the product is in stock

 if (productStock.Stock <= 0)

 {

 return;

 }

 // As a simple example, the value of the product stock is decremented

 this.stockManager.Update(productStockInfo, productStock.Stock - 1);

 // Initializing the order

 Order order = new Order { State = new State { Code = "New", Name = "New" },

 // Setting the shop context value of the order to mvpwebstore.

 ShopContext = "mvpwebstore",

 OrderId = Guid.NewGuid().ToString(),

 PricingCurrencyCode = "USD" };

 OrderLine orderLine = new OrderLine

 {

 Order = order,

 LineItem = new LineItem

 {

 Item = new Item { Code = this.View.Model.Product.Code },

 Price = new Price(new Amount(this.View.Model.Price, "USD")),

 Quantity = 1,

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 49 of 61

 TotalTaxAmount = new Amount(),

 }

 };

 order.OrderLines.Add(orderLine);

 // Setting the Supplier account ID to the predefined value "100500"

 order.BuyerCustomerParty = new CustomerParty { SupplierAssignedAccountID =

 Texts.MvpWebStoreCustomerId };

 // The order is sent to the visitor order repository that saves it in the

 // database.

 this.orderRepository.Create(order);

 this.HttpContext.Response.Redirect(this.HttpContext.Request.RawUrl);

}

5.2.4 The Limitations of the Visitor API

The VOM API only allows customers to perform some high-level business operations with orders such as
Create, Read and Cancel. The main aim is to give web shop visitors limited access to the orders stored in
the database.

The most common operations are to:

 Read the existing orders that were created by the current customer.

 Create an order at the end of the checkout process.

 Cancel an order before completing the purchase if necessary.

The VOM API is an additional layer of abstraction on top of the Core Order Manager API. COM supports
all CRUD operations, but VOM only supports Create, Read, and Cancel.

The VOM API is defined by the following class and interface definitions:

public abstract class VisitorOrderProcessorBase

{

 public abstract void CancelOrder(Order order);

}

public abstract class VisitorOrderRepositoryBase

{

 public abstract void Create(Order order);

 public abstract IQueryable<Order> GetAll(Expression<Func<Order, bool>> expression);

}

The VisitorOrderProcessor class:

 Is the default implementation of the VisitorOrderProcessorBase abstract class.

 Implements the VisitorOrderSecurity class to check whether or not the order is in the

appropriate state to be cancelled.

 Implements the VisitorOrderCancelationStrategy class to cancel the order.

The VisitorOrderRepository.Create() and VisitorOrderProcessor.CancelOrder()

methods are marked with the custom LogThis attribute to make the IoC container intercept their work

and log the creation and cancellation of the order in the ActionLog database.

[LogThis(Constants.CreateOrderAction, Constants.UserLevel)]

public override void Create(Order order)

{

}

[LogThis("Cancel order", Constants.UserLevel)]

public override void CancelOrder(Order order)

{

}

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 50 of 61

The LogThis attribute uses the Sitecore.Ecommerce.Logging.LoggingHandler and

Sitecore.Ecommerce.Core classes. This class contains a reference to the Logger and calls it with the

provided parameters. You can use the unity.config file to configure the interception:

<register type="VisitorOrderManager" mapTo="DefaultVisitorOrderManager">

 <lifetime type="hierarchical" />

 <interceptor type="VirtualMethodInterceptor" />

 <policyInjection />

</register>

<register type="VisitorOrderProcessorBase" mapTo="VisitorOrderProcessor">

 <lifetime type="hierarchical" />

 <interceptor type="VirtualMethodInterceptor" />

 <policyInjection />

</register>

Note
If you use the default implementation, you should not worry about logging.

You cannot use the Visitor API to remove an order. The only change that you can make with VOM is to

change the Order.State to Cancelled. You must use the

VisitorOrderProcessor.CancelOrder method to cancel the order.

You must use the CancelOrder method to:

 Statically provide a list of orders on the page or use the XmlHttpRequest XHR object and send

the list in JSON format from the server to the client.

XHR is a JavaScript object that is used to send asynchronous requests from the client code to the

server.

 Create the custom checkout process. In the last stage, you should use the accumulated
information to create the order.

 Cancel an existing order. For example, on the history page.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 51 of 61

5.3 Using the Merchant Order Manager API

The Merchant Order Manager (MOM) API contains the business logic that is used by the OM web
application to manage the orders.

For example, you can use the MOM API is used to:

 Create a new order.

 Validate an order.

 Update the order state.

5.3.1 Using the MOM API to Create an Order

You can use the MOM API to configure the UI of your OM application:

 Create a custom action class that contains the business logic.

 Create an action panel that is bundled with this class.

Creating a Custom Action Class

To implement the business logic for creating an order, you must create a custom action class:

1. Create a class that is based on the Sitecore.Web.UI.WebControls.Actions class and call

it CreateOrderAction.

namespace Sitecore.Ecommerce.Apps.OrderManagement.Views

{

 using Sitecore.Web.UI.WebControls;

 /// <summary>

 /// The create order action.

 /// </summary>

 public class CreateOrderAction : Action

 {

 /// <summary>

 /// Executes the specified context.

 /// </summary>

 /// <param name="context">The context.</param>

 public override void Execute([CanBeNull] ActionContext context)

 {

 // To create an order using the MOM API, insert custom logic here

 }

 /// <summary>

 /// Queries the state.

 /// </summary>

 /// <param name="context">The context.</param>

 /// <returns>

 /// The state.

 /// </returns>

 public override ElementState QueryState([NotNull] ActionContext context)

 {

 return ElementState.Enabled;

 }

 }

}

2. To hide the action panel from users who are not members of the Order Processor role, override

the QueryState method to return the hidden state.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 52 of 61

3. Use the following steps to override the Execute method with your custom logic:

o Use the DefaultOrderFactory class to create an order and set the order State to Open.

o Use the OrderManager.save method to save the order.

o Redirect to the order details page with the Order ID of the new order in the query string.

//Create an order using DefaultOrderFactory.

var order = this.orderFactory.Create();

//Change order state from New to Open.

order.State = new State { Code = OrderStateCode.Open };

//Save order with MerchantOrderManager.

this.orderManager.Save(order);

//Redirect to order details page.

this.view.RedirectToOrderDetails(order.OrderId);

Create an Action Panel

The previous section describes how to create the custom action class that contains the business logic.
The following a procedure describes how to create an action panel that calls the custom action class:

1. In the Action Panels folder, create an item and call it Order Manager Actions
sitecore\content\system\Modules\SPEAK\Order Manager\Repositories\Action

Panels

2. In the Order Manager Actions folder, add the create order action that you just created and enter
values in the Title, linkicon, and Click fields. In the Click field, enter the Create Order Action class
name, for example

Sitecore.Ecommerce.Apps.OrderManagement.Views.CreateOrderAction,

Sitecore.Ecommerce.Apps.

3. Navigate to the Order Manager root item

sitecore\content\system\Modules\SPEAK\Order Manager.

4. In the Content Editor, click the Presentation group and then in the Layout group, click Details
and the Layout Details opens.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 53 of 61

5. In the Layout Details dialog box, select the placeholder called top and in the Data Source field,
enter the path to the Order Manager Actions item that you just created.

You must assign the custom action class to the Create Order action item.

5.3.2 Using the MOM API to validate Orders

SES contains a validation mechanism to avoid malicious behaviors, such as trying to create invalid
orders. For example, a user may unexpectedly order excessive quantities of items or place orders in an
unlikely fast pace, suggesting a denial of service attack (DOS). Manual checking of orders is time
consuming and cumbersome.

The orderCreated pipeline is the right place to insert business logic for automatic order validation.

This pipeline performs additional operations as part of the order creation process.

These additional operations are used to:

 Send order confirmation by mail to the customer. To confirm the order, the NotifyCustomer

processor sends a notification email to the user. This processor is not be explained in this topic.

 Perform initial order validation or fraud checks

By default, the CheckProductQuantity processor checks if the product quantity of any order

line is greater than the declared maximum quantity. If yes, the order state is set to Suspicious
with sub-state Product Quantity indicating the reason, see the section Setting the Order State to
Suspicious.

SES uses the following validation mechanism:

1. After the order is created, the orderCreated pipeline starts. Prepare the order for manual

inspection and fulfilment by the order manager.

2. According to the business logic of each pipeline processor, the order is validated. If the order is
found suspicious, then it is the responsibility of the individual processor to mark the order as
suspicious in the pipeline arguments and set the sub-states accordingly to indicate the nature of
the suspicion, see the section Setting the Order State to Suspicious.

3. If there are no validation issues encountered by the previous processors, the order state is set to

Open by the TryOpenOrder processor which is typically the last processor. If a suspicious

activity has been encountered, the pipeline arguments take the suspicious order state and sub-
state information and the order state is set to Suspicious and the sub-states are set accordingly.

Note
The validation processors must not abort the pipeline as the order state is not set until the last processor

TryOpenOrder is executed. Further processors might also find more evidence of suspicious behavior

and set further sub-states accordingly.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 54 of 61

Setting the Order State to Suspicious

SES 2.2 introduces the Suspicious state. By default, it only contains the Product Quantity sub-state, but
you should extend the list of sub-states when you add further validation checks. In the Suspicious state,
each sub-state represents the reason for setting the order state to Suspicious.

The predecessor of the Suspicious state is the New state, and the allowed successors are Open, In
Process and Cancelled. See the SES Configuration Guide, the section Configuring Sates.

To specify the reason that the order is in the Suspicious state, the substate combinations are configured
so that at least one Suspicious sub-state must be set in code or selected in the OM application

Note
Processing a suspicious orders is restricted. Everyone who has access to the Order Manager application
can see the suspicious order details, but editing is not allowed. Members of the Order Manager
Administrators and the Order Manager Processing roles can change the order state to Open, In Process
or Cancelled, but cannot change it while it is in the Suspicious state. An order that is considered valid by
the Order Manager, must be changed to the state Open or InProcess and then it can be edited and
processed.

The following are examples of a suspicious order that is examined in details in the following sections:

 Same Visitor within a Predefined Time Interval

 Quantity of the Order is Greater than a Certain Predefined Value

Same Visitor within a Predefined Time Interval

You can create a custom order validation processor which sets the order to suspicious if it is created by
the same visitor within ten seconds.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 55 of 61

The following code snippet describes the CheckOrderProcessorBase class. This class is provided by

SES to help create validation processors that check the order:

namespace Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated

{

 using System.Collections.Generic;

 using System.Linq;

 using Sitecore.Diagnostics;

 using Sitecore.Ecommerce.Merchant.OrderManagement;

 using Sitecore.Ecommerce.OrderManagement;

 using Sitecore.Ecommerce.OrderManagement.Orders;

 using Sitecore.Pipelines;

 /// <summary>

 /// Defines the CheckOrderProcessor type.

 /// </summary>

 public abstract class CheckOrderProcessorBase

 {

 /// <summary>

 /// Initializes an instance of the <see cref="CheckOrderProcessorBase" />

 /// class.

 /// </summary>

 protected CheckOrderProcessorBase()

 {

 this.OrderManager = Context.Entity.Resolve<MerchantOrderManager>();

 }

 /// <summary>

 /// Gets the order manager.

 /// </summary>

 /// <value>The order manager.</value>

 [NotNull]

 public virtual MerchantOrderManager OrderManager { get; private set; }

 /// <summary>

 /// Gets the order.

 /// </summary>

 /// <param name="args">The args.</param>

 /// <returns>The order.</returns>

 [NotNull]

 protected virtual Order GetOrder([NotNull] PipelineArgs args)

 {

 var orderNumber = args.CustomData["orderNumber"] as string;

 Assert.IsNotNull(orderNumber, "OrderNumber cannot be null.");

 var order = this.OrderManager.GetOrder(orderNumber);

 Assert.IsNotNull(order, "Order cannot be null.");

 return order;

 }

 /// <summary>

 /// Gets the suspicious sub states.

 /// </summary>

 /// <param name="args">The args.</param>

 /// <returns>The list of suspicious sub-states.</returns>

 [NotNull]

 protected IEnumerable<string> GetSuspiciousSubStates(PipelineArgs args)

 {

 return args.CustomData[OrderStateCode.Suspicious] as HashSet<string> ?? new

 HashSet<string>();

 }

 /// <summary>

 /// Marks the order as suspicious.

 /// </summary>

 /// <param name="args">The args.</param>

 /// <param name="suspiciousSubstateCode">The suspicious sub-state code.</param>

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 56 of 61

 protected virtual void MarkOrderAsSuspicious(PipelineArgs args, string

 suspiciousSubstateCode)

 {

 HashSet<string> hashSet = args.CustomData[OrderStateCode.Suspicious] as

 HashSet<string>;

 if (hashSet == null)

 {

 hashSet = new HashSet<string>();

 args.CustomData[OrderStateCode.Suspicious] = hashSet;

 }

 hashSet.Add(suspiciousSubstateCode);

 }

 /// <summary>

 /// Determines whether the specified args is suspicious.

 /// </summary>

 /// <param name="args">The args.</param>

 /// <returns>

 /// <c>true</c> if the specified args is suspicious; otherwise, <c>false</c>.

 /// </returns>

 protected virtual bool IsSuspicious(PipelineArgs args)

 {

 HashSet<string> hashSet = args.CustomData[OrderStateCode.Suspicious] as

 HashSet<string>;

 return hashSet != null && hashSet.Any();

 }

 }

}

To implement an order validation processor that sets the order to suspicious:

1. Create a class that inherits from the CheckOrderProcessorBase class and implement the

Process method:

namespace Ses.Samples.Merchant.Pipelines.OrderCreated

{

 using System;

 using System.Linq;

 using Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated;

 using Sitecore.Pipelines;

 // Create a CheckOrderFrequency processor to validate if order created with a proper

 // frequency.

 public class CheckOrderFrequency : CheckOrderProcessorBase

 {

 public TimeSpan Frequency { get; set; }

 public void Process(PipelineArgs args)

 {

 // Read the created order using order number stored in pipeline args.

 var order = this.GetOrder(args);

 // Read the customer ID from the new order.

 var customer = order.BuyerCustomerParty.SupplierAssignedAccountID;

 // Read the allowed order creating frequency which is set in pipeline processor

 // property and determine maximum allowed date.

 var recentAllowedOrderDate = DateTime.Now - this.Frequency;

 // Check if the customer has already placed an order recently and

 // determine if the order is suspicious or not.

 Var frequentOrders = this.OrderManager.GetOrders().Where(o =>

 o.BuyerCustomerParty.SupplierAssignedAccountID == customer &&

 o.OrderId != order.OrderId &&

 o.IssueDate >= recentAllowedOrderDate);

 // Mark the order as suspicious if there are some orders found.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 57 of 61

 if (frequentOrders.Any())

 {

 this.MarkOrderAsSuspicious(args, "Order Frequency");

 }

 }

 }

}

2. In the Sitecore.Ecommerce.config file, in the orderCreated section, create a pipeline

processor entry as part of the OrderCreated pipeline before the TryOpenOrder processor:

<orderCreated>

 ...

 <processor

 type="Ses.Samples.Merchant.Pipelines.OrderCreated.CheckOrderFrequency,

 Sitecore.Ecommerce.Tests.Integration">

 <Frequency>00:00:10</Frequency>

 </processor>

...

</orderCreated>

Quantity of the Order is Greater than a Certain Predefined Value

To implement an order validation pipeline that sets the order to suspicious if the order line quantity is
greater than a certain predefined value:

1. Create a class that inherits from the CheckOrderProcessorBase class and implement the

Process method:

namespace Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated

{

 using System.Linq;

 using Sitecore.Diagnostics;

 using Sitecore.Ecommerce.OrderManagement;

 using Sitecore.Pipelines;

 /// <summary>

 /// The product quantity validator.

 /// </summary>

 public class CheckProductQuantity : CheckOrderProcessorBase

 {

 /// <summary>

 /// Gets or sets the suspicious quantity.

 /// </summary>

 /// <value>

 /// The suspicious quantity.

 /// </value>

 public decimal MaximumQuantity { get; set; }

 /// <summary>

 /// Runs the processor.

 /// </summary>

 /// <param name="args">The arguments.</param>

 public virtual void Process([NotNull] PipelineArgs args)

 {

 Assert.ArgumentNotNull(args, "args");

 var order = this.GetOrder(args);

 foreach (var orderLine in order.OrderLines.Where(orderLine =>

 orderLine.LineItem.Quantity > this.MaximumQuantity))

 {

 this.MarkOrderAsSuspicious(args, OrderStateCode.SuspiciousProductQuantity);

 }

 }

 }

}

2. In the Sitecore.Ecommerce.config file, in the orderCreated section, create a pipeline

processor entry as part of the OrderCreated pipeline:

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 58 of 61

<orderCreated>

...

 <processor

 type="Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated.CheckProductQuantity,

 Sitecore.Ecommerce.Merchant">

 <MaximumQuantity>100</MaximumQuantity>

 </processor>

...

</orderCreated>

Setting the Order State to Open

If the order is not suspicious, the validation pipeline moves the order from the New state to the Open
state.

You can use the following steps to replace the default implementation of the TryOpenOrder class:

1. Create a class that inherits from the CheckOrderProcessorBase class that is mentioned in the

Using the MOM API to validate Orders

SES contains a validation mechanism to avoid malicious behaviors, such as trying to create invalid
orders. For example, a user may unexpectedly order excessive quantities of items or place orders in an
unlikely fast pace, suggesting a denial of service attack (DOS). Manual checking of orders is time
consuming and cumbersome.

The orderCreated pipeline is the right place to insert business logic for automatic order validation.

This pipeline performs additional operations as part of the order creation process.

These additional operations are used to:

 Send order confirmation by mail to the customer. To confirm the order, the NotifyCustomer

processor sends a notification email to the user. This processor is not be explained in this topic.

 Perform initial order validation or fraud checks

By default, the CheckProductQuantity processor checks if the product quantity of any order

line is greater than the declared maximum quantity. If yes, the order state is set to Suspicious
with sub-state Product Quantity indicating the reason, see the section Setting the Order State to
Suspicious.

SES uses the following validation mechanism:

2. After the order is created, the orderCreated pipeline starts. Prepare the order for manual

inspection and fulfilment by the order manager.

3. According to the business logic of each pipeline processor, the order is validated. If the order is
found suspicious, then it is the responsibility of the individual processor to mark the order as
suspicious in the pipeline arguments and set the sub-states accordingly to indicate the nature of
the suspicion, see the section Setting the Order State to Suspicious.

4. If there are no validation issues encountered by the previous processors, the order state is set to

Open by the TryOpenOrder processor which is typically the last processor. If a suspicious

activity has been encountered, the pipeline arguments take the suspicious order state and sub-
state information and the order state is set to Suspicious and the sub-states are set accordingly.

Note
The validation processors must not abort the pipeline as the order state is not set until the last processor

TryOpenOrder is executed. Further processors might also find more evidence of suspicious behavior

and set further sub-states accordingly.

5. Setting the Order State to Suspicious section:

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 59 of 61

namespace Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated

{

 using System.Linq;

 using Sitecore.Diagnostics;

 using Sitecore.Ecommerce.Merchant.OrderManagement;

 using Sitecore.Ecommerce.OrderManagement;

 using Sitecore.Pipelines;

 /// <summary>

 /// The order validator.

 /// </summary>

 public class TryOpenOrder : CheckOrderProcessorBase

 {

 /// <summary>

 /// Gets or sets the order manager.

 /// </summary>

 /// <value>

 /// The order manager.

 /// </value>

 private readonly MerchantOrderManager orderManager;

 /// <summary>

 /// Initializes a new instance of the <see cref="TryOpenOrder" /> class.

 /// </summary>

 public TryOpenOrder()

 {

 this.orderManager = Context.Entity.Resolve<MerchantOrderManager>();

 }

 /// <summary>

 /// Runs the processor.

 /// </summary>

 /// <param name="args">The arguments.</param>

 public virtual void Process([NotNull] PipelineArgs args)

 {

 Assert.ArgumentNotNull(args, "args");

 var order = this.GetOrder(args);

 var states = this.orderManager.StateConfiguration.GetStates();

 if (!this.IsSuspicious(args))

 {

 order.State = states.Single(s => s.Code == OrderStateCode.Open);

 }

 else

 {

 var suspicionState = states.Single(s => s.Code == OrderStateCode.Suspicious);

 foreach (var suspicionSubStateCode in this.GetSuspiciousSubStates(args))

 {

 suspicionState.Substates.Single(s => s.Code == suspicionSubStateCode).Active

 = true;

 }

 order.State = suspicionState;

 }

 this.orderManager.Save(order);

 }

 }

}

6. In the Sitecore.Ecommerce.config file, in the orderCreated pipeline, the processor must

be configured as the last processor after all the validation processors has been executed:

<orderCreated>

 ...

 <processor

 type="Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated.TryOpenOrder,

 Sitecore.Ecommerce.Merchant"/>

</orderCreated>

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 60 of 61

5.3.3 Getting the Best-Selling Products

Besides the basic CRUD operations, the Merchant API can be used to query the orders.

To search for the best-selling products, use LINQ to:

1. Get all the orders.

2. Use the orders to get all the order lines.

3. Group the order lines by the product code and calculate the product quantity of each group.

4. Sort the groups by the calculated quantity in descending order.

5. Specify how many products of highest calculated quantity to be returned.

The following code snippet describes how to implement this:

// Specify the webshop to get the products from.

const string WebShopName = "example";

// Setup the environment for the webshop.

using (new SiteContextSwitcher(SiteContextFactory.GetSiteContext(WebShopName)))

{

// Get instance of MerchantOrderManager from IoCContainer.

MerchantOrderManager merchantOrderManager =

Context.Entity.Resolve<MerchantOrderManager>();

// Get instance of IProductRepository from IoCContainer.

IProductRepository productRepository = Context.Entity.Resolve<IProductRepository>();

// Defines number of top products to be selected.

const int SizeOfSelection = 5;

// Order product codes by total quantity and select products by ordered product codes.

IEnumerable<ProductBaseData> resultingProducts =

// Get orders first.

merchantOrderManager.GetOrders()

//Select all order lines from the orders.

SelectMany(order => order.OrderLines)

// Group order lines by product code and calculate total quantity for each of the

// group.

.GroupBy(orderLine => orderLine.LineItem.Item.Code, (productCode, orderLines) => new {

productCode, totalQuantity = orderLines.Sum(orderLine => orderLine.LineItem.Quantity)

})

// Order groups by calculated total quantity.

.OrderByDescending(pair => pair.totalQuantity)

// Take only the records we need

.Take(SizeOfSelection)

// Force query execution on subsequent operations

.AsEnumerable()

// and transform them to sequence of products.

.Select(pair => productRepository.Get<ProductBaseData>(pair.productCode));

}

5.3.4 Getting the Best Customers for a Webstore

To search for the best customers for the web store, use LINQ to:

1. Get all the orders.

2. Group the orders by the assigned account ID of the supplier and calculate the total price of the
purchases for each group. It is assumed that all prices are of the same currency, otherwise the
prices must be converted to a common currency.

3. Sort the groups by the calculated the total price in descending order.

4. Specify how many orders of highest calculated total price to be returned.

Order Manager Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 61 of 61

The following code snippet describes how to implement this:

// Specify the webshop to get the orders from.

const string WebShopName = "example";

// Setup the environment for the webshop.

using (new SiteContextSwitcher(SiteContextFactory.GetSiteContext(WebShopName)))

{

// Get instance of MerchantOrderManager from IoCContainer.

MerchantOrderManager merchantOrderManager =

Context.Entity.Resolve<MerchantOrderManager>();

// Get instance of ICustomerManager from IoCContainer.

ICustomerManager<CustomerInfo> customerManager =

Context.Entity.Resolve<ICustomerManager<CustomerInfo>>();

// Defines number of top customers to be selected.

const int SizeOfSelection = 5;

// Order customers by total price of purchased products and select CustomerInfo.

IEnumerable<CustomerInfo> topBuyers =

// Get orders first.

merchantOrderManager.GetOrders()

// Group orders by SupplierAssignedAccountID, and calculate total price of the

// purchases

// for each group. It is assumed that all prices are of the same currency, otherwise

// the prices must be converted to some common currency.

GroupBy(order => order.BuyerCustomerParty.SupplierAssignedAccountID, (customerId,

orders) => new { customerId, totalPrice = orders.Sum(order =>

order.AnticipatedMonetaryTotal.PayableAmount.Value) })

// Order groups by calculated total price.

.OrderByDescending(pair => pair.totalPrice)

// Take only the records we need.

.Take(SizeOfSelection)

// Force query execution on subsequent operations

.AsEnumerable()

// and transform them to sequence of objects providing customer information.

.Select(pair => customerManager.GetCustomerInfo(pair.customerId));

}

	Chapter 1 Introduction
	Chapter 2 Setting up the Application
	2.1 The Structure of the Order Manager Application in SPEAK
	2.2 The Navigation Diagram of SPEAK

	Chapter 3 Configuring the Order Manager Application in SPEAK
	3.1 Setting up the Controls on the Dashboard
	3.1.1 Configuring Data Sources
	3.1.2 Configuring a Shop Context

	3.2 Configuring the Navigation Filters
	3.2.1 Configuring Navigation Filters According to a User Role

	3.3 Configuring the List Page
	3.3.1 Configuring a Column
	3.3.2 Configuring the Predefined Filters
	Configuring an Expression Group
	Configuring a Value Based Expression
	Configuring a Range Based Expression
	Creating an Operator

	3.4 Configuring the Order Details Task Page
	3.4.1 Adding a Field Editor
	3.4.2 Adding an Order Details List
	3.4.3 Adding a Column to an Order Details List
	3.4.4 Adding a Field to the Details List
	3.4.5 Extending the Order Manager to Show Multi-valued Fields

	3.5 Configuring the Smart Panel
	3.5.1 Enabling the Smart Panel in your Application
	3.5.2 Configuring the Actions Panels
	3.5.3 Adding a Custom Action

	Chapter 4 Configuring the Order Report in Stimulsoft
	4.1 Customizing the Order Details Report
	4.2 Setting up the Data Source
	4.3 Creating a Variable
	4.3.1 Changing the Localization of the Variable

	Chapter 5 Using the Order Manager API
	5.1 Using the Core Order Manager API
	5.1.1 The COM API Reference
	5.1.2 Using the Core API to Import and Export Orders

	5.2 Using the Visitor Order Manager API
	5.2.1 Reading all Orders for a Specific Customer
	5.2.2 Using the Visitor API to Cancel an Order
	5.2.3 Using the Visitor API to Create an Order
	5.2.4 The Limitations of the Visitor API

	5.3 Using the Merchant Order Manager API
	5.3.1 Using the MOM API to Create an Order
	5.3.2 Using the MOM API to validate Orders
	Setting the Order State to Suspicious
	Setting the Order State to Open

	5.3.3 Getting the Best-Selling Products
	5.3.4 Getting the Best Customers for a Webstore

