
Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later
Developer's Cookbook Rev: 2014-05-01

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Developer's Cookbook
A developers guide to configure and develop Sitecore E-Commerce Services

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 2 of 54

Table of Contents

Chapter 1 Introduction .. 3
Chapter 2 SES Technical Overview ... 4

2.1 The SES Domain Model .. 5
2.2 Unity Application Block Overview.. 6

2.2.1 The Unity Configuration Files .. 7
2.2.2 The initialize Pipeline .. 8
2.2.3 Dependency Injection .. 8
2.2.4 How to Resolve a SES Component .. 9
2.2.5 How to Add an Implementation to the Unity Configuration ... 11
2.2.6 How to Add a Contract to the Unity Configuration .. 11
2.2.7 How to Replace a SES Component .. 11
2.2.8 How to Configure Unity for Multiple Implementations of the Same Contract 12

2.3 SES Product Management .. 14
2.3.1 Product URLs and Product Resolution ... 14

How to Specify the Product URL Format ... 14
2.3.2 Product Presentation ... 14

How to Specify a Product Presentation Format ... 15
How to Update a Product Presentation Format ... 15
How to Define a New Product Presentation Format .. 15

Chapter 3 Adding Custom Product Search Criteria ... 17
3.1 The Need for Product Search Configuration and Extensibility .. 18
3.2 Extending the Product Search Group Template ... 19
3.3 Extending the Resolve Strategy .. 21

Extending the Database Crawler ... 21
Extending the ICatalogProductResolveStrategy Class .. 22
Configuring SES and Lucene ... 24

3.4 Extending the Product Search Catalog ... 26
Extending the CatalogQueryBuilder ... 26
Creating a Products Source ... 27
Defining a New Editor in the Core Database ... 28
Creating a Product Catalog .. 29

Chapter 4 SES Core Configuration .. 31
4.1 Commands .. 32
4.2 Events ... 34
4.3 XSLExtensions .. 35
4.4 Settings ... 39
4.5 Pipelines .. 41

4.5.1 The <pipelines> Element .. 41
4.5.2 The <Processors> Element ... 47

4.6 Search ... 48
4.7 Multisite Configuration ... 49

4.7.1 Creating Webshop Definitions ... 49
4.7.2 Configuring Separate/Common Order and Log Databases for Multiple Webshops 49
4.7.3 Registering Different Business Objects for Different Webshops 50
4.7.4 Configuring the Lucene Product Repository for a Specific Webshop 51

4.8 Switching Between the Visitor and the Remote API in the Unity.config File 53
4.9 Optimizing the Product Stock Manager .. 54

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 3 of 54

Chapter 1 Introduction

This document contains a technical overview of the Sitecore E-Commerce Services
(SES). It also describes how to use the Unity application block to configure SES, the
SES programming contracts, and includes instructions for configuring SES
components.

You can use Sitecore to manage multiple websites. You can configure SES to use
different data stores for each managed website. For example, different managed
websites can store product, order, and other business information in different
locations in Sitecore, and in different external systems.

This document contains the following chapters:

 Chapter 1 — Introduction
This chapter contains a brief description of this manual.

 Chapter 2 — SES Technical Overview
This chapter contains a description of the domain model, the Unity application block,
and Sitecore E-Commerce Services product management system.

 Chapter 3 — Adding Custom Product Search Criteria
This chapter describes how to extend the product search feature in SES.

 Chapter 4 — SES Core Configuration
This chapter describes the configurable elements in SES including how to configure a
multi-site installation.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 4 of 54

Chapter 2

SES Technical Overview

This chapter provides a technical overview of Sitecore E-Commerce Services,
including the domain model, the Unity dependency injection container, and
information about how Sitecore E-Commerce Services manages product information.

This chapter contains the following sections:

 The SES Domain Model

 Unity Application Block Overview

 SES Product Management

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 5 of 54

2.1 The SES Domain Model

The SES domain model is an API layer that defines contracts to abstract SES functionality, such as

product and customer information storage. The Sitecore.Ecommerce.DomainModel namespace

in the Sitecore.Ecommerce.DomainModel.dll assembly contains the SES domain model.

The default implementation of the SES domain model stores data as items in the Sitecore content
tree. For example, a product definition item describes each product that the website sells. You can
replace elements of the domain model, and you can use different implementations based on logical
conditions. Multiple managed websites can share implementations of the domain model and the data
that those implementations abstract, or each managed website can use different implementations and
data.

To integrate external systems with SES, you can implement processes that use the default
implementation of the domain model to import data into Sitecore, or you can replace components of
the SES domain model with custom implementations that access external systems directly.

SES includes a sample implementation that uses presentation components developed for the Web
Forms for Marketers module to provide a complete online store. For more information about the Web
Forms for Marketers module, see the SDN.

You can use the example implementation, or you can learn how to implement a custom solution using
the code that it contains.

Important
Whenever possible, use contracts in the domain model rather than the concrete implementations of
those contracts.

http://sdn.sitecore.net/Products/Web%20Forms%20for%20Marketers.aspx

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 6 of 54

2.2 Unity Application Block Overview

SES uses the Unity application block (Unity) to support customization and integration with such
external systems. The Unity application block is a lightweight, extensible dependency injection
container, which among other features, provides symbolic names for different implementations of
various SES features described by the domain model.

For more information about the Unity Application Block, see http://unity.codeplex.com/.

Dependency injection is a strategy for specifying relations between types in object-oriented
applications. Dependency injection provides a form of inversion of control, moving logic for type
specification from code to the dependency injection container. Unity injects the appropriate types into
the application at runtime to allow the use of different implementations of a single function depending
on configuration, conditions, and code. Unity provides constructor injection, property injection, and
method call injection. The Unity container works like a factory to instantiate objects in a manner
similar to the providers pattern, but with greater flexibility.

For more information about dependency injection, see:

 msdn.microsoft.com/en-us/.../cc163739.aspx

 http://martinfowler.com/articles/injection.html

Unity can designate the software components an application will use, and which software components
other components can use. Complex objects typically depend on other objects. Unity helps to ensure
that each object correctly instantiates and populates the right type of object for each such
dependency.

The Unity architecture supports the loose coupling of application components. SES developers can
reference relatively abstract types, and Unity injects the appropriate implementations at runtime.

The Unity application block provides the following benefits for developers who customize and extend
SES:

Flexibility

Unity allows developers to specify types and dependencies through configuration and at runtime,
deferring configuration to the container.

Simplification

The simplification of the object instantiation code, especially for hierarchical structures that contain
dependencies — this simplifies application code.

Abstraction

The abstraction of requirements through type information and dependencies.

Service locator capability

SES supports the persistence of the container, such as within the ASP.NET session or application, or
through Web services or other techniques. For more information about the Service Locator pattern,
see http://msdn.microsoft.com/en-us/library/ff921142.aspx.

With Unity, you can easily configure SES to use custom implementations for specific features,
including:

 Configuration components, such as general settings.

 Business objects, such as customers.

 Business logic, such as sending e-mail or locating a product.

 Payment providers, such as specific payment gateways.

 Internal logic, such as mapping in-memory storage to long-term storage.

http://unity.codeplex.com/
http://martinfowler.com/articles/injection.html

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 7 of 54

With SES and Unity, you can use different implementations of an interface or descendants of an
abstract or another base class to achieve a common function for different managed websites. For
example, different managed websites can access customer information from different systems. Unity
makes it easier to integrate external business systems that are typically involved in ecommerce into a
SES implementation.

In this document, the term contract refers to an interface that a class implements, an abstract or
concrete base class from which it inherits. The term implementation refers to a class that implements
a given contract.

The SES entities defined with Unity include:

 Contracts define Application Programming Interfaces (APIs).

 Implementations define concrete instances that implement contracts.

 Mappings configure which implementations to inject.

 Dependencies configure which dependent implementations to inject.

Unity allows you to define contracts using interfaces, abstract classes, and concrete classes. An
implementation can implement an interface, inherit from an abstract base class, inherit from a

concrete base class, or inherit directly from System.Object. A contract defined by a concrete class

can serve as its own implementation.

Note
To work with the SES APIs that depend on the Unity application block, you may need to add a

reference to the Microsoft.Practices.Unity.dll assembly in the /bin subdirectory to the

Visual Studio project. Remember to set the Copy Local property of the reference to False.

The following diagram describes the SES API layers. The example UI pages access APIs in the
domain model, and SES uses Unity to resolve those API calls to concrete implementations of those
contracts.

UIAPI

Implementation Layer

Sitecore Ecommerce Abstraction Layer (Domain Model)

Default Providers (based on
Sitecore data providers)

Custom Providers (Navision)

Inversion of Control Container (Unity configuration) Example pages

2.2.1 The Unity Configuration Files

The most important configuration file is Unity.config which determines the application-wide

configuration of the dependency Injection containers. However, if you have a multi-shop solution, you
must configure separate Unity entities for each webshop that differs from the standard configuration.

These configuration files must be called <Site name>.Unity.config and must be stored in the

App_Config folder.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 8 of 54

Each of the configuration files consists of two main parts:

 /unity/aliases — each of these elements in the Unity configuration file defines a type of

alias which provides a symbolic name for a contract or implementation, such as an interface,
an abstract type, or a concrete type.

Aliases simplify configuration, provide easier access to types, help avoid duplication, and the
use of incorrect type names.

Aliases are not required.

 /unity/container/register — each of these elements in the Unity configuration file

specifies a concrete type that implements a contract identified by a /unity/alias element.

2.2.2 The initialize Pipeline

To configure the Unity container, SES adds three processors to the initialize pipeline that is

defined in the Web.config file:

 ConfigureEntities

 ConfigureShopContainers

 RegisterEcommerceProviders

Based on the configuration in the Unity.config file, the ConfigureEntities processor in the

initialize pipeline initializes the entities for application-wide container.

The ConfigureShopContainers processor configures the Unity container for that site, based on

App_Config\<Site name> setting in the Unity.config file, where <Site name> corresponds

to a webshop.

Both of these processors load an inversion of the control containers into the SES context as a static
resource in memory.

The RegisterEcommerceProviders processor in the initialize pipeline initializes various SES

implementations. It configures providers for PaymentSystem, ShippingProvider,

NotificationOption, Country, Currency, VatRegion, and OrderStatus entities, as well as

registering the QueryableContainerExtension entity for Unity container.

Note

SES uses the /App_Config/Include/Sitecore.Ecommerce.config file to extend the

Web.config file.

2.2.3 Dependency Injection

With Unity, you can configure dependencies between different entities.

We recommend that you implicitly inject dependencies as this limits the complexity of the

unity.config file. You only need to explicitly inject dependencies if your implementation differs

from the standard configuration.

For example, the VisitorRepository implementation of the VisitorRepositoryBase contract

depends on the Repository<T> and ICustomerManager<T> contracts. However, you do not

need to configure dependencies for the constructor for the VisitorRepositoryBase mapping in

the unity.config file:

<unity>

...

 <alias alias="VisitorOrderRepositoryBase"

type="Sitecore.Ecommerce.OrderManagement.VisitorOrderRepositoryBase, Sitecore.Ecommerce.Core"

/>

...

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 9 of 54

 <alias alias="VisitorOrderRepository"

type="Sitecore.Ecommerce.Visitor.OrderManagement.VisitorOrderRepository,

Sitecore.Ecommerce.Visitor" />

...

 <container>

...

 <register type="VisitorOrderRepositoryBase" mapTo="VisitorOrderRepository">

<!— Ensures that the lifetime is the same as that of the container and allows the

child containers to have their own registrations for this entity type. -->

 <lifetime type="hierarchical" />

<!--Required by the DefaultVisitorOrderManager logging functionality.-->

 <interceptor type="VirtualMethodInterceptor" />

 <policyInjection />

 </register>

...

 </container>

...

</unity>

If the injection dependencies are not explicitly registered in the Unity configuration file, Unity takes the
constructor with the biggest number of dependencies and injects these dependencies automatically.

For more information about Dependency Injection in Unity see
http://msdn.microsoft.com/en-us/library/ff660914.aspx

Note
To indicate generic type parameters in the Unity configuration, append a single end quotation mark

(“’”) followed by a number.

For example, to specify the
Sitecore.Ecommerce.DomainModel.Currencies.ICurrencyConverter<TTotals,

TCurrency> interface that requires two generic types, specify a type signature followed by a back

quote and the number 2:

Sitecore.Ecommerce.DomainModel.Currencies.ICurrencyManager`2

2.2.4 How to Resolve a SES Component

Use the Sitecore.Ecommerce.Context.Entity.Resolve() method to resolve a type

configured with Unity. Pass the type of the contract to the method as a generic type parameter. For

example, to access the default implementation of the IProductRepository contract:

using Sitecore.Ecommerce;

...

Sitecore.Ecommerce.DomainModel.Products.IProductRepository productRepository =

 Sitecore.Ecommerce.Context.Entity.Resolve

 <Sitecore.Ecommerce.DomainModel.Products.IProductRepository>();

The signature of the Resolve() method is an extension method in the

Sitecore.Ecommerce.IoCContainerExtensions class.

To use this signature, add the following line at the top of your class:

using Sitecore.Ecommerce;

Alternatively, fully designate this implementation of the Resolve() method:

Sitecore.Ecommerce.DomainModel.Products.IProductRepository productRepository =

 Sitecore.Ecommerce.IoCContainerExtensions.Resolve

 <Sitecore.Ecommerce.DomainModel.Products.IProductRepository>

 (Sitecore.Ecommerce.Context.Entity);

To access a named entity, pass the name of an entity as the first parameter to the

Sitecore.Ecommerce.Context.Entity.Resolve() method.

For example, to retrieve the IProductRepository implementation called

MyProductRepository:

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 10 of 54

Sitecore.Ecommerce.DomainModel.Products.IProductRepository myProductRepository =

 Sitecore.Ecommerce.Context.Entity.Resolve

 <Sitecore.Ecommerce.DomainModel.Products.IProductRepository>("MyProductRepository");

A dependency container can be used in different ways. In SES we use it as a service locater pattern
only for the products on a webshop where we map templates to products. Otherwise we use it as a
normal dependency container.

When we map a product to a template, we must define this mapping in the unity.config file.

However every template doesn’t need a mapping and in these cases there is a fallback whereby the
unnamed entity mapping is used instead.

Here is a mapping example from the sample pages:

<container>

 <!-- Additional container registrations for example site-->

 <register type="ProductBaseData" mapTo="FlashProduct" name="{95681CF6-3635-49EC-A09A-

 CC548FA62389}"/>

 <register type="ProductBaseData" mapTo="LenseProduct" name="{8FAC8E12-7459-43F8-97E8-

 1BC6840B9226}"/>

 <register type="ProductBaseData" mapTo="OtherAccessoryProduct" name="{A93FA2C4-3AE4-

 45C2-8C3F-EFA7E129537E}"/>

 <register type="ProductBaseData" mapTo="PsCameraProduct" name="{7BD2FBC6-061B-40DD-B1F9-

 D8603A701624}"/>

 <register type="ProductBaseData" mapTo="SlrCameraProduct" name="{B072B7C7-6F3F-4316-

 B8D7-010629AEBEF1}"/>

</container>

The GUIDs in the named attributes are the template IDs.

The fallback is located in the unity.config file which applies to every webshop:

<register type="ProductBaseData" mapTo="SitecoreProduct" />

If you use Context.Entity.Resolve<EntityType>(instanceName) to resolve a named

instance and the entity is not registered, Unity throws an exception. To avoid this, we use

IsRegistered<typeof(EntityType)>(instanceName) to check the existence of the named

instance. If the named instance is not registered, Context.Entite.Resolve<EntityType>() is

used without the instanceName. However, IsRegistered() is not a thread safe method.

To avoid concurrency issues, you must use the TypeTrackingExstesion thread safe method and

the IUnityContainer extension methods that are placed in

Sitecore.Ecommerce.Unity.UnityIoCContainerExtensions. This is an extension that we

have made to overcome these challenges and contains the following:

 Two overloads of HasRegistration which are thread safe analogs of IsRegistered():

o public static bool HasRegistration([NotNull] this IUnityContainer

container, [NotNull] Type type, [NotNull] string name)

o public static bool HasRegistration([NotNull] this IUnityContainer

container, [NotNull] Type type)

 Public static T SmartResolve<T>(this IUnityContainer container, string

name) — returns a named instance if it is registered in a container or returns the default

unnamed instance — in the same way as when you call

Context.Entite.Resolve<EntityType>().

The TypeTrackingExtension method is added to the parent container and all the child containers.

If you create a new child container, you must register this extension to the container. Use the

UnityIoCContainerExtensions.RegisterExtension<ExtensionType>() method to

register the extension. The default Unity AddExtension and AddNewExtension methods do no

check whether the extension is already registered before adding it.

For more information about how SES resolves types, see the section How to Configure Unity for
Multiple Implementations of the Same Contract.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 11 of 54

2.2.5 How to Add an Implementation to the Unity Configuration

To add an additional implementation of a contract to the Unity configuration:

1. In the Visual Studio project, create a class that implements the required interface or inherits
from the appropriate base class.

2. In the Unity configuration, insert an additional /unity/alias element.

3. In the new /unity/alias element, set the alias attribute to a unique alias.

4. In the new /unity/alias element, set the type attribute to the signature of the .NET class.

Alternatively you can use Initialize pipeline to perform some registrations from code. It might be useful
if you want to deliver your product in several independent packages but do not want to introduce too
many configuration files.

That is how the Sitecore E-Commerce Order Manager configured.

The Sitecore.Ecommerce.Apps assembly contains a

Sitecore.Ecommerce.Apps.Pipelines.Loader.ConfigureUnityContainer processor.

This processor reads the Unity Container from PipelineArgs and configures it:

 public void Process(PipelineArgs args)

 {

 IUnityContainer container = args.CustomData["UnityContainer"] as IUnityContainer;

 container.RegisterType<ContextSwitcherDataSource, ContentContextSwitcherDataSource>();

 }

For more information about how to configure SES to use the implementation, see the sections How to
Replace a SES Component and How to Configure Unity for Multiple Implementations of the Same
Contract.

2.2.6 How to Add a Contract to the Unity Configuration

To add a contract to the Unity configuration:

1. In the Unity configuration file, add a /unity/alias element. Set the alias attribute of the

new /unity/alias element to a unique value that identifies the contract. Set the type

attribute of the new /unity/alias element to the .NET type of the interface or class that

defines the contract. For example:

<alias alias="MyType" type="Namespace.MyType, MyAssembly"/>

If the type that defines the contract does not also serve as the implementation of that contract,
configure one or more implementations of the contract.

For more information about how to define an implementation of the contract, see the section
How to Add an Implementation to the Unity Configuration.

2.2.7 How to Replace a SES Component

To configure SES to use a custom component for a feature:

1. In the Unity configuration, add a /unity/alias element to register the new implementation.

For more information about how to add an implementation to the Unity configuration, see the
section How to Add an Implementation to the Unity Configuration.

2. In the Unity configuration, set the mapTo attribute of the /unity/container/register

element with a value for the type attribute that specifies the value of the alias attribute of

the /unity/alias element that defines the contract or implementation to the value of the

alias attribute of the new /unity/alias element that specifies the implementation.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 12 of 54

In the /unity/container/register element, the type attribute identifies the alias of the

contract, the mapTo attribute identifies the alias of the implementation, and the optional name attribute

defines a token with which to resolve the implementation in API calls.

2.2.8 How to Configure Unity for Multiple Implementations of the Same
Contract

In Unity, you can define several implementations of the same contract.

To use different implementations of the same contract for different purposes:

1. Add any required implementations to the Unity configuration.

For more information about how to add an implementation to the Unity configuration, see the
section How to Add an Implementation to the Unity Configuration.

2. For each implementation, in the Unity configuration, create a

/unity/container/register element.

Note

To create the new /unity/container/register element, copy an existing

/unity/container/register element that is associated with the same contract.

3. In the new /unity/container/register element, set a unique value for the name

attribute.

For example, you can configure the /unity/container/register elements in the Unity

configuration to:

 Make SES use the PaymentProvider implementation with the alias

AmazonPaymentProvider for the Amazon payment system.

 Use the default the PaymentProvider implementation with the alias

OfflinePaymentProvider as the default option.

<!-- contract -->

<alias alias="PaymentProvider" type="Sitecore.Ecommerce.DomainModel.Payments.PaymentProvider,

Sitecore.Ecommerce.DomainModel" />

<!-- implementations -->

<alias alias="AmazonPaymentProvider"

type="Sitecore.Ecommerce.Payments.Amazon.AmazonPaymentProvider,

Sitecore.Ecommerce.Payments.Amazon" />

<alias alias="OfflinePaymentProvider"

type="Sitecore.Ecommerce.Payments.OfflinePaymentProvider, Sitecore.Ecommerce.Kernel" />

<!-- uses -->

<container>

 <register type="PaymentProvider" mapTo="OfflinePaymentProvider">

 <property name="PaymentSystem" />

 </register>

 <register type="PaymentProvider" mapTo="AmazonPaymentProvider" name="Amazon">

 <property name="PaymentSystem" />

 </register>

Use the following setting in Unity to access a named implementation by passing the name of the

implementation to the Sitecore.Ecommerce.Context.Entity.Resolve() method:

Sitecore.Ecommerce.DomainModel.Payments.PaymentProvider paymentProvider =

 Sitecore.Ecommerce.Context.Entity.Resolve

 <Sitecore.Ecommerce.DomainModel.Payments.PaymentProvide>("Amazon");

If you pass a parameter to the Sitecore.Ecommerce.Context.Entity.Resolve() method and

if an implementation exists, Unity injects that type.

If you do not pass a parameter to the Sitecore.Ecommerce.Context.Entity.Resolve()

method, Unity injects the default implementation of the contract.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 13 of 54

Note
If no default implementation exists, Unity raises an error.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 14 of 54

2.3 SES Product Management

SES stores product information in repositories that typically exist outside of the content tree of any
managed website, thereby allowing multiple websites to share product repositories.

SES provides logic to generate product URLs that appear to be within the website, and enhances the
logic that Sitecore applies to determine and present the product definition items associated with these
URLs.

2.3.1 Product URLs and Product Resolution

SES adds the ProductResolver processor after the default ItemResolver processor in the

httpRequestBegin pipeline defined in the Web.config file. If the default ItemResolver cannot

resolve the context item from the requested URL, then the ProductResolver uses a

VirtualProductResolver to attempt to determine a product from the requested URL. If the

VirtualProductResolver can determine the product, it sets the context item to the item that

defines that product.

How to Specify the Product URL Format

To specify the product URL format for a managed website or branch:

1. In the Content Editor, in the home item for the managed website or the root item of the
branch, select the System section,

2. In the Display Products Mode field, select one of the ProductUrlProcessor definition

items.

Note

If the Display Products Mode field does not exist for an item, add the Ecommerce/Product

Categories/Product Search Group Folder data template to the base templates for the data

template associated with the item.

SES uses the value of the Display Products Mode field in the nearest ancestor of the context item

that defines a value for that field. For example, given the URL /products.aspx, if the

<home>/products item has a value for Display Products Mode field, SES applies that value,

otherwise SES applies the value of the Display Products Mode field in the home item.

2.3.2 Product Presentation

The URLs of SES product pages map to items that do not define layout details. For more information
about the layout details, see the manual Presentation Component Reference.

Important
Do not update the layout details for a product or the standard values of a data template for products.

Note
To preview the presentation of a product, use the Page Editor or the Preview viewer to navigate from
a page that links to the product to the product detail page.

SES replaces the InsertRenderings processor in the renderLayout pipeline defined in the

Web.config file with the ProcessProductPresentation processor. When processing an HTTP

request for a product page, the ProcessProductPresentation processor applies the layout

details from the item that is specified in the Product Detail Presentation Storage field.

This field is in the nearest ancestor of the logical parent item of the virtual product item that defines a

value for that field. For example, in the /products/product_name.aspx URL, if the

<home>/products item has a value in the Product Detail Presentation Storage field, SES applies

http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Reference.aspx

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 15 of 54

that value, otherwise SES applies the value in the Product Detail Presentation Storage field of the
Home item.

Note
If the Product Detail Presentation Storage field does not appear in an item, add the

Ecommerce/Product Categories/Product Search Group data template to the base

templates of the data template associated with the item.

How to Specify a Product Presentation Format

To specify the presentation format that you want to use to display the products associated with a
page:

1. In the Content Editor, edit the page definition item.

1. In the page definition item, on the Content tab, in the Products in Category section, in the
Product Detail Presentation Storage field, select a product presentation definition item.

How to Update a Product Presentation Format

To update an existing product presentation format:

1. In the Content Editor, edit the product presentation definition item. The product presentation
definition item is a child of the
/Sitecore/System/Modules/Ecommerce/System/Product Presentation

Repository item.

2. In the product presentation definition item, edit the layout details.

For more information about applying layout details, see the manual Presentation Component
Cookbook that is available on the SDN.

Note
You can use access rights to control which users can apply various product presentation formats.

To apply access rights:

1. You can change the type of the Product Detail Presentation Storage field in the

Ecommerce/Product Categories/Product Search Group item from Lookup to

Droptree.

2. Create folders under /Sitecore/System/Modules/Ecommerce/System/Product

Presentation Repository that you can use to store the different groups of presentation

format definition items.

3. Apply access rights to those folders.

How to Define a New Product Presentation Format

To define a new product presentation format:

1. In the Content Editor, select the
/Sitecore/System/Modules/Ecommerce/System/Product Presentation

Repository item.

2. In the Content Editor, insert a new product presentation definition item using the

Ecommerce/Product/Product Presentation Storage data template.

3. In the new product presentation definition item, update the product presentation format.

For more information about updating the product presentation format, see the section How to
Update a Product Presentation Format.

http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Cookbook.aspx
http://sdn.sitecore.net/Reference/Sitecore%206/Presentation%20Component%20Cookbook.aspx

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 16 of 54

4. Optionally, you can apply the new product presentation format to the existing pages. For more
information about applying a product presentation format, see the section How to Specify a
Product Presentation Format.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 17 of 54

Chapter 3

Adding Custom Product Search Criteria

This chapter describes how to extend the product search feature in SES. It shows
how to customize the search options and how to have more control over product
presentation in both of the frontend and backend. By the frontend we mean the
display of search results for the page visitor and by the backend we mean the
Content Editor and Template Manager.

This chapter contains the following sections:

 The Need for Product Search Configuration and Extensibility

 Extending the Product Search Group Template

 Extending the Resolve Strategy

 Extending the Product Search Catalog

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 18 of 54

3.1 The Need for Product Search Configuration and
Extensibility

To illustrate the need for changing product search, consider the case of a camera and photographic
supply webshop that is divided into sections that contain different models, categories, proficiency
levels, and interrelated products. A vendor will not usually show all the cameras on the same page but
they will rather show each camera with a group of products of the same proficiency level. For
example, professional cameras are usually shown with professional lenses and others accessories.
Moreover, one product can be shown in multiple groups.

This chapter explains how to create a different classification than the one used in the repository.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 19 of 54

3.2 Extending the Product Search Group Template

This section describes how to classify a product according to your business needs. You must create
or edit the classifications that you need in the Product Search Group template.

A convenient starting point is to extend this template with additional fields for storing search criteria.
You can use the Product Search Group template to define a category structure that reflects the way
the products are presented on the front end and not in the structure of the repository.

This section describes how to use the Content Editor to add a new search criterion to the Product
Search Group template by applying an additional filter to the products selected.

To add a new search criterion to the Product Search Group template:

1. Log in into the Content Editor and navigate to the Product Search Group template.

2. In the Content tab, create a new template that inherits from the Product Search Group
template and call it My Product Search Group.

3. Click the Builder tab and in the Catalog Settings section, add a new criterion, call it Search
Treelist.

4. In the Type field, select Treelist as the type. You must select Treelist as the type if you want
to select multiple folders from the product repository.

5. In the Source field, enter the path (or GUID) of the product repository.

6. Create a page item that inherits from the My Product Search Group template and call it
mytest.

You should now be able to select the domain for your search from the treelist.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 20 of 54

In the following image, Cameras is the selected domain.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 21 of 54

3.3 Extending the Resolve Strategy

To search for products in the domain selected in the Treelist control, you must:

 Extend the DatabaseCrawler to index this product category parent folder.

 Extend the QueryCatalogProductResolveStrategy class to find the products based on

a particular product category folder.

Extending the Database Crawler

Essentially, you use the DatabaseCrawler class to build product and web indexes.

The Sitecore.Ecommerce.Search.DatabaseCrawler class scans a specific repository, such

as, a database or file system, extracts information, and stores it in a search index. It then makes this
information available to Sitecore Search.

The Sitecore.Ecommerce.Search.DatabaseCrawler class performs the following functions:

 IndexAllFields — Extracts data from a specific document that is requested by the crawler

or the monitor. The data extracted consists of metadata and content.

o Metadata — The Indexer extracts metadata that the system understands. You can filter

and prioritize the metadata, for example, by using the _name or _template field.

o Content — The Indexer also extracts body content and prioritizes it. You can use boost

to prioritize the content in the document. This is usually only applied to a single field,
giving the document a single prioritization.

 DatabaseCrawler — Traverses the storage system and uses the indexer to populate the

search index.

 MonitorChanges — Monitors changes in the repository and updates the search index.

The following code shows how to extend the DatabaseCrawler class to add a special field to a

document in Lucene that represents the parent category folder in SES:

1. In Visual Studio, create a new project and call it Sample1.

2. Add the following class to the project and call it SampleDatabaseCrawler.

namespace Sample1.Kernel.Search

{

 using Lucene.Net.Documents;

 using Sitecore.Data;

 using Sitecore.Data.Items;

 // SampleDatabaseCrawler class is inherited from Sitecore.Ecommerce.Search.DatabaseCrawler

 // Created so we can add the needed field to the Lucene index products when resolving

 // products based on which product category folder they are located in

 public class SampleDatabaseCrawler : Sitecore.Ecommerce.Search.DatabaseCrawler

 {

 // Overridden method for adding special fields to the Lucene product index

 // <param name="document">The Lucene document to add a new field to</param>

 // <param name="item">the item to get the value from</param>

 protected override void AddSpecialFields(Document document, Item item)

 {

 //Call the base class for setting the base special fields on the Lucene document

 base.AddSpecialFields(document, item);

 //Add the field _parent to the document for the Luceneindexeer

 document.Add(CreateTextField("_parent", ShortID.Encode(item.Parent.ID)));

 }

 }

}

Once you have extended the DatabaseCrawler class to create the _parent field for the Indexer,

you are ready to extend the search strategy to use this index.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 22 of 54

Extending the ICatalogProductResolveStrategy Class

The ICatalogProductResolveStrategy contract defines the way that SES retrieves the

products that are displayed on a given webpage.

The implementation of this contract:

1. Reads search criteria form the current item based on the product search group template.

2. Builds and executes a search using the criteria against the product repository.

3. Returns the list of products to display.

The following classes are the default Implementations of the ICatalogProductResolveStrategy

contract:

ProductListCatalogResolveStrategy

You can use this class to retrieve the products that have been manually selected and associated with

the webpage item — sitecore/system/Modules/Ecommerce/System/Product Selection

Method.

QueryCatalogProductResolveStrategy

You can use this class to retrieve the products that result from the search and store the query

parameters on the webpage item — sitecore/system/Modules/Ecommerce/System/Product

Selection Method. It implements the CatalogProductResolveStrategyBase class which

implements the ICatalogProductResolveStrategy interface.

You can also extend the class that represents the QueryCatalogProductResolveStrategy to

accommodate the search:

1. In Visual Studio, open the project called Sample1 that you created in the last subsection.

2. Add the following class and name it SampleQueryCatalogProductResolveStrategy.

namespace Sample1.Kernel.Catalogs

{

 using System.Collections.Generic;

 using System.Linq;

 using Sitecore.Data;

 using Sitecore.Data.Items;

 using Sitecore.Diagnostics;

 using Sitecore.Ecommerce;

 using Sitecore.Ecommerce.Configurations;

 using Sitecore.Ecommerce.Search;

 // <summary>

 // SampleQueryCatalogProductResolveStrategy class is inherited from

 Sitecore.Ecommerce.Catalogs.QueryCatalogProductResolveStrategy

 // Created to implement the functionality to resolve products based on which

 repository folder they are located in.

 // </summary>

 public class SampleQueryCatalogProductResolveStrategy :

 Sitecore.Ecommerce.Catalogs.QueryCatalogProductResolveStrategy

 {

 // <summary>

 // The Search TreeList field name

 // </summary>

 private read only string searchTreelistFieldName;

 // <summary>

 // Initializes a new instance of the SampleQueryCatalogProductResolveStrategy

 class.

 // </summary>

 // <param name="searchTextBoxesFieldName">Names of the searchtextboxes</param>

 // <param name="searchChecklistsFieldName">Names of the Checkboxes</param>

 // <param name="searchTreelistFieldName">name of the treelist field</param>

 public SampleQueryCatalogProductResolveStrategy(string

 searchTextBoxesFieldName, string searchChecklistsFieldName, string

 searchTreelistFieldName)

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 23 of 54

 : base(searchTextBoxesFieldName, searchChecklistsFieldName)

 {

 // Testing for not null or empty

 Assert.ArgumentNotNullOrEmpty(searchTreelistFieldName,

 "searchTreelistFieldName");

 // Assigning to local variable

 this.searchTreelistFieldName = searchTreelistFieldName;

 }

 // <summary>

 // Overridden method for building the search query for searching the Lucene index

 // </summary>

 // <param name="catalogItem">the catalog item we are resolving from (product

 catalog)</param>

 // <returns>The query we build for searching</returns>

 protected override Query BuildSearchQuery(Item catalogItem)

 {

 // Let’s resolve the actual field on the current catalog item

 string searchTreelistFieldText =

 catalogItem[this.searchTreelistFieldName];

 // If nothing defined, returning “error in setup” on template

 if (string.IsNullOrEmpty(searchTreelistFieldText))

 {

 return default(Query);

 }

 // Calling the base class for getting all the query fields defined in the

 base class

 Query query = base.BuildSearchQuery(catalogItem);

 // Getting the configuration from SES

 BusinessCatalogSettings businessCatalogSettings =

 Context.Entity.GetConfiguration<BusinessCatalogSettings>();

 // Testing if configuration is set - if not, fail in setup by user.

 Assert.IsNotNull(businessCatalogSettings, GetType(), "Business Catalog

 settings not found.", new object[0]);

 // Getting the root from where products are located (product repository)

 Item productRepositoryRootItem =

 catalogItem.Database.GetItem(businessCatalogSettings.ProductsLink);

 // Testing if the root is set - if not, this is a failure from the user.

 Assert.IsNotNull(productRepositoryRootItem, "Product Repository Root Item

 is null.");

 // If the query is empty, we need to add some stuff to it

 if (query == default(Query))

 {

 query = new Query { SearchRoot =

 productRepositoryRootItem.ID.ToString() };

 }

 // Let´s parse the field from the current catalog items

 if (!string.IsNullOrEmpty(searchTreelistFieldText))

 {

 this.ParseTreelistField(searchTreelistFieldText, ref query);

 }

 return query;

 }

 // <summary>

 // Function for parsing TreeList to query on the catalog item

 // </summary>

 // <param name="ids">string with | separated list of categoryfolder

 Ids</param>

 // <param name="query">the query to append to</param>

 protected virtual void ParseTreelistField(string ids, ref Query query)

 {

 // Creating a list if more than one folder is defined

 List<string> folders = new List<string>();

 if (ids.Contains("|"))

 {

 folders.AddRange(ids.Split('|'));

 }

 else

 {

 folders.Add(ids);

 }

 Query sub = new Query();

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 24 of 54

 int count = 0;

 // Iterating through each folder where there's a Sitecore ID

 foreach (string s in folders.Where(ID.IsID))

 {

 // Appending the value of the folder to the query and telling the

 query to search for the field _parent in the product Lucene index

 sub.AppendField("_parent", ShortID.Encode(s), MatchVariant.Exactly);

 // If more than one - we must add an “Or” to the query

 if (count < (folders.Count - 1))

 {

 sub.AppendCondition(QueryCondition.Or);

 }

 count++;

 }

 // Appending the built query to the main query

 query.AppendSubquery(sub);

 }

 }

}

Configuring SES and Lucene

To register the newly created database crawler and the resolve strategy, you must configure the

search in two files — Sitecore.Ecommerce.config and Unity.config.

1. In the Sitecore.Ecommerce.config file, under the indexes element, in the

Configuration element, add the following index:

 <!-- Products index - Used by SES for resolving products - should not be

 used on frontend for searching-->

 <index id="products" type="Sitecore.Search.Index, Sitecore.Kernel">

 <param desc="name">$(id)</param>

 <param desc="folder">__products</param>

 <Analyzer type="Sitecore.Ecommerce.Search.LuceneAnalyzer,

 Sitecore.Ecommerce.Kernel" />

 <locations hint="list:AddCrawler">

 <master type="Sample1.Kernel.Search.SampleDatabaseCrawler, Sample1">

 <Database hints="master">master</Database>

 <!-- Repository root where products are stored-->

 <!--<Root>{054AEC0D-9D92-4C3A-80AC-A0E78773EAB7}</Root>-->

 <!-- Repository root where SES products are stored-->

 <Root hints="masterRoot">{502EA9FA-19E7-4DA5-8EA4-56C374AED45B}</Root>

 <Tags hint="master products">master products</Tags>

 </master>

 <web type="Sample1.Kernel.Search.SampleDatabaseCrawler, Sample1">

 <Database hints="web">web</Database>

 <!-- Repository root where products are stored-->

 <!--<Root>{054AEC0D-9D92-4C3A-80AC-A0E78773EAB7}</Root>-->

 <!-- Repository root where SES products are stored-->

 <Root hints="webRoot">{502EA9FA-19E7-4DA5-8EA4-56C374AED45B}</Root>

 <Tags>web products</Tags>

 </web>

 </locations>

 </index>

2. In the Unity configuration file, add the following alias.

<alias alias="SampleQueryCatalogProductResolveStrategy" ´

 type="Sample1.Kernel.Catalogs.SampleQueryCatalogProductResolveStrategy, Sample1"/>

3. In the Unity configuration file, add the following registration:

<register type="ICatalogProductResolveStrategy"

 mapTo="SampleQueryCatalogProductResolveStrategy" name="My product Repository query">

 <lifetime type="singleton" />

 <constructor>

 <param name="searchTextBoxesFieldName">

 <value value="Search Text Boxes"/>

 </param>

 <param name="searchChecklistsFieldName">

 <value value="Search Checklists"/>

 </param>

 <param name="searchTreelistFieldName">

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 25 of 54

 <value value="Search Treelist"/>

 </param>

 </constructor>

 </register>

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 26 of 54

3.4 Extending the Product Search Catalog

This section describes how to extend the Product Search Catalog to accommodate the product
search extension in the backend. In other words, it describes how to make the search results visible in
the Content Editor.

To extend the Product Search Catalog, you must:

 Extend the CatalogQueryBuilder.

 Create a products source.

 Reference this source in the Content Editor.

Extending the CatalogQueryBuilder Class

The CatalogQueryBuilder class builds the search query that is used by SES when querying the

product repository.

Note

You can only use the CatalogQueryBuilder in the product catalog.

To extend the CatalogQueryBuilder class to reflect the search result in the backend:

1. In Visual Studio, open the project called Sample1 that you created earlier.

2. Add the following class to the project and name it CatalogQueryBuilder.

namespace Sample1.Shell.Applications.Catalogs.Models.Search

{

 using System.Linq;

 using Sitecore.Ecommerce.Search;

 using Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search;

 using Sitecore.Ecommerce.Configurations;

 using Sitecore.Ecommerce;

 using Sitecore.Diagnostics;

 using System.Collections.Generic;

 using Sitecore.Data;

 // <summary>

 // CatalogQueryBuilder inheriting from

 Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.CatalogQueryBuilder

 // Class is used for implementing functionality for resolving our result on the product

 page in the sitecore content editor.

 // </summary>

 public class CatalogQueryBuilder :

 Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.CatalogQueryBuilder

 {

 // <summary>

 // Buildquery function overridden - used for building the actual query for

 searching

 // </summary>

 // <param name="options">Seachoptions</param>

 // <returns>The query to be used for search</returns>

 public override Query BuildQuery(SearchOptions options)

 {

 // Get the base query - we still need the functionality from there

 var query = base.BuildQuery(options);

 // Requesting the id of the item we are resolving from in the content editor

 var id = Sitecore.Context.Request.QueryString.Get("id");

 // Getting the catalog item from the DB

 var catalogItem = Database.GetDatabase("master").GetItem(new ID(id));

 // Let’s resolve the actual field on the current catalog item

 var searchTreelistFieldText = catalogItem["Search Treelist"];

 // Returning (error in set up)on the template, if nothing is defined

 if (string.IsNullOrEmpty(searchTreelistFieldText))

 {

 return query;

 }

 // Getting the configuration from SES

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 27 of 54

 var businessCatalogSettings =

 Context.Entity.GetConfiguration<BusinessCatalogSettings>();

 // Testing if configuration is set - if not, fail in setup by user

 Assert.IsNotNull(businessCatalogSettings, GetType(), "Business Catalog

 settings not found.", new object[0]);

 // Getting the root from where products are located (product repository)

 var productRepositoryRootItem =

 catalogItem.Database.GetItem(businessCatalogSettings.ProductsLink);

 // Testing if the root is set - if not this is a fail from the user

 Assert.IsNotNull(productRepositoryRootItem, "Product Repository Root Item

 is null.");

 // If the query is empty - we need to add some stuff to it

 if (query == default(Query))

 {

 query = new Query { SearchRoot =

 productRepositoryRootItem.ID.ToString() };

 }

 // let’s parse the treelist field from the current catalog items

 if (!string.IsNullOrEmpty(searchTreelistFieldText))

 {

 ParseTreelistField(searchTreelistFieldText, ref query);

 }

 return query;

 }

 // <summary>

 // Function for parsing treelist to query on the catalog item

 // </summary>

 // <param name="ids">string with | separated list of category folder

 Ids</param>

 // <param name="query">the query to append to</param>

 protected virtual void ParseTreelistField(string ids, ref Query query)

 {

 // Creating a list if more than one folder is defined

 var folders = new List<string>();

 if (ids.Contains("|"))

 {

 folders.AddRange(ids.Split('|'));

 }

 else

 {

 folders.Add(ids);

 }

 var sub = new Query();

 var count = 0;

 // Iterating through each folder where there is a Sitecore ID

 foreach (var s in folders.Where(ID.IsID))

 {

 // Appending the value of the folder to the query and telling the query to search

 for the field _parent in the product Lucene index

 sub.AppendField("_parent", ShortID.Encode(s), MatchVariant.Exactly);

 // If more than one, we of course need to add a or to the query

 if (count < (folders.Count - 1))

 {

 sub.AppendCondition(QueryCondition.Or);

 }

 count++;

 }

 // If the query is not empty, we need to be sure to add a AND condition.

 if (!query.IsEmpty())

 {

 query.AppendCondition(QueryCondition.And);

 }

 // Appending the built query to the main query

 query.AppendSubquery(sub);

 }

 }

}

Creating a Products Source

The main class that you should use in this scenario is the ProductsSource class. You can use the

methods in this class to initialize the search, build the query using the CatalogQueryBuilder

mentioned earlier, and return the result.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 28 of 54

To create a products source, extend the ProductsSource —
Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.ProductsSource

class:

1. In Visual Studio, open the project named Sample1 that you created earlier.

2. Add the following class to the project and name it ProductsSource:

namespace Sample1.Shell.Applications.Catalogs.Models.Search

{

 using System.Linq;

 using System.Collections.Generic;

 using Sitecore.Ecommerce.DomainModel.Products;

 using Sitecore.Ecommerce.Search;

 using Sitecore.Ecommerce.Utils;

 using Sitecore.Ecommerce;

 using Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search;

 using Sitecore.Ecommerce.Shell.Applications.Catalogs.Models;

 // <summary>

 // ProductsSource inheriting from

 Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.ProductsSource

 // this class is created so we can call the new query functionality we need for showing

 the result in the Sitecore content editor.

 // this class is also referred to on the copy made in Sitecore based on

 /sitecore/system/Modules/Ecommerce/Catalogs/Product Catalog

 // </summary>

 class ProductsSource :

 Sitecore.Ecommerce.Shell.Applications.Catalogs.Models.Search.ProductsSource

 {

 // <summary>

 // Gets the entries.

 // </summary>

 // <param name="pageIndex">Index of the page.</param>

 // <param name="pageSize">Size of the page.</param>

 // <returns>Returns Entries</returns>

 public override IEnumerable<List<string>> GetEntries(int pageIndex, int

 pageSize)

 {

 // Let’s get the query

 var builder = new CatalogQueryBuilder();

 var query = builder.BuildQuery(SearchOptions);

 // Let’s resolve the product repository

 var productRepository = Context.Entity.Resolve<IProductRepository>();

 // Let’s do the search

 var products = productRepository.Get<ProductBaseData, Query>(query,

 pageIndex, pageSize);

 // Let’s return the result

 return !products.IsNullOrEmpty() ? new

 EntityResultDataConverter<ProductBaseData>().Convert(products,

 SearchOptions.GridColumns).Rows : new GridData().Rows;

 }

 // <summary>

 // Gets the entry count

 // </summary>

 // <returns>Returns enties count.</returns>

 public override int GetEntryCount()

 {

 // Let’s get the query

 var builder = new CatalogQueryBuilder();

 var query = builder.BuildQuery(SearchOptions);

 // Let’s resolve the product repository

 var productRepository = Context.Entity.Resolve<IProductRepository>();

 return productRepository.Get<ProductBaseData, Query>(query).Count();

 }

 }

}

Defining a New Editor in the Core Database

When you create a product catalog, you must also define a new editor in the Core database. You
place the search catalog in the editor.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 29 of 54

To create the editor:

1. Switch to the Core database.

2. Log in to the Content Editor.

3. Browse to the My Product Page item (Sitecore/content/Applications/Content

Editor/Editors/Ecommerce/My Product Page) and insert from template.

4. Select Editor as the template (/Sitecore Client/Content editor/Editor).

You should now be able to see the new editor created under Ecommerce.

Creating a Product Catalog

The last part of this task is to create a product catalog. You should also reference the product source
and the editor defined in the core database.

To create a product catalog:

1. Switch to the Master database.

2. Under Sitecore/System/Modules/E-Commerce/Catalogs, create a new catalog and

call it My Product Catalog.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 30 of 54

3. In the My Product Catalog item, in the Catalog Data Source field, enter the products source
reference.

4. Browse to the standard values of the My Product Search Group template —
Sitecore/Templates/My Sample Site/Products categories/ My Product

Search Group /_Standard Values.

5. On the Content tab, in the Editors field, click Edit and select the editor you defined in the last
section — My Product Page.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 31 of 54

Chapter 4

SES Core Configuration

There are two important configuration files in Sitecore SES:

o Unity.config

o Sitecore.Ecommerce.config

This chapter focuses on the Sitecore.Ecommerce.config file because it

contains the configuration settings that do not exist in the content tree. SES uses the

/App_Config/Include/Sitecore.Ecommerce.config file to extend the

Web.config file.

For information about the Unity.config, see the section Unity Application Block

Overview.

This chapter contains the following sections:

 Commands

 Events.

 XSLExtensions

 Settings

 Pipelines

 Search

 Multisite Configuration

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 32 of 54

4.1 Commands

This section describes the Ecommerce specific commands that are used in the Sitecore shell. These
commands are used to define the business logic for each of the UI controls in SES.

Note
The commands described in this section are obsolete. In SES 2.2, you should use the new Order
Manager application to manage orders. The old commands have only been kept for backwards
compatibility.

The following snippet contains the commands that are registered in the

Sitecore.Ecommerce.config file:

<commands>

 <command name="ordercatalog:changeorderstatus"

 type="Sitecore.Ecommerce.Shell.Applications.OrderCatalog.Commands.

 ChangeOrderStatus,Sitecore.Ecommerce.Shell"/>

 <command name="ordercatalog:editorder"

 type="Sitecore.Ecommerce.Shell.Applications.OrderCatalog.Commands.

 EditOrder,Sitecore.Ecommerce.Shell"/>

 <command name="ordercatalog:editorderlines"

 type="Sitecore.Ecommerce.Shell.Applications.OrderCatalog.Commands.

 EditOrderLines,Sitecore.Ecommerce.Shell"/>

</commands>

The following table describes the commands in the Sitecore.Ecommerce.config file:

Command Name Command Type Description

Ordercatalog:ch

angeorderstatus

Sitecore.Ecommerce.Shell.Appl

ications.OrderCatalog.Command

s.ChangeOrderStatus,Sitecore.

Ecommerce.Shell

Calls the execute method of the

ChangeOrderStatus class. This

command changes the status of
an order to one of the following:

 Authorized

 Captured

 New

 Pending

 Processing

 Completed

 Canceled

 Closed

 Held

It changes the status according to
the rules defined for each state.

In the following image, you can
see where you can change the
status of an order.
On the Order tab, in the Order
Status group, you select the
status for the order.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 33 of 54

Command Name Command Type Description

Ordercatalog:ed

itororder

Sitecore.Ecommerce.Shell.Appl

ications.OrderCatalog.Command

s.EditOrder,Sitecore.Ecommerc

e.Shell

Calls the execute method of the

EditOrder class. This command

launches the Field Editor dialog
box where you can change the
content of the order based on the
fields in the order template.

To edit an order, in the
Operations group, click Edit
Order or Edit Header.

Ordercatalog:ed

itororderlines

Sitecore.Ecommerce.Shell.Appl

ications.OrderCatalog.Command

s.EditOrderLines,Sitecore.Eco

mmerce.Shell

Calls the execute method of the

EditOrderLines class. This

command moves the focus of the
Content Editor to the selected
order allowing you to modify the
order line that is located under the
Order item.

In the Operations group, click
Edit Order.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 34 of 54

4.2 Events

You can associate your Sitecore instance to a number of events in Sitecore. You can see the list of

predefined events in the <events> section of the Web.config file.

The following snippet contains the events that are registered in the Sitecore.Ecommerce.config

file:

<events>

 <event name="item:moved">

 <handler type="Sitecore.Ecommerce.StructuredData.EnableStructuredDataModule,

 Sitecore.Ecommerce.Kernel" method="OnItemSaved" />

 </event>

 <event name="item:saved">

 <handler type="Sitecore.Ecommerce.StructuredData.EnableStructuredDataModule,

 Sitecore.Ecommerce.Kernel" method="OnItemSaved" />

 <handler type="Sitecore.Ecommerce.Unity.ClearSiteSettingsCacheEventHandler,

 Sitecore.Ecommerce.Kernel" method="OnItemSaved" />

 <handler type="Sitecore.Ecommerce.Catalogs.VirtualProductResolverCleaner,

 Sitecore.Ecommerce.Kernel" method="OnItemSaved" />

 </event>

</events>

The following table describes the <events> elements in the Sitecore.Ecommerce.config file:

Event Name Event Type Description

item:moved Sitecore.Ecommerce.StructuredDat

a.EnableStructuredDataModule,

Sitecore.Ecommerce.Kernel

Used to move an order from one
location to another. It executes the

OnItemSaved method that ensures

that the item which is based on the
order template is saved below the
order repository. It creates the
structured tree on the fly.

item:saved Sitecore.Ecommerce.StructuredDat

a.EnableStructuredDataModule,

Sitecore.Ecommerce.Kernel

Used to save an order in a location. It

executes the OnItemSaved method

that ensures that the item which is
based on the order template is saved
below the order repository. It creates
the structured tree on the fly.

Sitecore.Ecommerce.Unity.ClearSi

teSettingsCacheEventHandler,

Sitecore.Ecommerce.Kernel

Sitecore.Ecommerce.Catalogs.Virt

ualProductResolverCleaner,

Sitecore.Ecommerce.Kernel

Note
In SES OM 2.2 you should use the Visitor Order Management or Merchant Order Management API.

The EnableStructuredDataModule event handler has only been kept for backwards

compatibility.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 35 of 54

4.3 XSLExtensions

XSLT is a technology that can be used to output HTML from XML. XSLT can be used instead of
sublayouts, whenever there is no need for complex logic. However sometimes you need to perform a
little chunk of logic or execute a simple operation in your XSLT. XSL allows you to call some C# / VB
methods from your XSLT.

Note

The xslExtensions methods could also be called directly.

The following are the XSL extensions in the SES core module:

<xslExtensions>

 <extension mode="on"

 type="Sitecore.Ecommerce.Analytics.Components.Xsl.XslExtensions,

 Sitecore.Ecommerce.Analytics"

 namespace="http://www.sitecore.net/ecommerceanalytics" singleInstance="true" />

</xslExtensions>

XSLT Method Name Description

AddToShoppingCart This method is used when a visitor adds a product to the

shopping cart. It triggers the AddToShoppingCart

event.
Parameters:

 ProductCode

 ProductName

 Quantity

 Price

ShoppingCartEmptied This method is used when a visitor decides to empty the

shopping cart. It triggers the ShoppingCartEmptied

event.
Parameters:

 ShoppingCartContent

 ItemsinShoppingCart

ShoppingCartContinueShopping This method is used when a visitor decides to continue
shopping. It triggers the event called

ShoppingCartContinueShopping.

ShoppingCartUpdated This method is used when a visitor decides to update the

shopping cart. It triggers the ShoppingCartUpdated

event.

GoToShoppingCart This method is used when a visitor decides to view the

shopping cart. It triggers the GoToShoppingCart event.

ShoppingCartItemRemoved This method is used when a visitor decides to remove an
item from a specific product in the shopping cart. It

triggers the ShoppingCartItemRemoved event.

Parameters:

 ProductCode

 ProdcutName

 Amount

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 36 of 54

XSLT Method Name Description

ShoppingCartItemUpdated This method is used when a visitor decides to update a
shopping cart item. It triggers the

ShoppingCartItemUpdated event.

Parameters:

 ProductCode

 ProductName

 Amount

ShoppingCartProductRemoved This method is used when a visitor decides to remove a
product from the shopping cart. It triggers the

ShoppingCartProductRemoved event.

Parameters:

 ProductCode

 ProductName

 Amount

ShoppingCartViewed This method is used when a visitor decides to view

shopping cart. It triggers the ShoppingCartViewed

event.

GoToCheckOut This method is used when a visitor decides to checkout. It

triggers the GoToCheckOut event.

CheckoutDeliveryNext This method is used when the visitor clicks Next on the
delivery page in the checkout process. It triggers the

CheckoutDeliveryNext event.

Parameters:

 DeliveryAlternativeOption

 NotificationOption

 NotificationText

CheckoutDeliveryOptionSelected This method is used when a visitor selects a checkout
delivery option. It triggers the

CheckoutDeliveryOptionSelected event.

Parameter:

 DeliveryAlternativeOption

CheckoutPaymentMethodSelected This method is used when a visitor selects a checkout
payment method. It triggers the

CheckoutPaymentMethodSelected event.

Parameters:

 OptionTitle

 OptionCode

CheckoutNext This method is used when a visitor clicks Next on any
page in the checkout process. It triggers the
CheckoutNext event.

CheckoutPaymentNext This method is used when a visitor clicks Next on the
payment page in the checkout process. It triggers the

CheckoutPaymentNext event.

CheckoutNotificationOptionSele

cted

This method is used when a visitor selects a checkout
notification option. It triggers the

CheckoutNotificationOptionSelected event.

Parameter:

 DeliveryNotificationOption

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 37 of 54

XSLT Method Name Description

CheckoutPrevious This method is used when a visitor clicks Previous during

the checkout process. It triggers the CheckoutPrevious

event.

AuthentificationClickedLoginBu

tton

This method is used when a visitor clicks the login button.
It triggers the

AuthentificationClickedLoginButton event.

AuthentificationClickedLoginLi

nk

This method is used when a visitor clicks the login link. It

triggers the AuthentificationClickedLoginLink

event.

AuthentificationUserLoggedOut This method is used when a visitor logs out. It triggers the

AuthentificationUserLoggedOut event.

Parameter:

 UserName

AuthentificationUserLoginSucce

eded

This method is used when a visitor logs in successfully. It

triggers the AuthentificationUserLoginSucceeded

event.
Parameter:

 UserName

AuthentificationUserLoginFaile

d

This method is used when a visitor’s login fails. It triggers

the AuthentificationUserLoginFailed event.

Parameter:

 UserName

AuthentificationAccountCreatio

nFailed

This method is used when a visitor’s attempt to create an
account fails. It triggers the

AuthentificationAccountCreationFailed event.

AuthentificationAccountCreated This method is used when a visitor creates an account. It

triggers the AuthentificationAccountCreated

event.

NavigationTabSelected This method is used when a visitor clicks a navigation tab.

It triggers the NavigationTabSelected event.

Parameter:

 TabName

NavigationProductReviewed This method is used when a visitor chooses to review a

product. It triggers the NavigationProductReviewed

event.
Parameters:

 Code

 Name

 Title

 Text

 Rate

NavigationFollowListHit This method is used when a visitor hits the follow list. It

triggers the NavigationFollowListHit event.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 38 of 54

XSLT Method Name Description

Search This method is used when a visitor searches for items on
the front end. It enters a record about this search in the
Analytics database.
Parameters:

 Query — the query used for the search.

 Hits — the number of found items.

AddFollowListToQueryString This method is used to return the URL concatenated with
the parameters that are read from the
Ecommerce.Analytics.EventQueryStringKey

setting.
Paramters:

 URL

 ListName

AddFollowHitToQueryString This method is used to call the method named

AddFollowHitToQueryString in the namespace
Sitecore.Analytics.Extensions.AnalyticsPag

eExtensions.

Parameters:

 URL

 Search

AddTriggerEventStringToQuerySt

ring

This method is used when a visitor clicks a link. It adds

the trigger event — EventName parameter — to the

query string.
Parameters:

 URL — the link that the user selects.

 EventName — the trigger event name to be

added to the query string.

GetVirtualProductUrlWithAnalit

icsQueryString

This method is used when a visitor gets a virtual product’s

URL with an Analytics query parameter. It triggers the

GetVirtualProductUrlWithAnaliticsQueryStri

ng event.

Parameters:

 FolderNi

 ProductNi

GetVirtualProductUrlWithAnalit

icsQueryString

This method is used when a visitor gets a virtual product’s
URL using an Analytics query. It triggers the
GetVirtualProductUrlWithAnaliticsQueryStri

ng event.

Parameter:

 ProsductItem

GetItem This method is used when a visitor user gets an item. It

triggers the GetItem event.

Prameter:

 Iterator

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 39 of 54

4.4 Settings

This section lists the miscellaneous value pair settings in SES.

The following snippet presents these miscellaneous settings that can be configured in the

Sitecore.Ecommerce.config file:

<settings>

 <!-- Ecommerce.Product.BaseTemplateId-->

 <setting name="Ecommerce.Product.BaseTemplateId" value="{02870C17-4273-4242-

 89A4-E973C3CF8EC0}" />

 <!-- Ecommerce.Order.OrderItemTempalteID-->

 <setting name="Ecommerce.Order.OrderItemTempalteId" value="{2769D69F-E217-4C0A-

 A41F-2083EC165218}" />

 <!-- Ecommerce.Order.OrderLineItemTempalteID-->

 <setting name="Ecommerce.Order.OrderLineItemTempalteId" value="{9A0E680B-B84E-

 42F6-9E48-68878591705B}" />

 <!-- Ecommerce.Settings.SettingsRootTemplateId-->

 <setting name="Ecommerce.Settings.SettingsRootTemplateId" value="{AC4841C3-9B0E-

 4AFD-B14B-5F280E34FBD5}" />

 <!-- Ecommerce.Analytics.EventQueryStringKey-->

 <setting name="Ecommerce.Analytics.EventQueryStringKey" value="ec_trk" />

 <!-- Ecommerce.EnableStructuredDataModule-->

 <setting name="Ecommerce.EnableStructuredDataModule" value="true" />

 <!-- Query.MaxItems specifies the max number of items in a query result set.

 If the number is 0, all items are returned. This may affect system performance if

 a large query result is returned. This also controls the number of items in

 Lookup, Multilist and Valuelookup fields.

 Default value: 100-->

 <setting name="Query.MaxItems" value="0" />

 <!-- Orders.OpenInNewWindow specifies whether a new content editor window must

 be open when editing orders-->

 <setting name="Orders.OpenInNewWindow" value="false"/>

 <setting name="Products.OpenInNewWindow" value="false"/>

 <setting name="GridPageSize">

 <patch:attribute name="value">10</patch:attribute>

 </setting>

</settings>

The following table describes the <Settings> elements in the SES core:

Setting Description

Ecommerce.Product.Base

TemplateId

Defines the ID of the product base template used in the domain
model.

Ecommerce.Order.OrderI

temTempalteId

Defines the ID of the order item template used in the domain model.
This setting relates to the obsolete order management functionality
and has only been retained for backwards compatibility.

Ecommerce.Order.OrderL

ineItemTempalteId

Defines the ID of the order line item template used in the domain
model.
This setting relates to the obsolete order management functionality
and has only been retained for backwards compatibility.

Ecommerce.Settings.Set

tingsRootTemplateId

Defines the ID in Sitecore for the settings root template used in the
domain model.

Ecommerce.Analytics.Ev

entQueryStringKey

Defines the variable that is assigned to a string that represents a
query.

Ecommerce.EnableStruct

uredDataModule

This setting is checked within the OnItemSaved method. If this

setting is set true, the system puts the saved item according to the
unified tree structure in Sitecore.
This setting relates to the obsolete order management functionality
and has only been retained for backwards compatibility.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 40 of 54

Setting Description

Query.MaxItems Specifies the maximum number of items that should be shown in the
results of a query. If the value is 0, all the items are returned. This
may affect system performance, if a large query result is returned.
This also controls the number of items in Lookup, Multilist and
Valuelookup fields. The default value is 100.

Orders.OpenInNewWindow Specifies whether a new Content Editor window should open when
you edit orders.

Products.OpenInNewWind

ow

Specifies whether a new Content Editor window should open when
you edit products.

GridPageSize Defines the number of rows in a user interface grid.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 41 of 54

4.5 Pipelines

Two groups of pipelines exist in the Sitecore.Ecommerce.config file:

 The first group is defined within the /configuration/sitecore/pipelines element.

 The second group is defined within the /configuration/sitecore/processors

element.

4.5.1 The <pipelines> Element

These are the pipelines that are grouped within the /configuration/sitecore/pipelines

element. They define system processes.

<pipelines>

 <initialize>

 <!-- Processor initialize the Unity container configuration on the first

 start. -->

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.ConfigureEntities,

 Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Pipelines.Loader.

 EnsureAnonymousUsers, Sitecore.Kernel']">

 <UnityConfigSource>/App_Config/Unity.config</UnityConfigSource>

 </processor>

 <processor

 type="Sitecore.Ecommerce.Pipelines.Loader.ConfigureShopContainers,

 Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.ConfigureEntities,

 Sitecore.Ecommerce.Kernel']" />

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders,

 Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializePaymentSystemProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeShippingSystemProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeNotificationOptionProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeCountryProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeCurrencyProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeVatRegionProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeOrderStatusProvider"/>

 <processor type="Sitecore.Ecommerce.Pipelines.Loader.

 RegisterEcommerceProviders, Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Ecommerce.Pipelines.Loader.

 ConfigureEntities, Sitecore.Ecommerce.Kernel']"

 method="InitializeBusinessCatalogProviders"/>

 </initialize>

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 42 of 54

 <preprocessRequest>

 <processor type="Sitecore.Pipelines.PreprocessRequest.FilterUrlExtensions,

 Sitecore.Kernel">

 <param desc="Allowed extensions (comma separated)">aspx, ashx,

 asmx, svc</param>

 </processor>

 </preprocessRequest>

 <httpRequestBegin>

 <processor type="Sitecore.Ecommerce.Pipelines.HttpRequest.ProductResolver,

 Sitecore.Ecommerce.Kernel"

 patch:after="*[@type='Sitecore.Pipelines.HttpRequest.ItemResolver,

 Sitecore.Kernel']" />

 <processor type="Sitecore.Ecommerce.Pipelines.HttpRequest.CreateRequestContainer,

 Sitecore.Ecommerce.Kernel"

 patch:after="*[@type='Sitecore.Pipelines.HttpRequest.SiteResolver,

 Sitecore.Kernel']" />

 <processor type="Sitecore.Ecommerce.Shell.Pipelines.HttpRequest.ShellShopResolver,

 Sitecore.Ecommerce.Shell"

 patch:after="

 [@type='Sitecore.Ecommerce.Pipelines.HttpRequest.CreateRequestContainer,

 Sitecore.Ecommerce.Kernel']" />

 </httpRequestBegin>

 <httpRequestEnd>

 <processor type="Sitecore.Ecommerce.Pipelines.HttpRequest.DisposeRequestContainer,

 Sitecore.Ecommerce.Kernel" />

 </httpRequestEnd>

 <getConfiguration>

 <processor type="Sitecore.Ecommerce.Pipelines.GetConfiguration.

 GetFromContextSite, Sitecore.Ecommerce.Kernel" />

 <processor type="Sitecore.Ecommerce.Pipelines.GetConfiguration.GetFromWebSite,

 Sitecore.Ecommerce.Kernel" />

 <processor type="Sitecore.Ecommerce.Pipelines.GetConfiguration.

 GetFromLinkManager, Sitecore.Ecommerce.Kernel" />

 <processor type="Sitecore.Ecommerce.Pipelines.GetConfiguration.

 GetFromResolver, Sitecore.Ecommerce.Kernel" />

 </getConfiguration>

 <startTracking>

 <processor patch:after="*[@type='Sitecore.Analytics.Pipelines.StartTracking.

 ProcessQueryString,Sitecore.Analytics']"

 type="Sitecore.Ecommerce.Analytics.Pipelines.StartTracking.

 ProcessQueryString, Sitecore.Ecommerce.Analytics"/>

 </startTracking>

 <orderCreated>

 <processor type="Sitecore.Ecommerce.Visitor.Pipelines.OrderCreated.NotifyCustomer,

 Sitecore.Ecommerce.Visitor"/>

 </orderCreated>

 <customerCreated>

 <processor type="Sitecore.Ecommerce.Pipelines.CustomerCreated.

 ConfigureSecurity, Sitecore.Ecommerce.Kernel"/>

 <processor type="Sitecore.Ecommerce.Pipelines.CustomerCreated.LogIn,

 Sitecore.Ecommerce.Kernel"/>

 <processor type="Sitecore.Ecommerce.Pipelines.CustomerCreated.

 SendNotification, Sitecore.Ecommerce.Kernel"/>

 </customerCreated>

 <paymentStarted>

 <processor type="Sitecore.Ecommerce.Pipelines.PaymentStarted.StartPayment,

 Sitecore.Ecommerce.Kernel"/>

 </paymentStarted>

 <renderLayout>

 <processor type="Sitecore.Pipelines.RenderLayout.InsertRenderings,

 Sitecore.Kernel">

 <patch:attribute name="type">Sitecore.Ecommerce.Pipelines.RenderLayout.

 ProcessProductPresentation, Sitecore.Ecommerce.Kernel

 </patch:attribute>

 </processor>

 </renderLayout>

 <getContentEditorFields>

 <processor type="Sitecore.Shell.Applications.ContentEditor.Pipelines.

 GetContentEditorFields.GetFields, Sitecore.Client" >

 <patch:attribute name="type">Sitecore.Ecommerce.Shell.Applications.

 ContentEditor.Pipelines.GetContentEditorFields.GetFields,

 Sitecore.Ecommerce.Shell

 </patch:attribute>

 <HiddenFields>{81AD5AA7-316C-4F79-9DFF-8FEBFCFBFB4E}|{4423D09D-E95A-4827-

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 43 of 54

 B12D-E682BE2DE834}|{39BB71D9-E6B4-4F50-BFAC-1C586724D3B9}|

 {4200DA93-E824-4FA0-B93B-5F9AB662E3DC}

 </HiddenFields>

 </processor>

 </getContentEditorFields>

</pipelines>

<initialize>

This pipeline initializes the Sitecore application.

The processor methods that start with initialize:

 Instantiate an instance of the provider.

 Create a name-value collection for this instance with the following attributes:

o description

o settings name

o default container name

o containers item template ID

 Register this provider instance.

Processor Method Processor Type Description

Process — Default

method

ConfigureEntities This is the default method
for this pipeline. It
initializes the

Unity.config.

Process – Default

method

ConfigureShopContainers This is the default method
for this pipeline. It
configures Unity for a
specific webshop.

InitializePaymentSy

stemProvider

RegisterEcommerceProviders Initializes the payment
system provider.

InitializeShippingS

ystemProvider

RegisterEcommerceProviders Initializes the shipping
system provider.

InitializeNotificat

ionOptionProvider

CustomerCreated.SendNotification Initializes the notification
option provider.

InitializeCountryPr

ovider

RegisterEcommerceProviders Initializes the country
provider.

InitializeCurrencyP

rovider

RegisterEcommerceProviders Initializes the currency
provider.

InitializeVatRegion

Provider

RegisterEcommerceProviders Initializes the VAT region
provider.

InitializeOrderStat

usProvider

RegisterEcommerceProviders Initializes the order status
provider.

InitializeBusinessC

atalogProviders

RegisterEcommerceProviders Initializes the business
catalog provider.

All these processors are located in the Sitecore.Ecommerce.Pipelines.Loader. namespace

in the Sitecore.Ecommerce.Kernel assembly.

<preprocessRequest>

This pipeline is invoked for each HTTP request that is managed by ASP.Net, but aborted for some

requests. It is more common to use the <httpRequestBegin> pipeline for request processing

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 44 of 54

logic, but the preprocessRequest pipeline is mentioned because a processor within this pipeline

may prevent Sitecore from processing requests with specific extensions other than .aspx.

Processor
Method

Processor Type Description

Process —

Default
method

FilterUrlExtensions This is the default pipeline
that Sitecore uses to
support different web pages
extensions.
SES uses this to present
virtual products with an
extension.

This processor is located in the Sitecore.Pipelines.PreprocessRequest. namespace in the

Sitecore.Kernel assembly.

<httpRequestBegin>

This pipeline defines the context of Sitecore. It is invoked for each HTTP request that is not directed to

ASP.NET by the preprocessRequest pipeline.

Processor
Method

Processor Type Description

Process –

Default
method

ProductResolver This processor contains the
implemented logic for
resolving a product by its
URL. See the section SES
Product Management.

Process –

Default
method

CreateRequestContainer Creates a copy of the
configured Unity container
for each web request. This
guarantees that the Unity
containers are isolated for
every request and that any
changes made to the Unity
configuration for one
request do not affect any
other requests.

Process –

Default
method

ShellShopResolver Resolves the webshop for
catalog applications in the
Sitecore backend.

All these processors are located in the Sitecore.Ecommerce.Pipelines.HttpRequest.

namespace in the Sitecore.Ecommerce.Kernel assembly.

Except the ShellShopResolver, processor which is located in the

Sitecore.Ecommerce.Shell.Pipelines.HttpRequest. in the namespace in the

Sitecore.Ecommerce.Shell assembly.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 45 of 54

<httpRequestEnd >

This pipeline usually performs cleanup of Sitecore context objects after each request.

Processor
Method

Processor Type Description

Process –

Default
method

DisposeRequestContainer Disposes of the copy of the
Unity container created by
the
CreateRequestContainer

processor at the beginning of
request.

This processor is located in the Sitecore.Ecommerce.Pipelines.HttpRequest. namespace

in the Sitecore.Ecommerce.Kernel assembly.

<getConfiguration>

This pipeline is executed when Sitecore initializes the basic SES components configured in Unity.

Processor
Method

Processor Type Description

Process —

Default
method

GetFromContextSite Uses the context item to
search for the site settings.

Process —

Default
method

GetFromWebSite Uses the context item to
search for the site settings
trying to resolve a website.

Process —

Default
method

GetFromLinkManager Uses the Link database to
Search for the site settings.

Process —

Default
method

GetFromResolver Resolves the configuration
in the Unity configuration
file.

All these processors are located in the Sitecore.Ecommerce.Pipelines. GetConfiguration.

namespace in the Sitecore.Ecommerce.Kernel assembly.

<startTracking>

Processor
Method

Processor Type Description

Process —

Default
method

ProcessQueryString This processor is used to

trigger the FollowList,

and the FollowHit events.

This processor is located in the

Sitecore.Ecommerce.Analytics.Pipelines.StartTracking. namespace in the

Sitecore.Ecommerce.Analytics assembly.

<orderCreated>

This pipeline is executed after an order has been created by the webshop. Currently, it contains two
processors that are responsible for sending out confirmation emails to the customers and the

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 46 of 54

webshop owner.

Processor
Method

Processor Type Description

Process —

Default
method

NotifyCustomer Sends a confirmation e-mail to the
customer.

This processor is located in the Sitecore.Ecommerce.Visitor.Pipelines.OrderCreated.

namespace in the Sitecore.Ecommerce.Visitor assembly.

<customerCreated>

This pipeline is executed after a visitor creates a new account on the webshop.

Processor
Method

Processor Type Description

Process —

Default
method

ConfigureSecurity Configures the visitor’s security
settings.

Process —

Default
method

LogIn Logs a customer in to the website.

Process —

Default
method

SendNotification Sends notification to the customer.

All these processors are located in the Sitecore.Ecommerce.Pipelines.CustomerCreated.

namespace in the Sitecore.Ecommerce.Kernel assembly.

<paymentStarted>

This pipeline starts during the checkout process after a visitor clicks Confirm as part of the Payment
step. The processor calls the selected Payment provider.

Processor
Method

Processor Type Description

Process —

Default
method

StartPayment Invokes the capture method on the
payment provider interface.

This processor is located in the Sitecore.Ecommerce.Pipelines.PaymentStarted.

namespace in the Sitecore.Ecommerce. Kernel assembly.

<renderLayout>

This pipeline is used by the CMS layout engine to resolve the layout, sub-layout, XSLT and web
controls to render the current page based on the given URL.

Processor
Method

Processor Type Description

Process —

Default
method

InsertRenderings Renders the layout that is defined in
Product Detail Presentation
Storage field.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 47 of 54

This processor is located in the Sitecore.Pipelines.RenderLayout namespace in the

Sitecore. Kernel assembly.

<getContentEditorFields>

This pipeline defines the fields to display in the Content Editor.

<orderCaptured>

This pipeline allows additional actions to be performed when an order is captured from the Order
Management application.

4.5.2 The <Processors> Element

These are the pipelines that are grouped within the /configuration/sitecore/processors

element. These pipelines operate for UI requests and interact with the user.

<processors>

 <uiDeleteItems>

 <processor mode="on" type="Sitecore.Ecommerce.Orders.OrderItemEventHandler,

 Sitecore.Ecommerce.Kernel"

 patch:before="processor[@type='Sitecore.Shell.Framework.Pipelines.

 DeleteItems,Sitecore.Kernel' and @method='Execute']"

 method="OnItemDeleted" />

 </uiDeleteItems>

 <saveUI>

 <processor mode="on" type="Sitecore.Ecommerce.Orders.OrderItemEventHandler,

 Sitecore.Ecommerce.Kernel" patch:after="processor[@type=

 'Sitecore.Pipelines.Save.Save, Sitecore.Kernel']"

 method="OnItemSaved"/>

 </saveUI>

 <uiDuplicateItem>

 <processor mode="on" type="Sitecore.Ecommerce.Orders.OrderItemEventHandler,
 Sitecore.Ecommerce.Kernel" patch:after="processor[@type='Sitecore.

 Shell.Framework.Pipelines.DuplicateItem, Sitecore.Kernel'

 and @method='Execute']" method="OnItemDuplicated"/>

 </uiDuplicateItem>

 <uiCopyItems>

 <processor mode="on" type="Sitecore.Ecommerce.Orders.OrderItemEventHandler,

 Sitecore.Ecommerce.Kernel"

 patch:after="processor[@type='Sitecore.Shell.Framework.

 Pipelines.CopyItems,Sitecore.Kernel' and @method='Execute']"

 method="OnItemCopied" />

 </uiCopyItems>

</processors>

The following table describes the pipelines in the /configuration/sitecore/processors

element:

Processor Description

<uiDeleteItems> Deletes an item and its descendants.

<saveUI> Saves an item.

<uiDuplicateItem> Duplicates an item.

<uiCopyItems> Copies an item and its descendants.

Note
In SES 2.2, orders should not be stored in items. The processors described in the previous table are
retained for backwards compatibility only.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 48 of 54

4.6 Search

SES comes with 3 search providers by default. For more information about these search providers,
see the SES Configuration Guide.

Both FastQuerySearchProvider and SitecoreSearchProvider work without any index

because they query the Sitecore API and Sitecore handles the indexing and searching. If you use the

LuceneSearchProvider, Lucene must build and maintain an index.

If you use the Lucene Search Provider, the default configuration of the product catalog is:

<search>

 <configuration>

 <indexes>

 <index id="products" type="Sitecore.Search.Index, Sitecore.Kernel">

 <param desc="name">$(id)</param>

 <param desc="folder">__products</param>

 <Analyzer type="Sitecore.Ecommerce.Search.LuceneAnalyzer,

 Sitecore.Ecommerce.Kernel"/>

 <locations hint="list:AddCrawler">

 <master type="Sitecore.Ecommerce.Search.DatabaseCrawler,

 Sitecore.Ecommerce.Kernel">

 <Database>master</Database>

 <Root>{0A702337-81CD-45B9-8A72-EC15D2BE1635}</Root>

 <Tags>master products</Tags>

 </master>

 <web type="Sitecore.Ecommerce.Search.DatabaseCrawler,

 Sitecore.Ecommerce.Kernel">

 <Database>web</Database>

 <Root>{0A702337-81CD-45B9-8A72-EC15D2BE1635}</Root>

 <Tags>web products</Tags>

 </web>

 </locations>

 </index>

 </indexes>

 </configuration>

</search>

To use a custom index, use the IndexName property of the Lucene Search provider. This approach is
particularly useful when you want different webshops to use different product repositories with
different Lucene indexes.

For more information about configuring a multi-shop installation, see the section Multisite
Configuration.

If you want different webshops to use different indexes, you should configure a new index with a
unique name as described earlier and register the LuceneSearchProvider as the implementation of
the ISearchProvider and set the IndexName property to the index for the corresponding website.

Here is an example of the configuration:

<register type="ISearchProvider" mapTo="LuceneSearchProvider">

 <property name="IndexName" value="mystore_products" />

</register>

Note
If you are not using the default configuration, you must change the Root identification to refer to your
products repository. For more information, see the section Extending the Resolve Strategy.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 49 of 54

4.7 Multisite Configuration

To configure a multisite solution in the Sitecore E-commerce module, you must:

 Create a definition for each webshop.

 Configure the order and log databases for each webshop.

 Register the business objects for each webshop.

 Configure the Lucene product repository for each webshop.

4.7.1 Creating Webshop Definitions

To create a multisite solution, you should register a list of the sites in the configuration files.

Use the EcommerceSiteSettings attribute to distinguish webshops from general site registrations

For example, the following configuration is for two different webshops that point to the same root on
the back-end:

<sitecore>

 <sites>

 <site name="example" hostName="ecommerce" virtualFolder="/" physicalFolder="/"

 content="master" rootPath="/sitecore/content/E-Commerce Examples" startItem="/home"

 database="web" domain="extranet" allowDebug="true" cacheHtml="false" htmlCacheSize="10MB"

 EcommerceSiteSettings="/Site Settings" browserTitle="Example" registryCacheSize="0"

 viewStateCacheSize="0" xslCacheSize="5MB" filteredItemsCacheSize="2MB"

 enablePreview="true" enableWebEdit="true" enableDebugger="true" disableClientData="false"

 patch:before="site[@name='website']"/>

 <site name="secondwebstore" hostName="ecommerce2" virtualFolder="/" physicalFolder="/"

 content="master" rootPath="/sitecore/content/E-Commerce Examples" startItem="/home"

 database="web" domain="extranet" allowDebug="true" cacheHtml="false" htmlCacheSize="10MB"

 EcommerceSiteSettings="/Site Settings" browserTitle="Second Web Store"

 registryCacheSize="0" viewStateCacheSize="0" xslCacheSize="5MB"

 filteredItemsCacheSize="2MB" enablePreview="true" enableWebEdit="true"

 enableDebugger="true" disableClientData="false" patch:before="site[@name='website']"/>

 </sites>

<sitecore>

Open the browser with the http://ecommerce URL to open the example webshop.

The http://ecommerce2 URL opens the secondwebstore.

Note

It is best practice to have an include file per webshop, for example a web.config include file. The

/App_Config/include/Sitecore.Ecommerce.Examples.config file is an example.

4.7.2 Configuring Separate/Common Order and Log Databases for
Multiple Webshops

SES allows installations that have a single webshop and installations that have multiple webshops to
store both orders and log data in a single database.

When you configure multiple webshops, you might want to store their orders (and their log data) in
separate databases instead of in the single default database.

Each website that you register can receive new attributes:

 orderDatabase — the name of the database where you want to store orders.

 actionLogDatabase — the name of the database where you want to store log files.

For example:

<site name="secondwebstore" hostName="" virtualFolder="/" physicalFolder="/" content="master"

… ordersDatabase="secondorders" actionLogDatabase="secondlogging" />

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 50 of 54

<site name="thirdwebstore" hostName="" virtualFolder="/" physicalFolder="/" content="master" …

ordersDatabase="orders" actionLogDatabase="logging" />

You must remember to include the connection strings in the configuration:

<add name="secondorders" connectionString="user id=sa;password=12345;Data

Source=(local);Database=ecommerce_SecondOrders;MultipleActiveResultSets=true;"

providerName="System.Data.SqlClient" />

<add name="secondlogging" connectionString="user id=sa;password=12345;Data

Source=(local);Database=ecommerce_SecondActionLog;MultipleActiveResultSets=true;"

providerName="System.Data.SqlClient" />

You can quickly create the additional databases by copying the existing ones from the fresh SES
installation.

The ShopContext type tells the API which webshop to work with. The ShopContext type stores
information about the order and log databases, the settings, and the related website.

You should not explicitly create instances of the ShopContext type. SES defines the

VisitorShopResolver, MerchantShopResolver, and ShellShopResolver processors for the

front-end, the OrderManager and the catalog applications respectively. These processors

automatically create corresponding instances of the ShopContext type and register them in the
IoCContainer. If a class is resolved from the Unity container and one of its constructor arguments is
the ShopContext type, the registered instance of ShopContext is automatically provided as the
argument. There is usually no reason to use the ShopContext type in common scenarios — the
ShopContext type is generally needed when you create a new business entity like

MerchantOrderManager or when you extend an existing business entity.

When a customer passes the checkout, Sitecore creates new order for that webshop. The information
about the site name of the webshop for which the order has been created is stored in the order
database thereby allowing multiple webshops to share the same order database.

4.7.3 Registering Different Business Objects for Different Webshops

SES allows you to configure application wide and site-specific IoC containers. For more information
about configuring IoC containers, see sections The Unity Configuration Files and The initialize
Pipeline.

To learn about the application wide configuration, see the \App_Config\Unity.config file. To

configure the business objects for a particular website, create a file with the required registrations in

the \App_Config\<Site name>.Unity.config file. Both types of file have the same format, so

the configuration process is identical for both.

Here is an example of how to override the application registration of ISearchProvider with the

LuceneSearchProvider for a specific webshop that shows you how to associate a specific Lucene

index with a webshop:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <configSections>

 <section name="unity"

 type="Microsoft.Practices.Unity.Configuration.UnityConfigurationSection,

 Microsoft.Practices.Unity.Configuration" />

 </configSections>

 <unity xmlns="http://schemas.microsoft.com/practices/2010/unity">

 <alias alias="ISearchProvider" type="Sitecore.Ecommerce.Search.ISearchProvider,

 Sitecore.Ecommerce.Kernel" />

 <alias alias="LuceneSearchProvider" type="Sitecore.Ecommerce.Search.LuceneSearchProvider,

 Sitecore.Ecommerce.Kernel" />

 <container>

 <register type="ISearchProvider" mapTo="LuceneSearchProvider">

 <property name="IndexName" value="mystore_products" />

 </register>

 </container>

 </unity>

</configuration>

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 51 of 54

Note
If multiple webshops have their product repositories located under the same root folder in the content
tree, you do not need to define multiple Lucene indexes. If the repositories are located in different
areas of the content tree, you must define multiple Lucene indexes.

For more information about configuring multiple Lucene indexes, see the section Configuring the
Lucene Product Repository for a Specific Webshop.

In scenarios, where dynamic configuration is required or configuration files are just not an option, you
can add processors to the initialize pipeline that perform the necessary configurations for both the
application and the site IoC containers.

You can access the application IoC container through the CustomData["UnityContainer"]

property of the pipeline argument.

You can access the webshop container through the CustomData["UnityContainer_<Site

name>"] property.

The corresponding properties are accessible after the ConfigureEntities and

ConfigureShopContainers processors have been invoked.

If you want to change how the webshop IoC containers are configured by default, alter the default

implementation of the ShopIoCConfigurationProvider.

All of these details are only important for configuration scenarios. From a business perspective,

access to the IoC containers can be gained through the Entity property of the

Sitecore.Ecommerce.Context class just as it was in previous versions of SES.

4.7.4 Configuring the Lucene Product Repository for a Specific
Webshop

To configure separate Lucene indexes for webshops that store their respective product repositories
under different root folders:

1. Add a configuration section for the new Lucene index to each individual webshop
configuration file:

<search>

 <configuration>

 <indexes>

 <index id="mystore_products" type="Sitecore.Search.Index, Sitecore.Kernel">

 <param desc="name">$(id)</param>

 <param desc="folder">__mystore_products_folder</param>

 <Analyzer type="Sitecore.Ecommerce.Search.LuceneAnalyzer, Sitecore.Ecommerce.Kernel"/>

 <locations hint="list:AddCrawler">

 <master type="Sitecore.Ecommerce.Search.DatabaseCrawler, Sitecore.Ecommerce.Kernel">

 <Database>master</Database>

 <!-- Please specify the product repository root item ID here -->

 <Root>{00000000-0000-0000-0000-000000000000}</Root>

 <Tags>master products</Tags>

 </master>

 <web type="Sitecore.Ecommerce.Search.DatabaseCrawler, Sitecore.Ecommerce.Kernel">

 <Database>web</Database>

 <!-- Please specify the product repository root item ID here -->

 <Root>{00000000-0000-0000-0000-000000000000}</Root>

 <Tags>web products</Tags>

 </web>

 </locations>

 </index>

 </indexes>

 </configuration>

</search>

In this example, you must specify the following settings:

o Index name — the id attribute of index node.

o Index folder name — the param node with the folder value in desc attribute.

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 52 of 54

o Product repository root item id — for both the master and web databases.

2. Run the Index Wizard and rebuild the index that you created in step 1.

3. Register the Lucene search provider in the Unity configuration file for the additional webshop:

<alias alias="ISearchProvider" type="Sitecore.Ecommerce.Search.ISearchProvider,

Sitecore.Ecommerce.Kernel" />

<alias alias="LuceneSearchProvider" type="Sitecore.Ecommerce.Search.LuceneSearchProvider,

Sitecore.Ecommerce.Kernel" />

<container>

 <register type="ISearchProvider" mapTo="LuceneSearchProvider">

 <property name="IndexName" value="mystore_products" />

 </register>

</container>

4. Make sure that the index name that you configured in step 1 is set in the IndexName

property.

Sitecore E-Commerce Services 2.2 on CMS 7.0 or Later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 53 of 54

4.8 Switching Between the Visitor and the Remote API in the
Unity.config File

If you have a distributed environment with separate CM and CD instances, you must use remoting to
communicate between the two instances. SES does not use remoting by default.

The default registration of the following business entities VisitorOrderProcessorBase,

VisitorOrderRepositoryBase, OrderIDGenerator, IProductPriceManager,

IProductStockManager and IOrderManager look like this:

<register type="IOrderManager" mapTo="TransientOrderManager">

 <lifetime type="hierarchical" />

</register>

<register type="OrderIDGenerator" mapTo="ItemBasedOrderIDGenerator">

 <lifetime type="hierarchical" />

</register>

<register type="IProductStockManager" mapTo="ProductStockManager">

 <lifetime type="hierarchical" />

</register>

<register type="IProductPriceManager" mapTo="ProductPriceManager">

 <lifetime type="hierarchical" />

</register>

<register type="VisitorOrderProcessorBase" mapTo="VisitorOrderProcessor">

 <lifetime type="hierarchical" />

 <interceptor type="VirtualMethodInterceptor" />

 <policyInjection />

</register>

<register type="VisitorOrderRepositoryBase" mapTo="VisitorOrderRepository">

 <lifetime type="hierarchical" />

 <interceptor type="VirtualMethodInterceptor" />

 <policyInjection />

</register>

The IOrderManager registration should not be changed when using remoting, because

TransientOrderManager is just an adapter which ensures backwards compatibility with the

previous item-based approach of storing orders as items in Sitecore and uses

VisitorOrderRepositoryBase internally to gain access to orders. Therefore, if as in the previous

example, VisitorOrderRepositoryBase is changed to point to a remote order repository,

TransientOrderManager works in remote mode automatically, and you do not need to change the

IOrderManager registration.

The remote versions of the business entities look almost the same. The usage is simplified and
unified. There are currently no dependencies that are injected via properties. You must specify the

remote versions of the business entities in the mapTo attributes.

The remote registration looks like this:

<register type=" OrderIDGenerator" mapTo="RemoteOrderIDGenerator">

 <lifetime type="hierarchical" />

</register>

<register type=" IProductStockManager" mapTo="RemoteProductStockManager">

 <lifetime type="hierarchical" />

</register>

<register type=" IProductPriceManager" mapTo="RemoteProductPriceManager">

 <lifetime type="hierarchical" />

</register>

<register type=" VisitorOrderProcessorBase" mapTo="RemoteOrderProcessor">

 <lifetime type="hierarchical" />

 <interceptor type="VirtualMethodInterceptor" />

 <policyInjection />

</register>

<register type=" VisitorOrderRepositoryBase " mapTo="RemoteOrderRepository">

 <lifetime type="hierarchical" />

 <interceptor type="VirtualMethodInterceptor" />

 <policyInjection />

</register>

Developer's Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2014 Sitecore. All rights reserved.

Page 54 of 54

4.9 Optimizing the Product Stock Manager

You can configure the maximum number of concurrent write requests that can be handled by the
product stock manager.

By default, the maximum number of concurrent write requests for different products that can be
handled by the product stock manager is the same as the number of processors.

If this default value does not suit your needs, you can use the

Ecommerce.Stock.MaxConcurrentRequests setting in the web.config file to specify another

value:

<setting name="Ecommerce.Stock.MaxConcurrentRequests" value="16" />

	Chapter 1 Introduction
	Chapter 2 SES Technical Overview
	2.1 The SES Domain Model
	2.2 Unity Application Block Overview
	2.2.1 The Unity Configuration Files
	2.2.2 The initialize Pipeline
	2.2.3 Dependency Injection
	2.2.4 How to Resolve a SES Component
	2.2.5 How to Add an Implementation to the Unity Configuration
	2.2.6 How to Add a Contract to the Unity Configuration
	2.2.7 How to Replace a SES Component
	2.2.8 How to Configure Unity for Multiple Implementations of the Same Contract

	2.3 SES Product Management
	2.3.1 Product URLs and Product Resolution
	How to Specify the Product URL Format

	2.3.2 Product Presentation
	How to Specify a Product Presentation Format
	How to Update a Product Presentation Format
	How to Define a New Product Presentation Format

	Chapter 3 Adding Custom Product Search Criteria
	3.1 The Need for Product Search Configuration and Extensibility
	3.2 Extending the Product Search Group Template
	3.3 Extending the Resolve Strategy
	Extending the Database Crawler
	Extending the ICatalogProductResolveStrategy Class
	Configuring SES and Lucene

	3.4 Extending the Product Search Catalog
	Extending the CatalogQueryBuilder Class
	Creating a Products Source
	Defining a New Editor in the Core Database
	Creating a Product Catalog

	Chapter 4 SES Core Configuration
	4.1 Commands
	4.2 Events
	4.3 XSLExtensions
	4.4 Settings
	4.5 Pipelines
	4.5.1 The <pipelines> Element
	4.5.2 The <Processors> Element

	4.6 Search
	4.7 Multisite Configuration
	4.7.1 Creating Webshop Definitions
	4.7.2 Configuring Separate/Common Order and Log Databases for Multiple Webshops
	4.7.3 Registering Different Business Objects for Different Webshops
	4.7.4 Configuring the Lucene Product Repository for a Specific Webshop

	4.8 Switching Between the Visitor and the Remote API in the Unity.config File
	4.9 Optimizing the Product Stock Manager

