Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later
Order Manager Developer's Cookbook Rev: May 10, 2014

@ Sitecore

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Order Manager Developer's
Cookbook

A developer's guide to configuring the Order Manager.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later
Table of Contents

(O g0 (=] g A 1 0T [Tox 1o T o PR 3
Chapter 2 Setting up the APPICALIONuviiiii e e e e e s s e e e e e e e s e nnnenees 4
2.1 The Structure of the Order Manager Application in SPEAKccooviiiiiiiieiie e 5
2.2 The Navigation Diagram Of SPEAK ...t e e e e s s e e e e e e e s nnnraees 7
Chapter 3 Configuring the Order Manager Application in SPEAK ..ot 8
3.1 Setting up the Controls on the Dashboard...............ccioiii e 9
3.1.1 CoNfiQUIiNg DAt@ SOUICESeeieiieiiieiiiiete ittt a ittt e ettt e s aab e e s st et e e ab b et e s e nbe e e e anbeeeeeannee 9
3.1.2 Configuring 8 SNOP CONEXLcciuvriieiiiiie ettt e e e e e e anbe e e e e e 10

3.2 Configuring the Navigation FilterSoouiii i 12
3.2.1 Configuring Navigation Filters According to a User ROIe...........ccoceiiiiiiiiniiiecee e 14

3.3 Configuring the LISt Pageccco oo 15
3.3.1 Configuring @ COIUMIN ... 15
3.3.2 Configuring the Predefined FIlters..........coooio oo 15
Configuring an EXPresSSioN GIOUPcccuiiiiiiiii ettt 16
Configuring a Value Based EXPreSSiOn ... 17
Configuring a Range Based EXPresSiOn ... 18
Creating 8N OPEIALOLuiiiiiiiiiee ettt ettt e e s bb et e e s bbbt e e s tbe e e e s bbbt e e s bbb e e e s bbe e e e anbneeesannneeas 18

3.4 Configuring the Order Details Task PAgec.cooiiiiiiiiiiiiie e 20
341 AddiNg @ Field EAITOr......ccooiiiiieiiie et 20
3.4.2 Adding an Order Details LISteieiiuiiiiiiiiiie ettt 21
3.4.3 Adding a Column to an Order Details LiSt..........ccouveiiiiiiiiiiiiie e 21
3.4.4 Adding a Field to the Details LiSt.........cccoooeieiiii e 22
3.4.5 Extending the Order Manager to Show Multi-valued Fieldscccceee i, 25

3.5 Configuring the Smart Paneloooo i 29
3.5.1 Enabling the Smart Panel in your Application..............coooeiiie i, 29
3.5.2 Configuring the ACtIONS PaNEISccoooiiiiii i 30
3.5.3 AddiNG @ CUSLOM ACLION.....cciii i 30
Chapter 4 Configuring the Order Report in SMUISOFtuviiiiiiiiii e 32
4.1 Customizing the Order Details REPOITccooiiiiiiiiiiie et 33
4.2 Setting UP the DALA SOUICEoiiiiiiiieiiiiie ettt ettt e e et e et e e 34
4.3 Creating & Variableoooiiii e 35
4.3.1 Changing the Localization of the Variable ... 37
Chapter 5 Using the Order Manager APloo it 39
51 Using the Core Order Manager APluuuuuuiiiiieiiiiieiereieiareieeeeereeeeeereareaaraara—. 40
5.1.1 The COM API REFEIEINCEooiiiiiiiiie ittt 40
5.1.2 Using the Core API to Import and EXpPort Orders.........ccoooeveieie i 41

5.2 Using the Visitor Order Manager AP.........coo et a e 43
5.2.1 Reading all Orders for a SPecific CUSTOMENcoiiiiiiiiiiieee et 43
5.2.2 Using the Visitor APl t0 Cancel @n OFder..........cooia ittt 44
5.2.3 Using the Visitor API t0 Create an OFOercoouiiieiiiiie ettt a7
5.2.4 The Limitations Of the ViISIOr APcoiei it e e r e e e e e s ennrraneeae s 49

5.3 Using the Merchant Order Manager AP...........oio it 51
5.3.1 Using the MOM API t0 Create an OFAErccooiiiiiiiiiiie ettt 51
5.3.2 Using the MOM API t0 validate Orders..........cooiiiiiieiiiiiee ittt 53
Setting the Order State t0 SUSPICIOUSuuieiiiiiiiiiitiiiee ettt e e e e s beb e e e e e e e s enbeeeees 54
Setting the Order State 10 OPEN.......ccui it e e r e e e e s e rbab e e e e e e e e e annneeees 58

5.3.3 Getting the Best-Selling ProQUCTScooiiiiiiiii et 59
5.3.4 Getting the Best Customers for 8 WEDSIOIecoooiiiiiiiiiiiiii e 60

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 2 of 61

@ sitecore

Order Manager Developer's Cookbook

Introduction

The Order Manager is an application that is based on SPEAK, easy to use, and easy to
configure to suit your own requirements.

This guide describes how to customize and extend the Order Manager (OM) application
in the backend. It is useful for developers who are looking for information about the Order
Manager application.

This manual contains the following chapters:
e Chapter 1 — Introduction

This chapter is introduction to the guide.

e Chapter 2 — Setting up the Application
This chapter describes the different layouts of SPEAK and how to set up the OM
application in a certain layout.

e Chapter 3 —Configuring the Order Manager Application in SPEAK
This chapter describes how to configure all the pages in the SPEAK layout.

e Chapter 4 — Configuring the Order Report in Stimulsoft
This chapter describes how to configure the order report in Stimulsoft.

e Chapter 5 — Using the Order Manager API
This chapter is an API reference guide for OM.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 3 of 61

@ sitecore

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Setting up the Application

This chapter provides an overview of the default pages and controls that are available in
the Order Manager. All the controls in the pages are customizable. It is also easy to add
more pages if the default configuration is not suitable for your business needs.

This chapter describes:

e The structure of the order manager application in SPEAK.

e The navigation diagram of SPEAK.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 4 of 61

Q) sitecore
Order Manager Developer's Cookbook

2.1 The Structure of the Order Manager Application in SPEAK

To work with the OM application, you must install the Order Manager package. For information about
installing the OM package, see the SES installation guide.

In the Content Editor, you can navigate to the Order Manager root item:
/sitecore/system/Modules/SPEAK/Order Manager

= @ speak
= = Order Manager
* #® Purchase Orders
® ¥ Order Details
% Print Order
= L@ Repositories
= LJ Action Panels
k2 .D Info Spots
® [List views
) operators
= .D Predefined Filters
k2 .D Smart Panels
JLogin

®) Metadata

The following table describes the folders that you can configure in the Order Manager:

Folder Description

Purchase Orders This folder contains links to the navigation filters that appear on the left
side navigation panel.

Template: /sitecore/templates/SPEAK/Base
templates/Navigation

Order Details This folder contains definitions of the sections and fields on the order
details task page.

For more information, see Configuring the Order Details Task Page.
Template: /sitecore/templates/SPEAK/Pagetypes/Task page

Print Order This folder contains the definition of the task page that renders the order
details report. For more information, see

Configuring the Order Report in Stimulsoft.

Template: /sitecore/templates/SPEAK/Pagetypes/Task page

Repositories This folder contains miscellaneous SPEAK controls configurations.
Template: /sitecore/templates/SPEAK/Folders/Repositories

Repositories/Action This folder contains actions that appear in different action panels.

Panels Template: /sitecore/templates/SPEAK/Folders/Actions

Repositories/Info Spots | This folder contains the controls that appear in the right hand side of the
order details task page.
Template: /sitecore/templates/SPEAK/Folders/Info spots

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 5 of 61

@ sitecore

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Folder

Description

Repositories/List Views

This folder contains all the list controls that appear on the dashboard page
and the list page. It defines the filter options and list columns. For more
information see,
Configuring the Order Manager Application in SPEAK
This chapter describes the configuration options in all the
SPEAK pages. These configuration options are described
in the section The Navigation Diagram of SPEAK.
The following sections describes how to:
e Set up the controls on the Dashboard.
e Configure the navigation filters.
e Configure the list page.
e Configure the order details task page.
e Configure the smart panel.

Setting up the Controls on the Dashboard and Configuring the List Page.
Template: /sitecore/templates/SPEAK/Folders/List Views

Repositories/Operators

This folder contains the Order Manager specific operators for filtering
orders. By default, it contains the operators:
e Isequalto

e Search
e between
Note

You should not edit any of these operators because they are part of the
implementation details of the Order Manager. However, you can add more
operators.

Template: /sitecore/templates/Common/Folder

Repositories/Predefined
Filters

This folder contains the list views and filter controls. These are the
predefined filter options through which you can filter the order. You can
add your own custom options here.

For more information, see Configuring the Predefined Filters.
Template: /sitecore/templates/SPEAK/Folders/List Views
filters

Repositories/Smart
Panels

This folder contains the smart panels content also known as quick views.
For more information, see the section Configuring the Smart Panel.
Template: /sitecore/templates/SPEAK/Folders/SmartPanels

Note

If you upgrade your installation, any configuration changes that you make are overwritten. Therefore, you
must always create a backup of your configuration settings in the Order Manager.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 6 of 61

@ sitecore

Order Manager Developer's Cookbook
2.2 The Navigation Diagram of SPEAK

The following flow diagram illustrates how you navigate in a SPEAK based application.

Login Page Launch App page
L
C10110]

I

Category Search Result Page

will navigate ta List Page

|
|

Home Page (Dashboard) App List page App Task page

L]

| |
] ——

|
|

B
i
il

H
i
|

App 4

As illustrated in the previous image, you can configure the layouts of the SPEAK pages in different ways
but we have chosen the App 1 theme.

The following table describes every page in the navigation architecture:

SPEAK Page

Description

Login Page

To launch the SPEAK login page, enter its URL in your web browser.

Launch Application Page

Contains a list of the applications that are available in SPEAK.

Home Page (Dashboard)

Provides users with an overview of their tasks and what they are currently
working on. In the Order Manager, users can have their own individual home
page depending on the security roles they have been assigned in Sitecore.

List Page Displays the results of saved navigation filters in the left hand navigation
panel. The default Order Manager application comes with the following pre-
defined navigation filters:

e Orders
e Open orders
e Orders in process
e Closed orders
e Cancelled orders
Task Page This page is also known as the order details page, displays the full details of

an order and enables you to complete specific order management tasks

This guide describes how to configure the dashboard, list pages, and task pages.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 7 of 61

@ sitecore

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Configuring the Order Manager Application in

SPEAK

This chapter describes the configuration options in all the SPEAK pages. These
configuration options are described in the section The Navigation Diagram of SPEAK.

The following sections describes how to:
e Set up the controls on the Dashboard.
¢ Configure the navigation filters.
¢ Configure the list page.
e Configure the order details task page.

e Configure the smart panel.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 8 of 61

Order Manager Developer's Cookbook

@ sitecore
3.1 Setting up the Controls on the Dashboard

The dashboard is the first page that you see when you choose the Order Manager application in SPEAK.
By default, the dashboard contains the navigation filters on the left hand panel, and the last new orders
created and the latest orders that are ready to be captured.

This section describes how to configure the dashboard on the Order Manager page.

3.1.1 Configuring Data Sources

You can configure the data source of an in item in the Order Manager. There are two types of data source
in SPEAK: fast query and object detail list. In the Order Manager, you use the object detail list to access
the order data that is stored in a separate order database.

To configure the data source of the purchase orders in the Content Editor:

1. Navigate to the Purchase Orders item: /sitecore/system/Modules/SPEAK/Order
Manager/Repositories/List Views/Purchase Orders

2. Right click Purchase Orders, click Insert, select ObjectDetailList and then call it Sample
Orders.

3. Inthe Content section, navigate to the ObjectDataSourceSettings section.

The following table describes the fields in the Object data source:

Field Description

EnablePaging Indicates whether or not the data source control supports
paging through the data that it retrieves.

TypeName The name of the class on which the ObjectDataSource
object is based — for example, the type that is responsible for
handling the Select, Update, Delete, Insert operations.

DataObjectTypeName The name of a class that the ObjectDataSource object uses
as the return value in an update, insert, or delete data
operation.

SelectMethod The name of the method that the ObjectbataSource control

invokes in the object that is specified in the TypeName
property, to retrieve data.

SelectParameterName The name of the parameter that is used in the method
specified by the SelectMethod property.

SelectParameterValue The value of the parameter that is used in the method
specified by the SselectMethod property.

UpdateMethod The name of the method that the ObjectDataSource control
invokes to update the data.

OldValuesParameterFormatString | The format string that should be applied to the names of the
parameters for original values that are passed to the Delete or
Update methods.

DeleteMethod The name of the method that the ObjectbataSource control
invokes on the object that is specified in TypeName to delete
data.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 9 of 61

@ sitecore

DeleteParameterName The name of the parameter that is used by the
DeleteMethod method.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later
Field Description

DeleteParameterValue The parameters collection that is used by the DeleteMethod
method.
InsertMethod The name of the method or function that the

ObjectDataSource control invokes on the object that is
specified in TypeName to insert data.

SelectCountMethod The name of the method or function that the
ObjectDataSource control invokes to retrieve a row count.

You can also configure the data sources in:
e Lists in the dashboard.
e List pages.

e Order details that have one overall data source and another for each list control.

3.1.2 Configuring a Shop Context

In the Content Editor, a shop context represents a webshop that appears in the Web Store Selector in
the client interface. You must configure a shop context for each individual webshop. You can configure as
many shop contexts as you need.

To configure the Shop Contexts item in the Content Editor:

1. Inthe Content Editor, navigate to the Shop Contexts item:
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Shop Contexts

1. Right click Shop Contexts, click Insert, and then click Shop Context.
2. Callit Third Web Store.

3. On the Content tab, assign values to the following fields.

Field Description
Name The logical name of the web shop. In this example, call it thirdwebstore.
Title The webshop name that appears in the client interface in the web store
selector.
In the previous step, you called it Third Web Store.
Tooltip The hint that describes the shop in the client interface.
You can enter third web shop for testing purposes.
Icon The icon that appears next to this shop context item in the Content
Editor.

You can leave it as business/32x32/shoppingcart.png.

4. In Visual Studio, open the Sitecore.Ecommerce.Examples.config file of the solution and
register the Third Web Store.
< sites>

<site name="thirdwebstore" .../>
</sites>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 10 of 61

Q) sitecore
Order Manager Developer's Cookbook

Once you have created a shop context, you must specify the users who have access to the webshop:
1. In Sitecore Desktop, click Sitecore Security Tools, and then select Role Manager.
2. Inthe Role Manager dialog box, click the New tab.

3. Inthe role Name field, enter Order Manager Third Web Store Processing and in the domain field,
enter Sitecore.

4. Click the Members tab, click Add, click Users, and then select the user who you want to make a
member of the role and then click OK.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 11 of 61

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

@ sitecore
3.2 Configuring the Navigation Filters

You can configure as many navigation filters as you want in your application so that you can search for
orders according to your own criteria.

To create a navigation filter:

1. Inthe Content Editor, navigate to the Order List Template
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/List

Views/ Order List Template

2. Create a clone of the Order List Template in the Purchase Orders repository.
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/List
Views/Purchase Orders

= LQ Repositories
4 T{j Action Panels
H lD Info Spots
= [List Views
E El __Order List Template
E LD Dashboard
= LD Purchase Orders
H El Crder list page
4 El Orders
H El Open orders
4 El Orders in process
H El Closed orders
4 El Cancelled orders

Note

You can also create the filter in the repository instead of cloning the __ Order List Template item.
However, we recommend that you use cloning for maintenance reasons. If you modify the template, all of
the clones are modified as well. For example, you can add a field to all the filters by adding it to the

__Order List Template item.
3. Name the new repository Order list page. In the Content section, you can also configure the
following if you want:
o Enable Collapsing
o Inthe LoadDataWith field, enter PageScroll or ElementScroll.

Note
The recommended setting for LoadDataWith in SPEAK is PageScroll.
4. Select the EnableFiltering option.
In the ObjectDataSourceSettings group, configure the object data source.

For more information, see the section Configuring Data Sources.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 12 of 61

Order Manager Developer's Cookbook

Q) sitecore
6. Navigate to the Purchase Orders item.

/sitecore/system/Modules/SPEAK/Order Manager/Purchase Orders

= @ sreak
= =: Order Manager
= #® purchase Orders
@ Crder list page
E Orders
@ Cpen orders
E Orders in process
@ Clozed orders
E Cancelled orders

7. Right click Purchase Orders, click Insert and then select List page and then call it Order list
page.
8. On the ribbon, click the Presentation tab, in the Layout group, click Details.

ESitE(urE - Webpage Dial (eS|

Layout Details
. The details of the assigned layouts, controls and placeholders.

] Default layout
Controls Placeholder Settings

aceholder settings were specified

Default
‘two column right content

BreadCrumb

B oo

Actions

Shop Context Switcher
Menu

Messages

Default Detail List

[AEdit fFHcopy To

). [No layout specified]

Controls

Print renderings spedfied.] s were specified]

[AEdit @ copy Te
[No layout specified]

Contrals

Placeholder Settings

Feed

[edit #copy To

9. Onthe Layout Details dialog box, click Default Details List, and then enter the path to the filter

created in the Data Source field.
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/List

Views/Purchase Orders/Order list page

Note
You can create multiple navigation filters that refer to the same list view.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.
Page 13 of 61

Q) sitecore
Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

3.2.1 Configuring Navigation Filters According to a User Role
You can configure the Order Manager application to show or hide items according to the user's role.
To use the standard Sitecore security feature to show or hide navigation filters for different users:

1. Inthe Content Editor, navigate to the Order list page filter that you have just created.

2. Click the Security tab and then click Access Viewer.

3. Inthe Access Viewer, you can then deny any user read access to, for example, the Order list
page and the Cancelled orders page.

For more information about how to use the Access Viewer, see the Security Administrator's
Cookbook.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 14 of 61

Order Manager Developer's Cookbook

@ sitecore
3.3 Configuring the List Page

Once you have created the navigation filter, you can configure the list page that the navigation filter
generates. This section describes how to:

e Configure the columns on the list page.

e Configure the predefined filters.

3.3.1 Configuring a Column
The list page contains the orders that result from the navigation filter.

You can present any information that belongs to the order on the list page. To add a column to the table
on the list page of a navigation filter:

4. Inthe Content Editor, locate the filter to which you want to add a new column, for example,
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/List
Views/Purchase Orders/Orders

5. Right click Orders, click Insert, and then select Column Field.
The default selection is the standard Column Field.
6. Name it Currency.

7. Enter a value for the HeaderText. You can use the same name as that of the Column Field —
Currency.

8. Inthe DataField general property, enter the property name that you want to fill the column with —
Currency.

Note
In the DataField, you can only enter a property that exists in the
Sitecore.Ecommerce.Apps.OrderManagement .Models class.

For more information, see the section Adding a Column to an Order Details List.

3.3.2 Configuring the Predefined Filters
You can use a predefined filter to further refine the list of orders that result from the navigation filter.
This section describes how to configure a predefined filter.
To navigate to the predefined filter options in the Order Manager:
1. Inthe Order Manager, navigate to the home page.

2. Click a navigation filter to navigate to a list page, for example, the Orders page.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 15 of 61

@ sitecore

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later
3. Onthe Orders page, click Filters and you should see the following filters:

(ORDERE "\
5
ORDER DATE STATE CURRENCY
[] Today g New “ FIEWR
[Yesterday =| [0 Open =| [CJusb
[Last hour [In process

\D Last 3 days . [Closed it y.

NO. DATE TIME STATE CUSTOM... TOTAL A... CURRENCY
1014 6/22/2012 9:26:01 AM New Alexander ... 2,119.79 usD
1040 6i22/2012 9:28:31 AM New John Connor 2377.99 usD
1002 6/21/2012 12:00:00 AM New Sergey Sh. 211979 usD
1012 6i22/2012 9:25:59 AM New Yana Pivov. 3,661.03 usD
1004 6i21/2012 12:00:00 AM New Yana Pivov. 297477 usD
1005 6/21/2012 12:00:00 AM New Yana Pivov. 2,097.29 usD
1029 6i14/2012 9:26:27 AM New Sergey Sh.. 3,406.03 usD

Configuring an Expression Group

Expression groups are predefined filters.

To create an expression group:

1.

In the content tree, navigate to the Purchase Orders item
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Predefined
Filters/Purchase Orders

Right click Purchase Orders, click Insert from Template.

In the Insert from Template dialog box, navigate to the template
/sitecore/templates/SPEAK/Expression Group and then call the new expression group
Total Amount.

Select Total Amount, click the Content tab and then assign values for the following fields.

Field Description

Title The name of the filter in the UI. You called it Total Amount in the previous step.

Name The logical name of the filter. Call it TotalAmount.

Type The type of data that the expression group is filtering. You can set it to Date,
Enum or UTC Date. In this example, you must select Enum.

Navigate to the Orders filter: /sitecore/system/Modules/SPEAK/Order
Manager/Repositories/List Views/Purchase Orders/Orders

Click Orders, and on the Content tab, click DetailList settings, filters, and then add the Total
Amount expression group to the Orders navigation filter.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 16 of 61

Order Manager Developer's Cookbook
Configuring a Value Based Expression

To add a value based expression to a predefined fil

ter:

@ sitecore

1. Inthe Content Editor, navigate to the predefined filter that you want to add the criteria to — for

example, Currency

/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Predefined
Filters/Purchase Orders/Currency

2. Rightclick Currency, and click Insert from Template.

In the Insert from Template dialog box, navigate to the template:

/sitecore/templates/Ecommerce/Order Manager/Filtering/Nonlocalizable

Expression, and name it GBP.

[search Q ~]- "Ocment

& [sitecore

GBP
& content B
B Layout
uick Info
[E&] Media Library Qo
S & system Item ID:

) Aliases
2 Dictionary
& Languages

) Marketing Center Template: Jsitecore/templates/Ecommerce /Order Manager [Filtering/Expression - {93868FA1-095E-4E0F-572D-94D9E6 175CC 1}
= (Z) Modules Created From: [unknown)]
& Ecommerce Item Owner: sitecore ladmin
= [P speak
= == Order Manager EJpata
4 purchase Orders Value [shared):

¥ Order Detsils GBP
4 Print Order

= &) Repositories Operator [shared, standard

() Action Panels
[[2) 1nfo spots
1) List views Title:
) operators GBP
= [[2) Predefined Filters
[Log Entries

is equal to

m

Item Name: GBP
Item Path: Jsitecore fsystem/Modules/SPEAK jordermanager Repositories/Predefined Fiters Purchase Orders /Currency/GBP

{C429BFB2-9506-44F 2-94C4-ABDEFAF TBAG 2}

= ([Z) purchase Orders
&[] currency
@ R
@ usp
[5) order Date
[state
[5) substate
(1) Smart Panels

4. On the webshop, navigate to the group orders and you can see that the new filter is added.

ORDERS

ORDER DATE STATE CURRENCY

[] Today + [New ~ [EWR

1) Yestersay | [Open | 03

[Last hour ! [inprocess [] usp

[Last3days . [0 Ciosed i

NO. DATE TIME STATE CUSTOME... TOTAL AM...
1041 702012 41454 PM New Bob Jones 3.458.05
1021 T2 1.20:47 PM In process (... Yuriy Morozov 759.77
1016 TR012 1:20:41 PM New Alexander B.. 3631.03

CURRENCY

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 17 of 61

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Q) sitecore
Configuring a Range Based Expression

You can also configure the Total Amount predefined filter that you created in the section Configuring an
Expression Group.

To configure a range based expression:

1. Inthe content tree, navigate to the Total Amount predefined expression group:
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Predefined
Filters/Purchase Orders/Total Amount

2. Right click the Total Amount item, click Insert from Template.

3. Inthe Insert from Template dialog box, navigate to the template:
/sitecore/templates/Ecommerce/Order Manager/Filtering/Nonlocalizable

Expression, and name it 1000-2000

4. Click thel000-2000 item and on the Content section, assign values to the following fields:

Field Description
Value [1000,2000]
Title [1000,2000]

Operator | between — to select all the
orders that have a total
amount value within this
range.

5. Repeat the previous two steps for the expressions: 2001-4000 and 4001-5000.

Creating an Operator
This section describes how to create an operator to search for orders with certain state and substates.
To create a new operator that should be used in the predefined filters:

1. Inthe content tree, navigate to the Operators item:
/sitecore/system/Modules/SPEAK/Order Manager/Repositories/Operators

2. Right click Operators, click Insert, select Operator and name it substate.

3. Click substate, and in the Content section, in the Default field, assign the following condition
code:

o.field.Substates.Any(s => (s.Code == "values[0]") && s.Active)
4. Create an expression group and name it Substates.

For more information about how to create an expression group, see the section Configuring an
Expression Group.

5. Select the Substates item and in the Content section, assign values to the following fields:

Field | Value
Title Substates

Name | State

Type | Enum

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 18 of 61

@ sitecore

For information about how to create an expression, see the section Configuring a Value Based
Expression.

7. Click Captured in Full and in the Content section, assign values to the following fields:

Order Manager Developer's Cookbook
6. In Susbstates, create an expression and name it Captured in Full.

Field Description
Value Captured In Full
Title Captured in full

Operator | Substate — the new operator that
you have created.

8. Repeat the previous two steps for the expressions: Packed in Full and Shipped in Full.

Note
The values in the Value fields are case sensitive. Use the same names in the Order Manager database.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 19 of 61

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

@ sitecore
34 Configuring the Order Details Task Page

The Order Details Task Page is the page that you see after you have click on the order. It contains all the
information that is available for the order.

Once you have configured the list page, you can configure the task page. This section describes how to:
e Add a field editor.
e Add an order details list.
e Add a column to the order details list.
e Add a field to the order details list.

o Extend the Order Manager to see the order details that have one-to-many relationships with an
order.

3.4.1 Adding a Field Editor

The field editor represents the details that have a one-to-one relationship with the order.
To add an Order Field Editor item:

1. Inthe Content Editor, navigate to the Order Details item
/sitecore/system/Modules/SPEAK/Order Manager/Order Details.

2. Right click Order Details and then click Insert from Template.

3. Inthe Insert from Template dialog box, navigate to the template
/sitecore/templates/Ecommerce/Order Manager/Web Controls/Order Field
Editor.

4. CallitOrder.

= 3 srEAK

=l =z Order Manager
® & Purchase Orders
= S Order Details

= El Order

@ Order No

@ Order Time
@ Order Date
@ Tax Currency
@ note

@ Price Currency
@ Country

@ state

You can also configure the following properties:
o EnableCollapsing

o 2 Columns

o DataKeyNames

5. Configure the object data source in the ObjectDataSourceSettings group. For more information,
see the section Configuring Data Sources.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 20 of 61

Order Manager Developer's Cookbook

@ sitecore
3.4.2 Adding an Order Details List

The detalil list represents the details that have a one-to-many relationship with the order.
To add an Order Detail List item:
1. Inthe Content Editor, right click Order Details and then click Insert from Template.

2. Inthe Insert from Template dialog box, navigate to the template
/sitecore/templates/Ecommerce/Order Manager/Web Controls/ Order Detail
List

3. Callit Order Lines.

= @ spEAK
=l =: Order Manager
® & Purchase Orders
= 2 Order Details
= E Order
= E Buyer Customer Party
= E Order Lines
\El Alias
) pescrintion
\El Product Code
\El Product Name
Hat

\El Unit Price

You can also configure the following properties:
o EnableCollapsing
o LoadDataWith
o SmartPanel

o EnableFiltering

4. Configure the object data source in the ObjectDataSourceSettings group. For more information,
see the section Configuring Data Sources.

3.4.3 Adding a Column to an Order Details List

You can add a column to an order details item. You can take OrderLines as an example of the Order
Details Items.

To add a column to OrderLines:

1. Inthe Content Editor, navigate to the Order Lines item:
/sitecore/system/Modules/SPEAK/Order Manager/order/Order Lines

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 21 of 61

Q) sitecore
Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

2. Rightclick Order Lines, click Insert, Column Field and then name it Description.

B ¥ Order Details

E Order
E Buyer Customer Party
) E%"‘: Insert * E column Field
El Pr m Duplicate E Link Column
BPr R Delete B BoolColumn
E c Rename B DateTime column
He [Z] Tmespan column
BEu Copying *
EI Deliv Sarting N EI Progressbar Column
ngsco] m [insert from Template
ChargE-s—l

3. Click Description, in the Content tab, General, DataField, enter Description — the name of the
property that represents this column in the implementation.

B % Order Detais 3 General

E Crder =

E Buyer Customer Party HeaderText:

= E] order Lines Description
B Alias
EDESUiDhDH DataField [unversioned, shared]:
B Product Code
B Product Name
Eloy Sortable [unversioned, shared]:
[unit rice =]

T —

3.4.4 Adding a Field to the Details List
You can add a column to an order details item. You can take Delivery as an example of the details list.
To add a field to Delivery:

1. Inthe Content Editor, navigate to the Delivery details list
/sitecore/system/Modules/SPEAK/Order Manager/order/Delivery

2. Right click Delivery, click Insert, select Editor field and then name it Minimum Quantity.

3. Change the value of the Name field to the data property name whose value is displayed in this
field — DefaultDelivery.MinimumQuantity.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 22 of 61

Q) sitecore

Order Manager Developer's Cookbook
The following image shows the properties of a details item:

| [TE

@ Mimdmum Queantity

Tiem % GAPBCIICEH (S -0 5D IO DA
ItemMames B Quantty
e Path: D s e T AR e o e Detver 7 Beweurs Quantity
Tergiate: Jrutrecores fireplatien SRR AT coninole Edior el - | 730AL, P 1700 8509 08 B TR0
Created Frose i)
hem Dwner ptecoreinden
| bt] pemm

L
Taat

Impoatance
Dafault

] optimas.
Tk
M Quantity

Haie B
D aultDielryery MinsmumiQuan bty

Toalkip:

4. Insert the second Editor field, call it Maximum Quantity and then Change the value of the
Name field to DefaultDelivery.MaximumQuantity.

5. Insert the third Editor field, call it Quantity and then Change the value of the Name field to
DefaultDelivery.Quantity.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 23 of 61

@ sitecore

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later
6. Inthe Order Manager application, navigate to the task page to see the editor fields you have just

created.

DELWVERY

The following table describes the properties of the details item:

Property Description
Field Type Describes the type of the field, for example, Text, Multi-Line Text and Date.
Importance The importance of the field. You can assign it one of the following values:
¢ High — the values of this property appear even if you collapse the accordion
group.
¢ Normal — the default appearance of the fields.
e Low — the values of this property only appear when you click on more.
ReadOnly Specifies if the field is Read-only.
Title The text to be displayed.
Name The property of the model that is that is used in the data source that is assigned to the
field editor.
Tooltip The tooltip for the field.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 24 of 61

Q) sitecore
Order Manager Developer's Cookbook

3.45 Extending the Order Manager to Show Multi-valued Fields

The order details task page does not contain all of the fields that belong to an order. The following are
some examples of this limitation:

FreightForwarderParty

The Order Manager application shows only one freight forwarder party for each order. The following class
diagram shows the FreightForwarderParty relationship in the data model.

)

Order
Class

=l Fields
#% orderlines

? IEntity o7 state

i Party & = Properties
Class = AccountingCustomerParty
ey AllowanceCharge
= Properties F AnticipatedMonetaryTotal
B Alias :I:' DefaultFreightForwarderParty = BuyerCustomerParty
2 Contact < F DefaultDelivery
F EndpointD BF Delivery
B LanguageCode ' DestinationCountryCode
iy LogoReferencelD =)
ﬁ Partyldentification ﬁ IssueDate
B PartyLegalEntity B IssueTime
ey PartyMame . g Note
E ; ET Orderld
g EZ:?D?"SCP‘E"“E B FreightForwarderParty 7 Orderlines
iy Physicallocation o PaymentMeans
7 PostalAddress)y PricingCurrencyCode
B WebsiteURL B ReservationTicket

ey SellerSupplierParty
iy ShopContext
B State
B TaxCurrencyCode
B TaxTotal

= Methods
% Crder

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 25 of 61

@ sitecore

The Order Manager application shows only one delivery destination for each order. The following class
diagram shows the Delivery relationship in the data model.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later
Delivery

| Order 63
Class
) C[> Entity) Bl Fields
| Delivery 63 ## orderlines
Class 4% state
= Properties
= Properties = =
B AccountingCustomerParty
S Aliss J /

= AllewanceCharge

iy AnticipatedMonetaryTotal
=y BuyerCustomerParty

S Delivery EF DefaultDelivery

=< = DefaultFreightForwarderParty

2 AlternativeDeliveryLocation
=) DeliveryAdress
iy Deliverylocation
=y DeliveryParty ke

' Despatch % DestinatiocnCountryCode

oo F regoncersy
i “ D

iy MaximumQuantity 2 IssueDate

f MinimumQuantity f .

B Quantisy) IssueTime
N ' Note

H RequestedDeliveryPeriod B Orderd

' TrackingID

= Tracking 7 Orderlines

= PaymentMeans
iy PricingCurrencyCode
BF ReservationTicket
= SellerSupplierParty
= ShopContext
f State
iy TaxCurrencyCode
5 TaxTotal

I Methods

% Order

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 26 of 61

@ sitecore

The Order Manager application shows only one delivery destination for each order. The following class
diagram shows the A11owanceCharge relationship in the data model.

Order Manager Developer's Cookbook
AllowanceCharge

(Order

&
Class
= Fields
j’ orderLines
;‘a"' state
= Properties
iy AccountingCustomerParty ? [Entity
iy AnticipatedMonetaryTotal “ =
£y BuyerCustomerParty AllowanceCharge [E3
iy DefaultDelivery di=s
) DefaultFreightForwarderParty .
iy Delivery = Properties
' DestinationCountryCode = Alias
= FreightForwarderParty ' AllowanceChargeReason
=) iy AllowanceChargeReasonCode
B lcyeDate = AIIowanceCharge.. = Amount
ﬁ IzsueTime - f BaseAmount
=T Mote iy Chargelndicator
' Ordedd =l]
=T OrderLines iy MultiplierFactorMumeric
= PaymentMeans iy PrepaidIndicator
= PricingCurrencyCode iy SequenceMNumeric
' ReservationTicket =y TaxCategory
5 SellerSupplierParty B TaxTotal

5,

iy ShopContext
ﬁ State

iy TaxCurrencyCode
ﬁ TaxTotal

= Methods
% Order

Sublineltem

The Order Manager application shows only one delivery destination for each order. The following class
diagram shows the sublineItem relationship in the data model.

? IEntity

5P Parentline Lineltem
Class

»

Bl Fields

4 sublines
= Properties

= Alias

iy Delivery

=D

= Ttem
L—— & LineExtensionAmount
2 LineStatusCode
= MaximumQuantity
f MinimumQuantity
ﬁ: SubLineltem ﬁ Mote

23 = CrderedShipment

= OrderlD
“ Orderline
= PartialDeliverylndicator
= Price
= Quantity
2 Substates
27 TotalTaxAmount

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 27 of 61

Q) sitecore
Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

If you want to show all the freight forwarder parties, delivery destinations, allowance charges, and subline
items for the order, you must:

1. Extend the Order Manager application to base the corresponding items on Order details list
instead of Field editor

2. Add a Smart Panel. The following section describes how to configure the Smart Panel.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 28 of 61

Order Manager Developer's Cookbook

@ sitecore
3.5 Configuring the Smart Panel

The Smart Panel is a detail control that is used to view or edit list pages and task pages. You can use this
control to edit a list, for example, orders and order lines. There is no inline functionality to edit a list. This
is a flexible way to edit the selected items and to edit multiple entities at the same time.

This chapter describes how to:
e Enable the smart panel in your application
e Configure the actions panel

e Add a custom action

3.5.1 Enabling the Smart Panel in your Application
Showpopup

You can use the showPopup method in the Order Manager API to manipulate the smart panel.

The SshowPopup method has the following signature:
public static bool ShowPopup (
this ScriptManager scriptManager,
string url,
object parameters,
PopupType type,
out string result)
Parameters:
e url — the URL of the page that you want to open as the popup content.
e parameters — the custom parameters that you want to pass to the popup page.

e type — the type of the popup content.

If the popup is not opened yet, it returns false. If the popup is closed, it returns true. The popup result
must be processed if it returns true

There are also a few overloads for this method with fewer parameters.

The showpopup method is available as an extension method in the System.Web.UI.ScriptManager
class. To use it, add the Sitecore.Marketing.Client.Web.UI.Controls namespace to your code
file.

var scriptManager = ScriptManager.GetCurrent (this.Page);
string result = null;
if (scriptManager.ShowPopup ("/order manager/edit order",
new { OrderId = "1V203E", DetailedView = true},
PopupType.Smart, out result))
{
// the dialog was closed

// do something with result here

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 29 of 61

@ sitecore

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later
Configuring the Actions Panels

To configure the General or Order Details global actions in the Action panel:

3.5.2

3. Inthe Sitecore.Ecommerce.Apps.Web.UI.WebControls.Actions package, create a
handler.

4. Navigate to the Action Panels folder /sitecore/system/Modules/SPEAK/Order
Manager/Repositories/Action Panels/Global actions

5. Insert the new action in the folder that corresponds to the action place.

The following table describes the different folders in the Action Panels folder.

Folder Description

Global actions/General Contains the general actions that are displayed in the
Action Panel of the List Page.

Global actions/Order Details Contains the order details actions that are displayed
in the action panel of the List Page.

Order Details Actions/General Contains the general actions that are displayed in the
action panel of the Task Page.

Order Lines Actions/Order Line Contains the order line functions actions that are

Functions displayed in the action panel of the Order Lines

accordion group.

OrderLine Info Actions/Order Line | Contains the order line functions actions that are
Functions. displayed in the action panel of Order Line Details.

3.5.3

Adding a Custom Action

You can create a custom action in the Order Manager. The following code snippet is a Print Custom
Action example:

namespace Sitecore.Ecommerce.Apps.Web.UI.WebControls.Actions

{

using Speak.Extensions;

using Diagnostics;

using Ecommerce.OrderManagement.Orders;
using Logging;

using Sitecore.Web.UI.WebControls;

///
/ /] /

/]

<summary>
Defines the print action class.
</summary>

public class PrintAction : ScriptManagedAction

{

/

// <summary>

/// Executes the specified order.

/// </summary>

/// <param name="order">The order.</param>

protected override void Execute ([NotNull] Order order)

{

Assert.ArgumentNotNull (order, "order");
this.OrderId = order.OrderId;
string url = string.Format ("{0}ordermanager/printorder?orderid={1}&sc lang={2}",

Extensions.GetVirtualFolder (), this.OrderId, Sitecore.Context.Language.Name) ;
string script =

string.Format ("window.open('{0}', 'PrintMe"', 'resizable=yes, scrollbars=yes,
location=no');", url);

this.ScriptManager.RegisterStartupScript (script);

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 30 of 61

@ sitecore

Order Manager Developer's Cookbook

/// <summary>
/// Performs the post steps.
/// </summary>
protected override void PerformPostSteps ()
{
LogEntry logEntry = new LogEntry
{
Details = new LogEntryDetails(Constants.OrderPrinted),
Action = Constants.PrintOrderAction,
EntityID = this.OrderId,
EntityType = Constants.OrderEntityType,
LevelCode Constants.UserLevel,
Result = Constants.ApprovedResult

};
this.Logger.Write (logEntry);
}

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 31 of 61

@ sitecore

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Configuring the Order Report in Stimulsoft

The Stimulsoft reporting tool is used by the Order Manager to render the order
confirmation and print the order.

This chapter is not a complete reference for how to configure the Stimulsoft reports, it just
contains the customizations you may need for the Order Manager.

To configure the order reports that are defined in Stimulsoft, you can:
e Customize the order details report.
e Set up the data source.

e Create a variable and change its localization.

For information about how to configure the reports, see the Report Designer Cookbook.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 32 of 61

@ sitecore

Order Manager Developer's Cookbook
4.1 Customizing the Order Details Report
To modify in the order details report:

1. Inthe folder /sitecore modules/shell/Ecommerce/Reports, create an Order Details
.mrt file

Note

We recommend cloning the Order Detalils file to preserve all of the properties in the report as we do in our
Examples packages which contains the OrderDetailsExtended report: /sitecore
modules/shell/Ecommerce/ReportsExtended/OrderDetailsExtended.mrt.

2. To set the path of the new report file, open the new file that you created with the Stimulsoft
Report Designer, apply your changes and then add the following elements to the
/Bpp Config/Unity.config file:

<alias alias="StiReportFactory"
type="Sitecore.Ecommerce.Report.StiReportFactory, Sitecore.Ecommerce.Kernel" />

<register type="StiReportFactory">
<property name="ReportFile" value="/sitecore
modules/shell/Ecommerce/ReportsExtended/OrderDetailsExtended.mrt" />
</register>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 33 of 61

@ sitecore

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

4.2

By default, the data is read from the OrderReportModel class. This class contains a predefined set of

Setting up the Data Source

properties that represent variables.

To set up additional data variables for the Stimulsoft report:

1.

Create a class, call it OrderReportModelExtended that inherits the OrderReportModel
class — see the Sitecore.Ecommerce.Custom assembly in the Examples package:

In the following example, we extend the order report model with the information about the freight

forwarder party.

public class OrderReportModelExtended : OrderReportModel
{
// Getting the account ID of the default freight forwarder party.
public virtual string FreightForwarderPartyIdentification
{
get
{
if ((this.Order != null) && (this.Order.DefaultFreightForwarderParty !=
null))
{
return this.Order.DefaultFreightForwarderParty.PartyIdentification;
}

return string.Empty;

}

Add the following aliases to register the OrderReportModelExtended class inthe
/Bpp Config/Unity.config file:

<!—the default model-->

<alias alias="OrderReportModel" type="Sitecore.Ecommerce.Report.OrderReportModel,
Sitecore.Ecommerce.Kernel" />

<!—the new extended model ->

<alias alias="OrderReportModelExtended"
type="Sitecore.Ecommerce.Custom.Reports.OrderReportModelExtended,
Sitecore.Ecommerce.Custom" />

<!—Redirecting the mapping from default model to the extended model ->
<register type="OrderReportModel" mapTo="OrderReportModelExtended" />
<?xml version="1.0" encoding="utf-8"?>

Open the OrderReportModel .mrt file in Visual Studio and then add the
FreightForwarderPartyIdentification data source variable:

<DataSources isList="true" count="10">

<Order isKey="true" Ref="2"

type="Stimulsoft.Report.Dictionary.StiBusinessObjectSource">
<Name>Order</Name>
<Dictionary isRef="1"/>
<Alias>Order</Alias>
<Parameters isList="true" count="0"/>
<NameInSource>Order</NameInSource>
<Columns isList="true" count="60">

<value>FreightForwarderPartyIdentification, System.String</value>
</Columns>
</Order>
</DataSources>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 34 of 61

Order Manager Developer's Cookbook

4.3

Creating a Variable

@ sitecore

To start customizing the Stimulsoft report by inserting a variable, you should download and install the
Stimulsoft Report Designer from the Stimulsoft website.

For more information about the Stimulsoft Report Designer, see the Report Designer Cookbook.

To customize a variable:

1.

In the Content Editor, navigate to the Dictionary item:

/sitecore/system/Dictionary

Right click Dictionary, click Insert and then select Dictionary entry.

Call the new entry Party Identification.

In the Stimulsoft Report Designer, open the OrderDetailsExtended.mrt report with

Stimulsoft Report Designer.

Create a variable in the report, call it TEXT_Partyldentificatin and in the Value field enter the

name of the item that you have created — Party Indentification.

The following images show the dictionary and the properties of the new variable:

Dictionary 2 ox
Ao @ X e 8-
#-) Data Scurces
3 Busness Objects
4 Variables
{# BaselM
{84 TEXT _PostBax
189 TEXT IvvoiceNumber
84 TEXT Oste
i TEXT BdTo
8 TEXT _SendTo
B TEXT _Note
8 TEXT_OrderlineCode
@ TEXT_Nome
{8 TEXT_Description
{3 TEXT_Quantty
88 TEXT Tax
189 TEXT AherTax
{8 TEXT_UntPrice
84 TEXT _TotalPrice
8 TEXT _SubTotals
M TEXT_BeforeTax
8 TEXT_DelivenCost
{8 TEXT_TaxDeducted
8 TEXT_Dscourt
(5 TEXT_Alowances
5 TEXT_Total
189 TEXT_Attention
¥4 TEXT_TrackingNumber
84 TEXT _TrackingWebste
89 TEXT_Address
88 TEXT_EMsl
B8 TEXT_Phone
68 TR _Fax
@8 TEXT_Customerhumber
TEXT_Page
4 TEXT OF
3 \E8 Sysiem Vol
#- o Functions

Actions

b Pl gl BB 0 W] T Vg)

7 Create Fredd on Double Gick
v Creste Label
Use Mases
' Propertes | 1 Dictionary | (3} Report Tree

[Edit Variable =]
Name: TEXT_Pattyldertfication
Alias: TEXT_Pattyldertfication
Description:
Tope: @ sing -
oy
Value: Party idertification
Sample: 123 My vext; 567 456.23f; Test String: A
[Read Only
[7] Request from User

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 35 of 61

http://www.stimulsoft.com/

Q) sitecore
Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

In the code view, the following snippet is the variable representation:
<Variables isList="true" count="33">

<value>, TEXT PartyIdentification,TEXT PartyIdentification,System.String,Party x0
020 _identification,False,False</value>
</Variables>

The value of the constant in the OrderDetailsExtended.mrt file —
Party x0020 identification should be exactly the same as the key in the Sitecore
dictionary — Party identification — where %0020 _is the code of the space.

6. Inthe designer view, extend the markup of the OrderDetailsExtended.mrt file with the
information about freight forwarder party, as shown in the following image:

Pageeacer
r v ; (Order.CompanyName)”
y {Orger Compan ynanss,
’ + HOrder CompanyCountypd", "IOrder CompanyCourtry)
{Order.CompanyName} 5HB0x)0, TEXT_PostBox=" " ~)}{Order CompanyFossior
is i 2

'(IExUnvolceNumbeq: (omo«.ome' 4 (TEXT_Date): {Order.lssueDate} 'mber} {TEXT_Of} {TotalPageCount} |

4

(IEXY Mo) (W(meoma BuyerPartySupplierAssignedacec (T EXT_ SendTd (Otdu DelnrermeyNuna
Order SuyerPartyName) . {Order DediveryParty Streethame)
(o:aa BuyerPartyStrestName} {Order DeiveryPartyCityNameHIIF (Length(Order De
{Order BuyerPartyCityName}{F (Length(Order. Buye {Order DeliveryPartyCounty)
{Order BuyerPartyCourty) {Order DeliveryParty T dephone)
{Order BuyerPartyTelephone) X Order DeliveryPartyMal)
(Order BuyerPartyMai} 1
{F (Lengtn{Order.DeliveryPartyNote >0, TEXT_Note
{WF(Length{Order BuyerPartyPostalZone)»0 TEXT # {WF(Length(Order FreightF orward erPartyidentificat
(rmomn. gg m, Quantity) EXT_Tax) :xtumma) ﬂ\'oumea)

NSNS STARINTRISINSTISIRSSSRAESTEIRERGRaET. =

IS . ‘“h

(Old« Omt '{Order_OrderLines.OrderLineltemName)
(Otcev OrderLines OrderLineitemDescription)

"TM MS“" oraen.nenul M

4; ‘L

L : 't

o
g

"{Order_Order "{Order_OrderLines_OrderLineSublines swmauhq : M 0T %Y es Sutinerice) | lm

+ 4+ . PaS + . PN

5N (TEXYMreY 'ﬁunw
RERRER 1+ e (TeXT_TaxDeo ET“E‘WM
..... S 555 R IR ¢ R R R (TEXT,Mnm”_mmn

5 ! ; {1 H-HH {4 (TEXT,ﬂlawnnce Momf

- -

H
i
i

‘

(TEXT_Total’ ?yableAmunt}

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 36 of 61

Q) sitecore
Order Manager Developer's Cookbook

The following image shows the designer view of the text field definition with the
TEXT_Partyldentification variable:

Y Text Editor l=l=] = |
Expression _|{OTder . DeliveryParcyNams} =] Data Sources =
{Order.DeliveryPartyStreetName} -7 Business Cbjects 3
DataColumn ||, orger. DeliveryPartyCityName} {IIF (Length (Order.DeliveryPartyPastalZone)>0, ", ™,"")}{Order.DeliveryPartyPostalZone} - Variables i
System Variable |{Order.DeliveryPartyCountry} (83 Baselii
Summary | [{0Fder.DeliveryPartyTelephone} 3 TEXT_PostBox
{Order.DeliveryPartyMail} : 188 TEXT_invoiceNumt:
H &3 TEXT_Date
{IIF (Length(Order.DeliveryPartyNote)>0,TEXT Note+": ", "")}{Order.DeliveryPartyNote) b 3 TEXT_BilTo
{I1IF (Length (Order.FreigntForwarderPartyldentification)>0, TEXT Partyldentification:": ", 7]} {Order.FreightForwarderPartyldentification} 3 TEXT_SendTo
58 TEXT_Note
88 TEXT_OrderlineCo.
[bd TEXT_Name: -
hm]

T = X

The following snippet is the code view of the text field definition with the TEXT_Partyldentification
variable:

<Text>
{Order.DeliveryPartyName}
{Order.DeliveryPartyStreetName}
{Order.DeliveryPartyCityName} {IIF (Length (Order.DeliveryPartyPostalZone)>0,",
","")}{Order.DeliveryPartyPostalZone}
{Order.DeliveryPartyCountry}
{Order.DeliveryPartyTelephone}
{Order.DeliveryPartyMail}
{IIF (Length (Order.DeliveryPartyNote) >0, TEXT Note+":
","")}{Order.DeliveryPartyNote}
{IIF (Length (Order.FreightForwarderPartyIdentification) >0,
TEXT PartyIdentification+": ","")}{Order.FreightForwarderPartyIdentification}
</Text>

You can create variables and fields that do not start with Text_.

4.3.1 Changing the Localization of the Variable

You can created a Stimulsoft report in different languages. By default, the customer receives the order
confirmation in the same language that they created the order in. In the Order Detaila page, you can use
the language value to change the language of the Buyer Customer Party. Sitecore OM currently supports
English, Danish, German, and Japanese.

The StiReportTranslator class looks up the entry in the Sitecore dictionary and maps it to the
corresponding variable in the order report.

To change the localization logic, create a custom version of the StiReportTranslator class and

register it in the /App Config/Unity.config. For more information about creating a custom version
of a class, see the section Setting up the Data Source.

The StiReportTranslator class uses the Sitecore default localization method:
Sitecore.Globalization.Translate.TextByLanguage (key, language)

The following snippet shows how the Translate method is implemented in the
StiReportTranslator:

public virtual void Translate ([NotNull] StiReport report, string languageCode)
{

Assert.ArgumentNotNull (report, "report"):;

foreach (StiVariable variable in report.Dictionary.Variables)
{

if (this.MustBeTranslated (variable.Name))

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 37 of 61

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

@ sitecore
{

variable.Value = this.TranslatePhraseByLanguage (variable.Value,
languageCode) ;

}
}
}
protected virtual bool MustBeTranslated([NotNull] string key)
{
Assert.ArgumentNotNull (key, "key"):;
return key.StartsWith ("TEXT ");
}
protected virtual string TranslatePhraseByLanguage ([NotNull]
string languageCode)
{
Assert.ArgumentNotNull (phrase, "phrase");
Assert.ArgumentNotNull (languageCode, "languageCode");
return Globalization.Translate.TextByLanguage (phrase,
Language.Parse (languageCode)) ;

string phrase, [NotNull]

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 38 of 61

@ sitecore

Order Manager Developer's Cookbook

Using the Order Manager API

The API of the Oder Manager application consists of three modules: Core Order
Manager, Visitor Order Manager and Merchant Order Manager.

This chapter describes how to use the API of each these modules while processing the
order.

This chapter contains the following sections:
e Using the Core Order Manager API
e Using the Visitor Order Manager API

e Using the Merchant Order Manager API

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 39 of 61

@ sitecore

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later
51 Using the Core Order Manager API
The Core Order Manager APl (COM):

e |s a data manipulation layer.

o Is the first layer of abstraction above the actual data storage providers like the Entity Framework
or simple Sitecore content items.

¢ Allows developers to work directly with the entire domain model
e Does not contain any business logic.
e Supports logging of order processing transactions and changing the order properties.

The following sections describe the most important classes in the COM API and how to use the API to
import and export orders.

51.1 The COM API Reference

The main classes in the COM API are:

Sitecore.Ecommerce.Data.Repository<Order>

This class acts as a layer of abstraction above the actual data storage and allows you to interact with the
Sitecore back-end. It checks security, sets the language, intercepts Create, Read, Update, Delete
(CRUD) operations on orders and uses OnOrderSaving and OnOrderSaved events to performs some
additional operations.

The OnOrderSaving and OnOrderSaved events are used to perform some additional actions during
and after order saving. You can use the 1ogger class to add the logging logic to these events.

Sitecore.Ecommerce.Logging.Logger

Almost all of the methods are intentionally marked as protected internal. This means that you can
only work with them after you create a new implementation that is inherited from the
Repository<Order> and make a new custom public API.

Developers should use MOM and VOM because they contain the security and business logic. They
should not use COM because it has unrestricted access to the historical transaction data.

The Logger class has the following methods:

e GetEntries () :IQueryable<LogEntry> —lists all the orders that the current user has
access to.

e Write(LogEntry) :void — writes information to the log immediately.

e Log(LogEntry) :void — writes information to the in-memory buffer.

e Flush () :void — moves the data from the buffer to the location where you store your data.
The last two methods support the transaction logic that manipulates an order.

When a visitor to the webshop updates some fields and creates a new order line in a session, this is
regarded as a single unit of work and must be logged with the same transaction ID or completely rejected.

Sitecore.Ecommerce.OrderManagement.OrderProcessingStrategy

When an order is being processed, this layer performs robust logging of the operations during the orders
processing.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 40 of 61

Q) sitecore
Order Manager Developer's Cookbook

By default, no logging occurs. SES developers should use the COM API to handle the log on their own.

The COM API has unrestricted access to the transaction data. You should be careful while using COM
API because you can destroy existing orders. You should preferably use a more high-level APl such as
the VOM or MOM APIs.

5.1.2 Using the Core API to Import and Export Orders

One example of how to use the Core API is to extend the OrdersPresenter class in the MVP web
store to support the import and export of orders. In this example, you should not use the VOM and MOM
APIs, because the front-end validation and security checks that they perform degrades performance.

To extend the OrdersPresenter class:

1. Create the public class sampleOrderManager that wraps the protected internal methods of the
Repository<Order> class.

These methods are internal and protected to force developers to use the VOM and MOM API:

public class SampleOrderManager : Repository<Order>
{
public SampleOrderManager (CoreOrderStateConfiguration orderStateConfiguration,
Repository<Order> repository)
{
this.StateConfiguration = orderStateConfiguration;
this.Repository = repository;
}
public virtual IQueryable<Order> GetAllOrders (Expression<iunc<Order, bool>>
expression)
{
return this.GetOrders (expression);
}
public virtual void SaveSingleOrder (Order order)
{
this.SaveOrder (order) ;
}
}

2. Reqgister the SampleOrderManager class in the MvpWebStore.Unity.config file.

3. Override the constructor of the OrdersPresenter class in the MVPWebStore so that you can
receive the SampleOrderManager object as an additional parameter:

public OrdersPresenter (IOrdersView view, VisitorOrderRepositoryBase orderRepository,
SampleOrderManager orderManager) : base (view)

{

}

For more information, see the MVPWebstore on the marketplace.
4. To export the orders, you must use the Core API to retrieve all the orders.

You can use the JSON.NET serializer to serialize them to the JSON format and write the data to
a file:

var orders = this.orderManager.GetAllOrders (o => true) .ToArray();
this.View.Model.SerializedOrders = JsonConvert.SerializeObject (orders,
Formatting.None, this.settings);
using (var file = new FileStream(this.filePath, FileMode.Create, FileAccess.Write))
{

using (var stream = new StreamWriter (file))

{

stream.Write (this.View.Model.SerializedOrders) ;

}
}
this.HttpContext.Response.Clear () ;

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 41 of 61

http://marketplace.sitecore.net/en/Modules/Sitecore_E-Commerce_Services_MvpWebStore.aspx

@ sitecore

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

this.HttpContext.Response.ContentType = "application/json";
this.HttpContext.Response.AddHeader ("content-disposition", "attachment;
filename=\"" + FileName + "\"");

this.HttpContext.Response.WriteFile (this.filePath);
this.HttpContext.Response.Flush () ;
this.HttpContext.Response.End() ;

5. To import the orders , you should:
o upload the file to the server,
o read its content,
o deserialize the text from the JSON format to the collection of OIOUBL orders

o save it in the database:

var orders =
JsonConvert.DeserializeObject<IEnumerable<Order>>(this.View.Model.SerializedOrders,
this.settings) .AsQueryable () ;
foreach (var order in orders)
{

this.orderManager.SaveSingleOrder (order) ;

}

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 42 of 61

Q) sitecore
Order Manager Developer's Cookbook
5.2 Using the Visitor Order Manager API

When you create a Webshop, you should use the Visitor Order Manager (VOM) API to create and view
orders. The VOM API gives you access to the entire domain model.

The main class in the VOM APl is
Sitecore.Ecommerce.Visitor.OrderManagement.VisitorOrderRepository.

The VisitorOrderRepository class:

e |s the current default implementation of the
Sitecore.Ecommerce.OrderManagement.VisitorOrderRepositoryBase abstract
class.

e Implements the Sitecore.Ecommerce.Visitor.OrderManagement.IUserAware interface
that contains the definition of the CustomerId property.

This value identifies the customer that created the order. You can also use the implementation of
the Sitecore.Ecommerce.Users.CustomerManager<T> class to read the CustomerId
property in the current user account.

e Manages the visitor who created the orders.

Note

You can also use the VOM API in the Sitecore MVPWebStore application which is based on the
WebFormsMVP framework. For more information, see the MVPWebStore Developer's Guide on the
Sitecore Market Place.

The following sections describe how to use the VOM API to:
o Read all orders for a specific customer.
e Cancel an order.

e Create an order.

The last section describes the limitations of the VOM API.

5.2.1 Reading all Orders for a Specific Customer

The MVP Webstore application contains some examples that use the VOM API. To allow visitors to list
their orders on the MvpWebstore, you should use the
Sitecore.Ecommerce.MvpWebStore.Presenters.OrdersPresenter class. It presents the orders
page. It also handles the user interaction with this page.

To read all the orders that were created by a specific customer and display them in a page:

e The constructor of the OrdersPresenters class takes instances of
VisitorOrderRepositoryBase and I0rdersView as initializing parameters and binds the
Load handler to the Load event of the view:
private readonly VisitorOrderRepositoryBase orderRepository;
public OrdersPresenter (IOrdersV I /isitorOrderRepositoryBase

orderRepository) : base(view)

{

this.View.Load += this.Load;
this.orderRepository = orderRepository;
}
e When the user goes to the ~/orders?user=100500 page, the page parses the string value of
the user parameter.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 43 of 61

http://webformsmvp.com/

@ sitecore

This is a sample. In a real implementation, you should not pass the ID in a query parameter

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

because this could compromise security.

e Inthe page Load method, you should:

o Cast the repository to the TUserAware interface and assign a value for the customer ID,

o Retrieve all the orders that belong to this customer in the order repository,

o Assign the Orders collection of the viewModel to the retrieved orders.

private void Load(object sender, EventArgs e)
{
var userId = this.HttpContext.Request.QueryString["user"];
if (string.IsNullOrEmpty (userId))
{
return;
}
var aware = this.orderRepository as IUserAware;
if (aware != null)
{
aware.CustomerId = userId;
}
var orders = this.orderRepository.GetAll (o => true) .ToArray();
this.View.Model.Orders = orders;

}

e The following image shows the result — it contains the order id, the shop context, and the link to

the order cancelation page.

L C' [mvpwebstore/orders?user=100500

Categories Orders

Orders

l11.'-’;41?'5ng'¢.:!”-\‘-Tr. 6299959560b; Shop: mvpwebstore]

5.2.2 Using the Visitor API to Cancel an Order

Cancel »
Cancel »
Cancel »
Cancel »
Cancel »
Cancel »
Cancel »

Cancel »

In this example, we explain how to use the Visitor API to cancel an order if it is not already processed by

the business logic of the webshop.

To cancel the order, you can use the

Sitecore.Ecommerce.MvpWebStore.Presenters.CancelOrderPresenter class.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 44 of 61

@ sitecore

Order Manager Developer's Cookbook
To use the visitor API to cancel an order:

Note

The constructor of the CancelOrderPresenter class takes instances of the
VisitorOrderRepositoryBase, ICancelOrderView and VisitorOrderProcessorBase
classes as initializing parameters and binds the Load handler to the Load event of the view:

private readonly VisitorOrderProcessorBase orderProcessor;

private readonly V i orderRepository;

public CancelOrderPresenter (ICancelOrderView view, VisitorOrderRepositoryBase
orderRepository, VisitorOrderProcessorBase orderProcessor) : base(view)

{
this.View.Load += this.Load;
this.orderRepository = orderRepository;
this.orderProcessor = orderProcessor;

In this example, we have created a simple page that accepts the IDs of the user and the order in the URL.
In a real implementation, you should not pass the ID in a query parameter because this could
compromise security.

When the user goes to the ~/orders/cancelorder?id=zzz&user=100500 page, the page
parses the value of the query string — the user and id parameters. If the order ID is not
provided, the presenter stops to work. If the order ID is provided, it casts the repository to the
IUserAware interface and sets the customer ID. The repository uses the order ID to retrieve the
full order and then tries to use the VisitorOrderProcessorBase instance to cancel the order.
At the end of the process, the presenter sets the label value of the result message:

=

private void Load(object sender, EventArgs e)
{
try
{
var id = this.HttpContext.Request.QueryString["id"];
if (string.IsNullOrEmpty (id))
{
this.View.Model.Result = Texts.TheOrderIdIsNotSpecified;
return;
}
var userlId = this.HttpContext.Request.QueryString["user"];
var aware = this.orderRepository as IUserAware;
if (aware != null)
{
aware.CustomerId = userId;
}
var order = this.orderRepository.GetAll (o => 0.0rderId ==
id) .FirstOrDefault () ;
this.orderProcessor.CancelOrder (order) ;
this.View.Model.Result =
string.Format (Texts.TheOrderHasBeenCancelledSuccessfully, id);
}
catch (Exception exception)
{
this.View.Model.Result = exception.Message;
}
}

In SES 2.0.0 and later, we store the state and sub-states as items in the content tree. However,
to keep the MvpWebStore solution simple, we have not included them in the package.

For simplicity, we use a custom implementation of the VisitorOrderSecurity and
ProcessingStrategy classes that do not read the information from the content tree to check

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 45 of 61

Q) sitecore
Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

whether or not the transition between the states is valid. They only read the Order.State.Code
value to check that the order is not cancelled or closed.

o VisitorOrderSecurity applies security restrictions to the order and stops processing if
the security restrictions are not satisfied.

o ProcessingStrategy changes the order state and performs other operations.

The implementations of these classes are registered in the
~/BApp_Config/MvpWebStore.Unity.config file:

<unity xmlns="http://schemas.microsoft.com/practices/2010/unity">
<alias alias="VisitorOrderSecurity"
type="Sitecore.Ecommerce.Visitor.OrderManagement.VisitorOrderSecurity,
Sitecore.Ecommerce.Visitor" />
<alias alias="SampleOrderSecurity"
type="Sitecore.Ecommerce.MvpWebStore.Domain.SampleOrderSecurity,
Sitecore.Ecommerce.MvpWebStore" />
<alias alias="ProcessingStrategy"
type="Sitecore.Ecommerce.OrderManagement.ProcessingStrateqgy,
Sitecore.Ecommerce.Core" />
<alias alias="SampleOrderCancelationStrategy"
type="Sitecore.Ecommerce.MvpWebStore.Domain.SampleOrderCancelationStrateqgy,
Sitecore.Ecommerce.MvpWebStore" />
<container>
<register type="VisitorOrderSecurity" mapTo="SampleOrderSecurity" />
<register type="ProcessingStrategy" mapTo="SampleOrderCancelationStrategy" />
</container>
</unity>

e The following snippet implements the SampleOrderSecurity class to check if the order is in
one of the following states:

o New
o Open
o InProcess

If it returns true, you should allow the order to be cancelled. Otherwise, you should deny the
cancelation.

// <summary>
// The overrided version of the VisitorOrderSecurity class.
// The 'CanCancel (Order) :bool' method is simplified.
// It doesn't perform any sophisticated check like a default one and
// doesn't collaborate in any way with back-end.
// The decision whether to allow to cancel an order is taken when the State is not
// null
// and State.Code is within
// the following set: 'New', 'Open', 'InProcess'
// In opposite situation the cancellation is denied.
// The such is registered in the ~/App Config/MvpWebStore.Unity.config.
// </summary>
public class SampleOrderSecurity : VisitorOrderSecurity
{
// <summary>
// Determines whether this instance can cancel the specified order.
// </summary>
// <param name="order">The order</param>
// <returns>
// <c>true</c> if this instance can cancel the specified order; otherwise,
// <c>false</c>.
// </returns>
public override bool CanCancel (Order order)
{
if (order.State != null)
{

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 46 of 61

Q) sitecore
Order Manager Developer's Cookbook

if ((order.State.Code == OrderStateCode.New) || (order.State.Code ==
OrderStateCode.Open) || (order.State.Code == OrderStateCode.InProcess))
{
return true;

}

}

return false;

}
}

e You can then build the SampleOrderCancellationStrategy class:

// <summary>
// The simple implementation of the ProcessingStrategy abstract class.
// It sets the State.Code of the provided order to the "Cancelled" value
// without any collaboration with back-end.
// </summary>
public class SampleOrderCancelationStrategy : ProcessingStrategy
{
// <summary>
// Gets or sets StateManager.
// </summary>
public virtual CoreOrderStateConfiguration StateManager { get; set; }

// <summary>

// Processes the order.

// </summary>

// <param name="order">The order.</param>

public override void Process ([NotNull] Order order)

{
Assert.ArgumentNotNull (order, "order");
order.State.Code = OrderStateCode.Cancelled;

}

}

o If the order is successfully cancelled, you should see the following message:

&« c mvpwebstore/orders/cancelorder.aspx?id=c

Categories ~ Orders

Cancellation result

The order ¢71cf848-b402-47bc-a840-fchba559bfa8d has been cancelled
successfully.

5.2.3 Using the Visitor API to Create an Order

To create an order, you must use the
Sitecore.Ecommerce.MvplWebStore.Presenters.ProductDetailsPresenter class.

In SES 2.0.0 and later, we created an advanced checkout process. However, in MVPWebStore, you can
use a single page with a Buy button. MVPWebStore contains instances of the
VisitorOrderRepositoryBase, IProductRepository, IProductStockManager,

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 47 of 61

@ sitecore

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

IProductPriceManager and VisitorOrderProcessorBase classes as the required dependencies
and binds the Load event handler and the Buy event handler of the view.

public ProductDetailsPresenter (IProductDetailsView view, IProductRepository
productRepository, IProductStockManager stockManager, IProductPriceManager
priceManager, VisitorOrderRepositoryBase orderRepository) : base(view)

{

}

this.productRepository = productRepository;
this.stockManager = stockManager;
this.priceManager = priceManager;
this.orderRepository = orderRepository;
this.View.Load += this.Load;

this.View.Buy += this.Buy;

When it is loaded, the view is initialized with the name, description, price, stock value of the product and
renders the Buy button:

€« c

[mvpwebstore/products/viewproduct.aspx?p=Chardonnay

Categories Orders

Product info:

Name Chardonnay
Description Chardonnay

Price 132
Stock 10

Buy

If the stock value of the product is positive, the product is in stock and the order is created when you click
the Buy button:

private void Buy(object sender, EventArgs e)

{

ProductStockInfo productStockInfo = new ProductStockInfo { ProductCode =
this.View.Model.Product.Code };
ProductStock productStock = this.stockManager.GetStock (productStockInfo) ;
// checking if the product is in stock
if (productStock.Stock <= 0)
{
return;
}
// As a simple example, the value of the product stock is decremented
this.stockManager.Update (productStockInfo, productStock.Stock - 1);
// Initializing the order

Order order = new Order { State = new State { Code = "New", Name = "New" },
// Setting the shop context value of the order to mvpwebstore.

ShopContext = "mvpwebstore",

OrderId = Guid.NewGuid() .ToString(),

PricingCurrencyCode = "USD" };

OrderLine orderLine = new OrderLine
{
Order = order,
Lineltem = new Lineltem
{
Item = new Item { Code = this.View.Model.Product.Code },
Price = new Price(new Amount (this.View.Model.Price, "USD")),
Quantity = 1,

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 48 of 61

@ sitecore

Order Manager Developer's Cookbook

TotalTaxAmount = new Amount (),
}

}i
order.OrderLines.Add (orderLine) ;
// Setting the Supplier account ID to the predefined value "100500"
order.BuyerCustomerParty = new CustomerParty { SupplierAssignedAccountID =
Texts.MvpWebStoreCustomerId };
// The order is sent to the visitor order repository that saves it in the
// database.
this.orderRepository.Create (order);
this.HttpContext.Response.Redirect (this.HttpContext.Request.RawlUrl) ;

524 The Limitations of the Visitor API

The VOM API only allows customers to perform some high-level business operations with orders such as
Create, Read and Cancel. The main aim is to give web shop visitors limited access to the orders stored in
the database.

The most common operations are to:
¢ Read the existing orders that were created by the current customer.
o Create an order at the end of the checkout process.

e Cancel an order before completing the purchase if necessary.

The VOM API is an additional layer of abstraction on top of the Core Order Manager APl. COM supports
all CRUD operations, but VOM only supports Create, Read, and Cancel.

The VOM API is defined by the following class and interface definitions:

public abstract class VisitorOrderProcessorBase
{
public abstract void CancelOrder (Order order);

}

public abstract class VisitorOrderRepositoryBase
{
public abstract void Create (Order order);
public abstract IQueryable<Order> GetAll (Expression<Func<Order, bool>> expression):;

}

The VisitorOrderProcessor class:
e |s the default implementation of the VisitorOrderProcessorBase abstract class.

¢ Implements the VisitorOrderSecurity class to check whether or not the order is in the
appropriate state to be cancelled.

e Implements the VisitorOrderCancelationStrategy class to cancel the order.

The VisitorOrderRepository.Create () and VisitorOrderProcessor.CancelOrder ()
methods are marked with the custom LogThis attribute to make the 10C container intercept their work
and log the creation and cancellation of the order in the ActionLog database.

[LogThis (Constants.CreateOrderAction, Constants.UserLevel)]
public override void Create (Order order)

{

}

[LogThis ("Cancel order", Constants.UserLevel)]

public override void CancelOrder (Order order)

{

}

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 49 of 61

@ sitecore

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

The LogThis attribute uses the Sitecore.Ecommerce.Logging.LoggingHandler and
Sitecore.Ecommerce.Core classes. This class contains a reference to the Logger and calls it with the
provided parameters. You can use the unity.config file to configure the interception:

Note

<register type="VisitorOrderManager" mapTo="DefaultVisitorOrderManager">
<lifetime type="hierarchical" />
<interceptor type="VirtualMethodInterceptor" />
<policyInjection />

</register>

<register type="VisitorOrderProcessorBase" mapTo="VisitorOrderProcessor">
<lifetime type="hierarchical" />
<interceptor type="VirtualMethodInterceptor" />
<policyInjection />

</register>

If you use the default implementation, you should not worry about logging.

You cannot use the Visitor API to remove an order. The only change that you can make with VOM is to
change the Order.State to Cancelled. You must use the
VisitorOrderProcessor.CancelOrder method to cancel the order.

You must use the CancelOrder method to:

Statically provide a list of orders on the page or use the xm1HttpRequest XHR object and send
the list in JSON format from the server to the client.

XHR is a JavaScript object that is used to send asynchronous requests from the client code to the
server.

Create the custom checkout process. In the last stage, you should use the accumulated
information to create the order.

Cancel an existing order. For example, on the history page.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 50 of 61

@ sitecore

Order Manager Developer's Cookbook

5.3

Using the Merchant Order Manager API

The Merchant Order Manager (MOM) API contains the business logic that is used by the OM web
application to manage the orders.

For example, you can use the MOM API is used to:

5.3.1

Create a new order.

Validate an order.

Update the order state.

Using the MOM API to Create an Order

You can use the MOM API to configure the Ul of your OM application:

Create a custom action class that contains the business logic.

Create an action panel that is bundled with this class.

Creating a Custom Action Class

To implement the business logic for creating an order, you must create a custom action class:

1.

Create a class that is based on the Sitecore.Web.UI.WebControls.Actions class and call
it CreateOrderAction.

namespace Sitecore.Ecommerce.Apps.OrderManagement.Views

{

using Sitecore.Web.UI.WebControls;

/// <summary>
/// The create order action.
/// </summar Y>
public class CreateOrderAction : Action
{
/// <summary>
/// Executes the specified context.
/// </summar Y>
/// <param name="context">The context.</param>
public override void Execute ([CanBeNull] ActionContext context)
{
// To create an order using the MOM API, insert custom logic here

}

)

/// <summary>

/// Queries the state.

/// </summary>

/// <param name="context">The context.</param>

/// <returns>

/// The state.

/// </returns>

public override ElementState QueryState ([NotNull] ActionContext context)
{

return ElementState.Enabled;
}
}
}

To hide the action panel from users who are not members of the Order Processor role, override
the QueryState method to return the hidden state.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 51 of 61

Q) sitecore
Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

3. Use the following steps to override the Execute method with your custom logic:
o Usethe DefaultOrderFactory class to create an order and set the order State to Open.
o Use the OrderManager.save method to save the order.

o Redirect to the order details page with the Order ID of the new order in the query string.

//Create an order using DefaultOrderFactory.
var order = this.orderFactory.Create();

//Change order state from New to Open.
order.State = new State { Code = OrderStateCode.Open };

//Save order with MerchantOrderManager.
this.orderManager.Save (order) ;

//Redirect to order details page.
this.view.RedirectToOrderDetails (order.OrderId);

Create an Action Panel

The previous section describes how to create the custom action class that contains the business logic.
The following a procedure describes how to create an action panel that calls the custom action class:

1. Inthe Action Panels folder, create an item and call it Order Manager Actions
sitecore\content\system\Modules\SPEAK\Order Manager\Repositories\Action
Panels

2. Inthe Order Manager Actions folder, add the create order action that you just created and enter
values in the Title, linkicon, and Click fields. In the Click field, enter the Create Order Action class
name, for example
Sitecore.Ecommerce.Apps.OrderManagement.Views.CreateOrderAction,
Sitecore.Ecommerce.Apps.

E] pata

Title:
Create Order

Openicon * Clear
linkicon 3
Applications/32x32/document_add.png

Click

Sitecore.Ecommerce. Apps.OrderManagement. Views.CreateOrderAction, Sitecore.Ecommerce.Apps

3. Navigate to the Order Manager root item
sitecore\content\system\Modules\SPEAK\Order Manager

4. Inthe Content Editor, click the Presentation group and then in the Layout group, click Details
and the Layout Details opens.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 52 of 61

Q) sitecore
Order Manager Developer's Cookbook

5. Inthe Layout Details dialog box, select the placeholder called top and in the Data Source field,
enter the path to the Order Manager Actions item that you just created.

You must assign the custom action class to the Create Order action item.

L.',:.\ General

Placeholder
top

Browse - Clear
Data Source
/sitecore/system/Modules/SPEAK/ordermanager/Repositories/Action Panels/Order Manager Actions

5.3.2 Using the MOM API to validate Orders

SES contains a validation mechanism to avoid malicious behaviors, such as trying to create invalid
orders. For example, a user may unexpectedly order excessive quantities of items or place orders in an
unlikely fast pace, suggesting a denial of service attack (DOS). Manual checking of orders is time
consuming and cumbersome.

The orderCreated pipeline is the right place to insert business logic for automatic order validation.
This pipeline performs additional operations as part of the order creation process.

These additional operations are used to:

e Send order confirmation by mail to the customer. To confirm the order, the NotifyCustomer
processor sends a notification email to the user. This processor is not be explained in this topic.

e Perform initial order validation or fraud checks

By default, the CheckProductQuantity processor checks if the product quantity of any order
line is greater than the declared maximum quantity. If yes, the order state is set to Suspicious
with sub-state Product Quantity indicating the reason, see the section Setting the Order State to
Suspicious.

SES uses the following validation mechanism:

1. After the order is created, the orderCreated pipeline starts. Prepare the order for manual
inspection and fulfilment by the order manager.

2. According to the business logic of each pipeline processor, the order is validated. If the order is
found suspicious, then it is the responsibility of the individual processor to mark the order as
suspicious in the pipeline arguments and set the sub-states accordingly to indicate the nature of
the suspicion, see the section Setting the Order State to Suspicious.

3. If there are no validation issues encountered by the previous processors, the order state is set to
Open by the TryOpenOrder processor which is typically the last processor. If a suspicious
activity has been encountered, the pipeline arguments take the suspicious order state and sub-
state information and the order state is set to Suspicious and the sub-states are set accordingly.

Note

The validation processors must not abort the pipeline as the order state is not set until the last processor
TryOpenOrder is executed. Further processors might also find more evidence of suspicious behavior
and set further sub-states accordingly.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 53 of 61

@ sitecore

SES 2.2 introduces the Suspicious state. By default, it only contains the Product Quantity sub-state, but
you should extend the list of sub-states when you add further validation checks. In the Suspicious state,
each sub-state represents the reason for setting the order state to Suspicious.

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later
Setting the Order State to Suspicious

The predecessor of the Suspicious state is the New state, and the allowed successors are Open, In
Process and Cancelled. See the SES Configuration Guide, the section Configuring Sates.

To specify the reason that the order is in the Suspicious state, the substate combinations are configured
so that at least one Suspicious sub-state must be set in code or selected in the OM application

= (72 || O tmsert from Template (tof 1) || S8 PS5l Cony To | MRename | A Up R First
Save || Edit~ = || Duplicate ~ (= MoveTo pelete || ‘N Display Name || % Down ¥ Last
‘Write || Edit || Insert - o P . {
Q v [OComent
=[] sitecore 1
= & Content D
) Home
: ick Inf
= @ E-Commerce Examples @ Quick Info
= & H
& Home Item ID: {812479AB-C222-4C56-8146-669C3B4BCFDCY
* @ Checkout
[Layout Section Item Name: 1
My Page Item Path: /sitecore fcontent/E-Commerce Examples/Home /Business Catalol
@ Digital SLR

= O Template: /sitecore ftemplates/Ecommerce /Order Management/Substate Ci
[25] Monthly Offer

@D webshop Functions Created From: [unknown]

1 EBEE

Nebshop Site Settings Item Owner: sitecore\admin
\Webshop Business Settings =
‘ o2 g = = || E] pata
= states
= [E) New Selectall - Deselectall - Invert selection
=) FollowingStates Substates :
(=] Open [¥] Product Quantity
[£) suspicious
[2) cancelled

) substates
{J SubstateCombinations

[Z) Open

[) In Process .

[3) Closed © Advanced
[£) cancelled __Source

1]

[2) suspicious

=) FollowingStates
|=) open __Standard values
[£) In Process
() cancelled

= {J substates Profiles - Goals - Attributes
[£) Product Quantity Tracking

=) substateCombinations
=21

Note

Processing a suspicious orders is restricted. Everyone who has access to the Order Manager application
can see the suspicious order details, but editing is not allowed. Members of the Order Manager
Administrators and the Order Manager Processing roles can change the order state to Open, In Process
or Cancelled, but cannot change it while it is in the Suspicious state. An order that is considered valid by
the Order Manager, must be changed to the state Open or InProcess and then it can be edited and
processed.

The following are examples of a suspicious order that is examined in details in the following sections:
e Same Visitor within a Predefined Time Interval
e Quantity of the Order is Greater than a Certain Predefined Value

Same Visitor within a Predefined Time Interval

You can create a custom order validation processor which sets the order to suspicious if it is created by
the same visitor within ten seconds.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 54 of 61

@ sitecore

The following code snippet describes the CheckOrderProcessorBase class. This class is provided by

Order Manager Developer's Cookbook

SES to help create validation processors that check the order:

namespace Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated
{

using System.Collections.Generic;

using System.Ling;

using Sitecore.Diagnostics;

using Sitecore.Ecommerce.Merchant.OrderManagement;

using Sitecore.Ecommerce.OrderManagement;

using Sitecore.Ecommerce.OrderManagement.Orders;

using Sitecore.Pipelines;

/// <summary>

/// Defines the CheckOrderProcessor type.

/// </summary>

public abstract class CheckOrderProcessorBase
{

/// <summary>

/// Initializes an instance of the <see cref="CheckOrderProcessorBase"

/// class.
/// </summary>
protected CheckOrderProcessorBase ()

{

this.OrderManager = Context.Entity.Resolve<MerchantOrderManager>();

}

/// <summary>

/// Gets the order manager.

/// </summary>

/// <value>The order manager.</value>
[NotNull]

public virtual MerchantOrderManager OrderManager { get; private set;

/// <summary>

/// Gets the order.

/// </summary>

/// <param name="args">The args.</param>
/// <returns>The order.</returns>
[NotNull]

protected virtual Order GetOrder ([NotNull] PipelineArgs args)

{

var orderNumber = args.CustomData["orderNumber"] as string;
Assert.IsNotNull (orderNumber, "OrderNumber cannot be null.");

var order = this.OrderManager.GetOrder (orderNumber) ;
Assert.IsNotNull (order, "Order cannot be null.");

return order;

}

/// <summary>

/// Gets the suspicious sub states.

/// </summary>

/// <param name="args">The args.</param>

/// <returns>The list of suspicious sub-states.</returns>
[NotNull]

protected IEnumerable<string> GetSuspiciousSubStates (PipelineArgs args)

{

return args.CustomData[OrderStateCode.Suspicious] as HashSet<string> ?? new

HashSet<string> () ;
}

/// <summary>

/// Marks the order as suspicious.

/// </summary>

/// <param name="args">The args.</param>

/// <param name="suspiciousSubstateCode">The suspicious sub-state code.</param>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 55 of 61

Q) sitecore
Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

protected virtual void MarkOrderAsSuspicious (PipelineArgs args, string
suspiciousSubstateCode)
{
HashSet<string> hashSet = args.CustomData[OrderStateCode.Suspicious] as
HashSet<string>;
if (hashSet == null)
{
hashSet = new HashSet<string> () ;
args.CustomData[OrderStateCode.Suspicious] = hashSet;

}

hashSet.Add (suspiciousSubstateCode) ;
}

/// <summary>

/// Determines whether the specified args is suspicious.

/// </summary>

/// <param name="args">The args.</param>

/// <returns>

/// <c>true</c> if the specified args is suspicious; otherwise, <c>false</c>.

/// </returns>

protected virtual bool IsSuspicious(PipelineArgs args)

{
HashSet<string> hashSet = args.CustomData[OrderStateCode.Suspicious] as
HashSet<string>;

return hashSet != null && hashSet.Any();

}
To implement an order validation processor that sets the order to suspicious:

1. Create a class that inherits from the CheckOrderProcessorBase class and implement the
Process method:

namespace Ses.Samples.Merchant.Pipelines.OrderCreated
{
using System;
using System.Ling;
using Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated;
using Sitecore.Pipelines;

// Create a CheckOrderFrequency processor to validate if order created with a proper
// frequency.
public class CheckOrderFrequency : CheckOrderProcessorBase
{
public TimeSpan Frequency { get; set; }

public void Process (PipelineArgs args)

{
// Read the created order using order number stored in pipeline args.
var order = this.GetOrder (args);

// Read the customer ID from the new order.
var customer = order.BuyerCustomerParty.SupplierAssignedAccountID;

// Read the allowed order creating frequency which is set in pipeline processor
// property and determine maximum allowed date.
var recentAllowedOrderDate = DateTime.Now - this.Frequency;

// Check if the customer has already placed an order recently and
// determine if the order is suspicious or not.

Var frequentOrders = this.OrderManager.GetOrders () .Where (o =>
o.BuyerCustomerParty.SupplierAssignedAccountID == customer &&
0.0rderId != order.OrderId &é&

o.IssueDate >= recentAllowedOrderDate) ;

// Mark the order as suspicious if there are some orders found.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 56 of 61

@ sitecore

Order Manager Developer's Cookbook

if (frequentOrders.Any())
{
this.MarkOrderAsSuspicious (args, "Order Frequency"):;

}

}

2. Inthe Sitecore.Ecommerce.config file, inthe orderCreated section, create a pipeline
processor entry as part of the OrderCreated pipeline before the TryOpenOrder processor:

<orderCreated>

<processor

type="Ses.Samples.Merchant.Pipelines.OrderCreated.CheckOrderFrequency,

Sitecore.Ecommerce.Tests.Integration">
<Frequency>00:00:10</Frequency>

</processor>

</orderCreated>

Quantity of the Order is Greater than a Certain Predefined Value

To implement an order validation pipeline that sets the order to suspicious if the order line quantity is
greater than a certain predefined value:

1. Create a class that inherits from the CheckOrderProcessorBase class and implement the
Process method:

namespace Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated
{
using System.Ling;
using Sitecore.Diagnostics;
using Sitecore.Ecommerce.OrderManagement;
using Sitecore.Pipelines;
/// <summary>
/// The product quantity validator.
/// </summary>
public class CheckProductQuantity : CheckOrderProcessorBase
{
/// <summary>
/// Gets or sets the suspicious quantity.
/// </summary>
/// <value>
/// The suspicious quantity.
/// </value>

public decimal MaximumQuantity { get; set; }

/// <summary>
/// Runs the processor.
/// </summary>
/// <param name="args">The arguments.</param>
public virtual void Process ([NotNull] PipelineArgs args)
{
Assert.ArgumentNotNull (args, "args");
var order = this.GetOrder (args);
foreach (var orderLine in order.OrderLines.Where (orderLine =>
orderLine.Lineltem.Quantity > this.MaximumQuantity))
{
this.MarkOrderAsSuspicious (args, OrderStateCode.SuspiciousProductQuantity) ;

}

}

2. Inthe Sitecore.Ecommerce.config file, inthe orderCreated section, create a pipeline
processor entry as part of the OrderCreated pipeline:

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 57 of 61

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later
<orderCreated>

@ sitecore

type="Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated.CheckProductQuantity,
Sitecore.Ecommerce.Merchant">

<MaximumQuantity>100</MaximumQuantity>
</processor>

</orderCreated>

Setting the Order State to Open

If the order is not suspicious, the validation pipeline moves the order from the New state to the Open
state.

You can use the following steps to replace the default implementation of the TryOpenOrder class:

1. Create a class that inherits from the CheckOrderProcessorBase class that is mentioned in the
Using the MOM API to validate Orders

SES contains a validation mechanism to avoid malicious behaviors, such as trying to create invalid
orders. For example, a user may unexpectedly order excessive quantities of items or place orders in an
unlikely fast pace, suggesting a denial of service attack (DOS). Manual checking of orders is time
consuming and cumbersome.

The orderCreated pipeline is the right place to insert business logic for automatic order validation.
This pipeline performs additional operations as part of the order creation process.

These additional operations are used to:

e Send order confirmation by mail to the customer. To confirm the order, the NotifyCustomer
processor sends a notification email to the user. This processor is not be explained in this topic.

e Perform initial order validation or fraud checks

By default, the CheckProductQuantity processor checks if the product quantity of any order
line is greater than the declared maximum quantity. If yes, the order state is set to Suspicious
with sub-state Product Quantity indicating the reason, see the section Setting the Order State to
Suspicious.

SES uses the following validation mechanism:

2. After the order is created, the orderCreated pipeline starts. Prepare the order for manual
inspection and fulfilment by the order manager.

3. According to the business logic of each pipeline processor, the order is validated. If the order is
found suspicious, then it is the responsibility of the individual processor to mark the order as
suspicious in the pipeline arguments and set the sub-states accordingly to indicate the nature of
the suspicion, see the section Setting the Order State to Suspicious.

4. |If there are no validation issues encountered by the previous processors, the order state is set to
Open by the TryOpenOrder processor which is typically the last processor. If a suspicious
activity has been encountered, the pipeline arguments take the suspicious order state and sub-
state information and the order state is set to Suspicious and the sub-states are set accordingly.

Note

The validation processors must not abort the pipeline as the order state is not set until the last processor
TryOpenOrder is executed. Further processors might also find more evidence of suspicious behavior
and set further sub-states accordingly.

5. Setting the Order State to Suspicious section:

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 58 of 61

@ sitecore

Order Manager Developer's Cookbook

namespace Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated
{

using System.Ling;

using Sitecore.Diagnostics;

using Sitecore.Ecommerce.Merchant.OrderManagement;

using Sitecore.Ecommerce.OrderManagement;

using Sitecore.Pipelines;

/// <summary>
/// The order validator.
/// </summary>
public class TryOpenOrder : CheckOrderProcessorBase
{
/// <summary>
/// Gets or sets the order manager.
/// </summary>
/// <value>
/// The order manager.
/// </value>
private readonly MerchantOrderManager orderManager;

/// <summary>

/// Initializes a new instance of the <see cref="TryOpenOrder" /> class.

/// </summary>
public TryOpenOrder ()
{

this.orderManager = Context.Entity.Resolve<MerchantOrderManager> () ;

}

/// <summary>
/// Runs the processor.
/// </summary>
/// <param name="args">The arguments.</param>
public virtual void Process ([NotNull] PipelineArgs args)
{
Assert.ArgumentNotNull (args, "args");
var order = this.GetOrder (args);

var states = this.orderManager.StateConfiguration.GetStates();

if (!this.IsSuspicious(args))

{

order.State = states.Single(s => s.Code == OrderStateCode.Open) ;
}
else
{
var suspicionState = states.Single(s => s.Code == OrderStateCode.Suspicious);

foreach (var suspicionSubStateCode in this.GetSuspiciousSubStates (args))

{

suspicionState.Substates.Single (s => s.Code == suspicionSubStateCode) .Active

= true;
}
order.State = suspicionState;
}

this.orderManager.Save (order) ;

}

6. Inthe Sitecore.Ecommerce.config file, in the orderCreated pipeline, the processor must
be configured as the last processor after all the validation processors has been executed:

<orderCreated>

<processor

type="Sitecore.Ecommerce.Merchant.Pipelines.OrderCreated.TryOpenOrder,

Sitecore.Ecommerce.Merchant"/>
</orderCreated>

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of

this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 59 of 61

Sitecore E-Commerce Services 2.2 for CMS 7.0 or Later

Q) sitecore
5.3.3 Getting the Best-Selling Products

Besides the basic CRUD operations, the Merchant API can be used to query the orders.
To search for the best-selling products, use LINQ to:
1. Getall the orders.
2. Use the orders to get all the order lines.
3. Group the order lines by the product code and calculate the product quantity of each group.
4. Sort the groups by the calculated quantity in descending order.
5. Specify how many products of highest calculated quantity to be returned.

The following code snippet describes how to implement this:

// Specify the webshop to get the products from.
const string WebShopName = "example";

// Setup the environment for the webshop.

using (new SiteContextSwitcher (SiteContextFactory.GetSiteContext (WebShopName)))
{

// Get instance of MerchantOrderManager from IoCContainer.

MerchantOrderManager merchantOrderManager =
Context.Entity.Resolve<MerchantOrderManager> () ;

// Get instance of IProductRepository from IoCContainer.

IProductRepository productRepository = Context.Entity.Resolve<IProductRepository>();
// Defines number of top products to be selected.

const int SizeOfSelection = 5;

// Order product codes by total quantity and select products by ordered product codes.
IEnumerable<ProductBaseData> resultingProducts =

// Get orders first.

merchantOrderManager.GetOrders ()

//Select all order lines from the orders.

SelectMany (order => order.OrderLines)

// Group order lines by product code and calculate total quantity for each of the

// group.

.GroupBy (orderLine => orderLine.LineItem.Item.Code, (productCode, orderLines) => new {
productCode, totalQuantity = orderLines.Sum(orderLine => orderLine.Lineltem.Quantity)
b

// Order groups by calculated total quantity.

.OrderByDescending (pair => pair.totalQuantity)

// Take only the records we need

.Take (SizeOfSelection)

// Force query execution on subsequent operations

.AsEnumerable ()

// and transform them to sequence of products.

.Select (pair => productRepository.Get<ProductBaseData> (pair.productCode)) ;

}

5.3.4 Getting the Best Customers for a Webstore
To search for the best customers for the web store, use LINQ to:
1. Getall the orders.

2. Group the orders by the assigned account ID of the supplier and calculate the total price of the
purchases for each group. It is assumed that all prices are of the same currency, otherwise the
prices must be converted to a common currency.

Sort the groups by the calculated the total price in descending order.

4. Specify how many orders of highest calculated total price to be returned.

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 60 of 61

@ sitecore

Order Manager Developer's Cookbook
The following code snippet describes how to implement this:

// Specify the webshop to get the orders from.
const string WebShopName = "example";

// Setup the environment for the webshop.

using (new SiteContextSwitcher (SiteContextFactory.GetSiteContext (WebShopName)))
{

// Get instance of MerchantOrderManager from IoCContainer.

MerchantOrderManager merchantOrderManager =
Context.Entity.Resolve<MerchantOrderManager> () ;

// Get instance of ICustomerManager from IoCContainer.
ICustomerManager<CustomerInfo> customerManager =
Context.Entity.Resolve<ICustomerManager<CustomerInfo>>();

// Defines number of top customers to be selected.

const int SizeOfSelection = 5;

// Order customers by total price of purchased products and select CustomerInfo.
IEnumerable<CustomerInfo> topBuyers =

// Get orders first.

merchantOrderManager.GetOrders ()

// Group orders by SupplierAssignedAccountID, and calculate total price of the
// purchases

// for each group. It is assumed that all prices are of the same currency, otherwise
// the prices must be converted to some common currency.

GroupBy (order => order.BuyerCustomerParty.SupplierAssignedAccountID, (customerId,
orders) => new { customerId, totalPrice = orders.Sum(order =>
order.AnticipatedMonetaryTotal.PayableAmount.Value) })

// Order groups by calculated total price.

.OrderByDescending (pair => pair.totalPrice)

// Take only the records we need.

.Take (SizeOfSelection)

// Force query execution on subsequent operations

.AsEnumerable ()

// and transform them to sequence of objects providing customer information.
.Select (pair => customerManager.GetCustomerInfo (pair.customerld)) ;

}

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 61 of 61

	Chapter 1 Introduction
	Chapter 2 Setting up the Application
	2.1 The Structure of the Order Manager Application in SPEAK
	2.2 The Navigation Diagram of SPEAK

	Chapter 3 Configuring the Order Manager Application in SPEAK
	3.1 Setting up the Controls on the Dashboard
	3.1.1 Configuring Data Sources
	3.1.2 Configuring a Shop Context

	3.2 Configuring the Navigation Filters
	3.2.1 Configuring Navigation Filters According to a User Role

	3.3 Configuring the List Page
	3.3.1 Configuring a Column
	3.3.2 Configuring the Predefined Filters
	Configuring an Expression Group
	Configuring a Value Based Expression
	Configuring a Range Based Expression
	Creating an Operator

	3.4 Configuring the Order Details Task Page
	3.4.1 Adding a Field Editor
	3.4.2 Adding an Order Details List
	3.4.3 Adding a Column to an Order Details List
	3.4.4 Adding a Field to the Details List
	3.4.5 Extending the Order Manager to Show Multi-valued Fields

	3.5 Configuring the Smart Panel
	3.5.1 Enabling the Smart Panel in your Application
	3.5.2 Configuring the Actions Panels
	3.5.3 Adding a Custom Action

	Chapter 4 Configuring the Order Report in Stimulsoft
	4.1 Customizing the Order Details Report
	4.2 Setting up the Data Source
	4.3 Creating a Variable
	4.3.1 Changing the Localization of the Variable

	Chapter 5 Using the Order Manager API
	5.1 Using the Core Order Manager API
	5.1.1 The COM API Reference
	5.1.2 Using the Core API to Import and Export Orders

	5.2 Using the Visitor Order Manager API
	5.2.1 Reading all Orders for a Specific Customer
	5.2.2 Using the Visitor API to Cancel an Order
	5.2.3 Using the Visitor API to Create an Order
	5.2.4 The Limitations of the Visitor API

	5.3 Using the Merchant Order Manager API
	5.3.1 Using the MOM API to Create an Order
	5.3.2 Using the MOM API to validate Orders
	Setting the Order State to Suspicious
	Setting the Order State to Open

	5.3.3 Getting the Best-Selling Products
	5.3.4 Getting the Best Customers for a Webstore

