
Sitecore CMS 6.3 to 7.0
SharePoint Integration Framework API Reference Rev: 2013-06-14

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Sitecore CMS 6.3 to 7.0

SharePoint Integration
Framework API Reference
Tips and techniques for SharePoint Integration Developers

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 2 of 30

Table of Contents

Chapter 1 API Integration ... 3
1.1 Developer Pre-requisites and Considerations .. 4
1.2 The SharePoint Integration Framework API ... 5
1.3 API Reference ... 6

1.3.1 Object Model Classes ... 6
1.3.2 Item Provider Classes ... 13
1.3.3 Connector Classes .. 16
1.3.4 Pipelines .. 17

Pipeline Arguments .. 19
Custom Processors .. 20

1.4 SharePoint Web Services ... 21
Chapter 2 Using the API .. 22

2.1 API Use Cases .. 23
2.1.1 How to Protect a SharePoint Revision .. 23
2.1.2 How to Prevent New Items from Being Deleted .. 24
2.1.3 How to Monitor Delete Operations .. 26
2.1.4 How to Fill in a Field when It is Empty in SharePoint .. 27

2.2 Tips and Tricks .. 30
2.2.1 Adding a Reference to a Sitecore Library in Visual Studio ... 30
2.2.2 Creating a Visual Studio Web Application Project .. 30

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 3 of 30

Chapter 1

API Integration

This chapter contains detailed information for developers who want to create their
own custom SharePoint integration functionality.

It includes code samples and reference material to assist developers working with the
SharePoint Integration Framework API.

This chapter contains the following sections:

 Developer Pre-requisites and Considerations

 The SharePoint Integration Framework API

 API Reference

 SharePoint Web Services

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 4 of 30

1.1 Developer Pre-requisites and Considerations

Sitecore developers working with the SharePoint Integration Framework must also have a good
working knowledge of SharePoint.

Sitecore

Developers must possess the appropriate level of C# and .NET developer expertise and be
comfortable using the Sitecore development environment.

SharePoint

Developers must be able to use SharePoint to create new sites, sub-webs and views and configure
security permissions. They should also be familiar with using SharePoint Web services. The
SharePoint Integration Framework uses standard Web services to connect to and retrieve lists from
the SharePoint database server.

Before working with the SharePoint Integration Framework, developers should consider:

File Size

There is a default 500 MB size limit on files that you can upload to the Sitecore Media Library. Notice
that this size is supported for Sharepoint media items, though it can decrease the performance in
case of vast amount of big Sharepoint media items. To avoid negative performance issues we
recommend you do not use a lot of big Sharepoint items.

See the following setting in the web.config file:

 <!-- MEDIA - MAX SIZE IN DATABASE

 The maximum allowed size of media intended to be stored in a database

(binary blob).

 This value must be less than the ASP.NET httpRuntime.maxRequestLength

setting.

 Default value: 500MB

 -->

Item Limit

In Sitecore, when you add sub items to an item we recommend that you set an item limit to avoid
negative performance issues. You can set this in the SharePoint Integration Wizard. The default limit
is 100 items.

SharePoint Views

You can use the SharePoint Integration Framework to display SharePoint views. However, it is not
possible by default to display calculated columns from SharePoint views using the sample renderings.
Currently the SharePoint Integration Framework does not provide this functionality. To overcome this
limitation, you need to recreate this functionality in the custom renderings you create.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 5 of 30

1.2 The SharePoint Integration Framework API

The SharePoint Integration Framework is a Visual Studio solution consisting of several different
projects. Each project contains a set of classes that enable you to instantiate integration objects to
use with the sample controls or the Item Provider. A SharePoint integration object is a .NET class
used to connect to and retrieve data from a SharePoint website.

The Sitecore.Sharepoint.ObjectModel contains the classes that represent SharePoint objects

such as Server, Web and List. These classes are also in the sample controls and in the

Sitecore.Sharepoint.Data.Providers project. Developers should use either of these classes

to customize the Sharepoint Integration Framework.

All communication between Sitecore and SharePoint uses XML format. In the SharePoint Integration
Framework, developers work with objects instead of working directly with the XML data.

Some useful classes in the Sitecore.Sharepoint.ObjectModel:

 SpContext — handles user authentication and the connection to SharePoint

SpUiContext and SpDataContext inherit from SpContext.

SpUiContext is used in Sitecore.Sharepoint.Web.

SpDataContext is used in Sitecore.Sharepoint.Data.Providers.

They implement two different ways of resolving predefined SharePoint credentials set in the

sharepoint.config file.

 Server — used to point to a specific SharePoint server.

 Web — used to point to a specific site.

 List — used to point to a specific SharePoint list. There are several methods you can use to

manipulate a list.

 BaseItem — used to point to specific data contained in a list.

 ItemCollection — represents a set of SharePoint items retrieved from the specified

SharePoint list using the specified options.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 6 of 30

1.3 API Reference

This section contains reference information on the main classes used in the SharePoint Integration
Framework. A selection of the most useful classes and methods are included in this document, it is
not possible to describe every project, class and method included in the solution.

The SharePoint Integration Framework consists of the following projects:

 Sitecore.Sharepoint.Common

 Sitecore.Sharepoint.Data.Providers

 Sitecore.Sharepoint.Data.WebServices

 Sitecore.Sharepoint.ObjectModel

 Sitecore.Sharepoint.Web

1.3.1 Object Model Classes

Use these classes to customize the sample controls.

Namespace: Sitecore.Sharepoint.ObjectModel

The following table includes a list of the most useful object model classes that developers can use to
create their own solution. There is a description of each class and code examples of some of the most
useful methods or properties.

Namespace: Sitecore.Sharepoint.ObjectModel

Class Name Description

SpContext

This is an abstract class used by connector classes.

SpContext handles SharePoint login credentials in one of

three possible ways:

 Prompt user for credentials

 Use sharepoint.config file

 Use logged in user

If there are no credentials in the sharepoint.config file, then
it uses the credentials of the logged in user by default.

It takes both the URL and login credentials to access the
SharePoint server.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 7 of 30

Namespace: Sitecore.Sharepoint.ObjectModel.Entities

Class Name Description

CommonEntity This is the base class for all objects in the Sharepoint Object
Model. It encapsulates members that are common to all objects.

Members:

 Context — specifies URL of target SharePoint server

and login credentials.

 Properties — specifies the properties of the current

SharePoint object. This is a protected property but you
can access it using the indexer.

ContentType

This class represents a Sharepoint content type and uses

ContentTypeID to show the SharePoint object type. The main

purpose of this class is to store a list of fields that an item of this
type can contain.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 8 of 30

Class Name Description

Field Represents a single Sharepoint field for a specific SharePoint
content type. Use this class to retrieve properties from fields
such as:

 Required

 Type

 Display Name

Server Represents the root web of the SharePoint server. It enables
you to perform a search of all webs on the SharePoint server.

View Represents a SharePoint view. If you want to display a specific
SharePoint view, use objects of this class to create a list of fields
to display.

Useful properties include FieldNames.

Web This class presents a single SharePoint web.

Useful properties include Lists and Webs. You can use these

properties to access child lists or sub webs.

Namespace: Sitecore.Sharepoint.ObjectModel.Options

Class Name Description

ItemsRetrievingOptions

This class represents the settings and options that you can
apply to the list items you retrieve from a SharePoint list.

Properties:

ViewName — specifies a SharePoint view for the current

SharePoint list.

Folder — retrieves items from a specific folder for the current

SharePoint list.

SortingInfo — specifies a sort order for the SharePoint list

items you retrieve.

WherePart — specifies a filter (CAML query) that applies to all

SharePoint list items retrieved from a specific target destination.

PagingQuery — specifies which page to retrieve from a

SharePoint list item. Applies when the current SharePoint view
enables paging for the target SharePoint list.

Namespace: Sitecore.Sharepoint.ObjectModel.Entities.Collections

Class Name Description

ItemCollection

This class represents a set of SharePoint list items. It is
necessary to specify a target list and options when you create

ItemCollection. After you have created an ItemCollection

object it is possible to access all SharePoint list items of a
specified SharePoint list filtered using the specified options. Use

the indexer of the current ItemCollection to get access to the

appropriate SharePoint list items.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 9 of 30

Class Name Description

Properties:

PageIndex — specifies the index of a SharePoint list page. This

only applies if the SharePoint view used enables paging.

Methods:
The methods described here also only apply if the specified
SharePoint view enables paging. Otherwise each method will

return false and the PageIndex property will equal 1.

MoveToNextPage()

MoveToPreviousPage()

CanMoveToNextPage() — verifies that a next page is available.

CanMoveToPreviousPage() — verifies that a previous page is

available.

GetEntities() — gets items in a SharePoint list.

UpdatePagingQueryCollection(string

newNextPagingQuery)

MoveToPage() — try to move to the next page.

If the next page is available, the PageIndex property will

increase. SharePoint list items from the next page of the current
SharePoint list (folder) are loaded and the method returns True.
Otherwise the method will return False.

Syntax:

protected virtual bool MoveToPage(int

pageIndexToRetrieve)

 {

Add logic here

 }

Types Parameters

int pageIndexToRetrieve

Return value: Bool

Note
All the other collection classes represent the sets of the
appropriate objects. They do not implement paging. Paging is only
available on the item set of a SharePoint list.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 10 of 30

Namespace: Sitecore.Sharepoint.ObjectModel.Entities.Items

Class Name Description

ListItem This class inherits from BaseItem. It represents most SharePoint list item

types such as announcements or tasks but not SharePoint document
libraries types.

Syntax:

public ListItem([NotNull] EntityProperties property, [NotNull]

string listName, [NotNull] Uri webUrl, [NotNull] SpContext context)

 : base(property, listName, webUrl, context)

 {

Add logic here

 }

Types Parameters

EntityProperties property

string listName

Uri webUrl

SpContext context

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 11 of 30

Class Name Description

LibraryItem Represents SharePoint library list items. This class inherits from BaseItem.

Syntax:

public LibraryItem([NotNull] EntityProperties property,

[NotNull] string listName, [NotNull] Uri webUrl, [NotNull] SpContext

context)

 : base(property, listName, webUrl, context)

 {

Add logic here

 }

Types Parameters

EntityProperties property

string listName

Uri webUrl

SpContext context

FolderItem Represents a SharePoint folder in a SharePoint library that contains multiple

list items. This class inherits from LibraryItem and implements the IList

interface.

Method:

GetItems(ItemsRetrievingOptions options)- Get SharePoint

library items which are located in the current SharePoint folder. The specified
options apply.

Syntax:

public ItemCollection GetItems([NotNull]ItemsRetrievingOptions

options)

 {

Add logic here

 }

Types Parameters

ItemsRetrievingOptions options

Return value: ItemCollection

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 12 of 30

Class Name Description

DocumentItem

Represents SharePoint document list items. This class inherits from

LibraryItem. The main feature of these items is that they contain a BLOB

as part of the item.

Methods:

CheckIn(string comment) — executes Check In command for the

current SharePoint document list item.

Syntax:

 public bool CheckIn([NotNull] string comment)

 {

Add logic here

 }

Types Parameters

string comment

Return value: bool

CheckOut(bool localCheckout) — executes Check Out for the current

SharePoint document list item.

Syntax:

public bool CheckOut(bool localCheckout)

 {

Add logic here

 }

Types Parameters

bool localCheckout

Return value: bool

SetStream(Stream streamData) — sets steam of the current

SharePoint document item.

Syntax:

public void SetStream([NotNull] Stream streamData)

 {

Add logic here

 }

Types Parameters

Stream streamData

Stream GetStream() — gets steam of the current SharePoint document

item.

Syntax:

public Stream GetStream()

 {

Add logic here

 }

Return Value: Stream

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 13 of 30

Namespace: Sitecore.Sharepoint.ObjectModel.Entities.Lists

Class Name Description

BaseList

Represents a SharePoint list and list items, views, content types and
fields.

Properties:

 ServerTemplate — represents the type of current SharePoint

list.

 Views — represents all SharePoint views which are available

for current the SharePoint list.

 ContentTypes — represents all types of SharePoint list items

that are available for the current SharePoint list.

 Fields — represents all the fields in a specific list item type

which are available for the current SharePoint list.

Method:

 GetList(string webUrl, string listName,

SpContext context) — This is a static method that retrieves

a SharePoint list with a specified name from a specific
SharePoint web and server.

Syntax:

public static BaseList GetList([NotNull] Uri webUrl,

[NotNull] string listName, [NotNull] SpContext context)

 {

Add logic here

 }

Types Parameters

Uri webUrl

string listName

SpContext context

Return value: BaseList

Other useful methods:

 GetItems() — retrieves list items from the current SharePoint

list. The default SharePoint view is used.

 GetItems(ItemsRetrievingOptions options)—

retrieves list items from the current SharePoint list. Any specific
options are used.

All other list objects inherit from the BaseList class and share the

same functionality:
Sitecore.Sharepoint.ObjectModel.Entities.Lists.BaseLi

st

1.3.2 Item Provider Classes

The classes in this section come from the following namespace:

 Sitecore.Sharepoint.Data.Providers

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 14 of 30

Use these classes to customize item level integration.

Diagram showing fields, properties and methods included in these classes.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 15 of 30

Class Name Description

ItemProvider This class inherits from the

Sitecore.Data.Managers.ItemProvider class.

It calls other methods from the SharepointProvider class to handle

Sharepoint specific items:

 Sharepoint Integration Definition item

 SharepointFolder item

Method: CreateItem
 public override Item CreateItem([NotNull] string

itemName, [NotNull] Item destination, [NotNull] ID templateId,

[NotNull] ID newId, SecurityCheck securityCheck)

 {

Add logic here

 }

Types Parameters

string itemName

Item destination

ID templateID

ID newId

SecurityCheck securityCheck

Return value: Item

SharepointProvider This class populates the Sitecore tree with SharePoint data.

Method: ProcessTree

This method passes ProcessIntegrationItemsOptions and

Item as parameters. ProcessIntegrationItemsOptions

implements how to handle different types of Sharepoint integration
items.
It represents the Sharepoint integration definition item or Sharepoint
folder item to be processed.
Other important methods used in this class:

 ProcessItem

 CreateSharepointItem

 DeleteSharepointItem

ProcessTree also ensures the synchronization of Sitecore and

SharePoint items.

It does not change any items itself but calls the methods of the specified
behaviour to make the changes.

Syntax:

public virtual void ProcessTree([NotNull]

ProcessIntegrationItemsOptions processIntegrationItemsOptions,

[NotNull] Item integrationConfigDataSource)

 {

Add logic here

 }

Types Parameters

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 16 of 30

Class Name Description

ProcessIntegrationItemsOptions processIntegration

ItemsOptions

Item integrationConfig

DataSource

IntegrationConfigData

This class represents the SharePoint integration configuration data
needed to retrieve list items from a SharePoint list. Configuration

information is stored in the IntegrationConfigData field of the

SharePoint integration definition item. This item uses the Sharepoint

Integration Configuration template.

Properties:

Server — specifies the target SharePoint server.

Web — specifies the target SharePoint site.

List — specifies the target SharePoint list.

Folder — Specify a folder fir integration items.

View — specifies which view to use when retrieving list items from the

target SharePoint list.

ItemLimit — specifies an item limit. Use this if you want to restrict the

number of items that you can integrate. Default limit = 100.

ExpirationInterval — The minimum amount of time between

requests to the SharePoint server for updated list information.

TemplateID — ID of Sitecore template assigned to integration items.

FieldMappings — enables you to specify field mappings between

SharePoint list items and Sitecore items.

ScheduledBlobTransfer — Schedule downloading of large files at a

pre-defined time. For example BLOB files.

BidirectionalLink — Enable updates to items from either

SharePoint or Sitecore.

1.3.3 Connector Classes

In the SharePoint Integration object model, use the following path to locate the connector classes in
the code solution:

Sitecore.Sharepoint.ObjectModel\Connectors

Entities use connector classes to communicate directly with SharePoint Web services. They transform
the XML that SharePoint Web services return to key-value pairs and create CAML queries.

How connectors create CAML queries:

 The Update method of the BaseItem class updates the current SharePoint list item. To do

this it runs the UpdateItem method which is part of the ItemConnector class.

 It then passes properties or key-value pairs to the current item and the target SharePoint list.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 17 of 30

 The UpdateItem method of ItemConnector class creates a CAML query using values in

the properties and the target list.

 It passes these values to the UpdateListItems method of SharepointLists Web

service.

1.3.4 Pipelines

Item level integration hooks into a series of pipelines in the sharepoint.config file to integrate
SharePoint lists with Sitecore items and to perform additional actions such as update and delete.
Each pipeline consists of a series of processors that execute in a specific order. Pipelines are easy to
create and to customize and you can add your own custom pipelines and processors to the
sharepoint.config file.

Example pipeline: createIntegrationItem

<createIntegrationItem>

 <processor type="Sitecore.Sharepoint.Pipelines.CreateIntegrationItem.GetTemplate,

Sitecore.Sharepoint.Data.Providers" />

 <processor type="Sitecore.Sharepoint.Pipelines.CreateIntegrationItem.CreateItem,

Sitecore.Sharepoint.Data.Providers" />

 <processor type="Sitecore.Sharepoint.Pipelines.ProcessIntegrationItem.UpdateFields,

Sitecore.Sharepoint.Data.Providers" />

 <processor type="Sitecore.Sharepoint.Pipelines.ProcessIntegrationItem.UpdateBlob,

Sitecore.Sharepoint.Data.Providers" />

 </createIntegrationItem>

This pipeline creates a new integrated Sitecore item. You invoke four processors when you use the
SharePoint Integration wizard to map a SharePoint list with Sitecore:

 GetTemplate

 CreateItem

 UpdateFields

 UpdateBlob

Each processor contains a series of steps that to be executed in a specific order. The logic
that implements each processor action is contained in a C# class file stored in the Pipelines
folder of the SharePoint Integration Framework code solution.

This table describes the purpose of each of the default integration pipelines in the sharepoint.config
file.

Pipeline Name Description

createIntegrationItem Use this pipeline to integrate SharePoint list items with
Sitecore. This pipeline creates a new Sitecore item and
adds it to the content tree. This pipeline runs when you use
the wizard or any time a new item is added to SharePoint.

This pipeline has four processors:

 GetTemplate — Retrieves the appropriate Sitecore
template.

 CreateItem — Creates a new item in the Sitecore
content tree.

 UpdateFields — Adds fields as defined in
mappings in the SharePoint Integration wizard.

 UpdateBlob — If the item contains a Blob then a
Blob field is added to the Sitecore item.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 18 of 30

Pipeline Name Description

ProcessIntegrationItem This pipeline processes any changes made to a
SharePoint list and updates the corresponding integrated
Sitecore items.
For example, if you edit or create a new list item in
SharePoint, this pipeline updates the existing integrated
Sitecore item to reflect the changes made in SharePoint.
This pipeline also runs when the expiration interval has
expired or when Sitecore starts.

This pipeline has four processors:

 GetItem — Retrieves the appropriate Sitecore item.

 IsLocked — Checks to see if there is a lock on the
Sitecore item.

 UpdateFields — If the item is not locked then it
updates the fields in the Sitecore item.

 UpdateBlob — If the item contains a Blob then it
updates the Blob field.

deleteIntegrationItem

When you delete list items from SharePoint, this pipeline
runs and deletes the corresponding integrated item from
the Sitecore content tree.

This pipeline as three processors:

 GetItem — Retrieves the Sitecore item.

 IsLocked — Checks to see if there is a lock on the
Sitecore item.

 DeleteItem — If the item is not locked it is deleted.

createSharepointItem

If you add a new document to the Sitecore Media library,
for example, a Word document or an image file, this
pipeline runs and creates a new SharePoint list item.

The pipeline has two processors:

 IsBidirectionalLink — This enables you to create
the item from either Sitecore or SharePoint.

 CreateItem — This creates a new item in
SharePoint.

updateSharepointItem

This pipeline processes any changes made to Sitecore
integrated items and updates the corresponding
SharePoint list.
For example, if you make any changes to a Sitecore item
that has fields mapped to a SharePoint list when you click
save, this pipeline runs and updates the corresponding
SharePoint fields.
This pipeline also runs when the expiration interval has
expired or when Sitecore starts.

This pipeline has four processors:

 IsBidirectionalLink — This enables you to change
the item from either Sitecore or SharePoint.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 19 of 30

Pipeline Name Description

 GetItem — Retrieves the SharePoint list item.

 IsCheckedOut — Checks to see if the item is
checked out. If it is checked out, the pipeline is
aborted.

 UpdateItem — If it is not checked out, it updates
the SharePoint list item.

deleteSharepointItem

When you delete an integrated item from the Sitecore
content tree this pipeline runs and deletes the
corresponding list item from SharePoint.

This pipeline has four processors:

 IsBidirectionalLink — This enables you to delete
the item from either Sitecore or SharePoint.

 GetItem — Retrieves the list item from SharePoint.

 IsCheckedOut — Checks to see if the item is
checked out. If it is checked out, the pipeline is
aborted.

 DeleteItem — If the item is not checked out, it is
deleted.

translateSharepointValue

This pipeline translates incompatible field formats found in
a SharePoint list to a format compatible with Sitecore.
For example, a SharePoint field that has an incompatible
date format.

This pipeline has two processors:

 CopySourceValue — Copies the value in the
SharePoint field.

 TranslateDateToIsoDate — Converts the value in
the SharePoint field to the ISO Date format.

translateIntegrationValue

This pipeline translates incompatible field formats found in
a Sitecore item to a format compatible with SharePoint
lists.
For example, a Sitecore field with an incompatible date
format.

This pipeline has one processor:

 CopySourceValue — Copies the value in the
Sitecore item.

Pipeline Arguments

ProcessIntegrationItemArgs.cs

This class contains a series of arguments or properties that are passed to the processors contained in
the SharePoint Integration pipelines.

When one of the processors in a pipeline is invoked, a C# class such as GetItems is called which

contains references to arguments in the ProcessIntegrationItemArgs class.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 20 of 30

These arguments are:

 public class ProcessIntegrationItemArgs : PipelineArgs

 {

 public Item IntegrationItem { get; set; }

 public ID IntegrationItemID { get; set; }

 public ID IntegrationItemTemplateID { get; set; }

 public SharepointBaseItem SourceSharepointItem { get; set; }

 public SynchContext SynchContext { get; set; }

 public ProcessIntegrationItemsOptions Options { get; set; }

 public EventSender EventSender { get; set; }

 }

Argument Name Description

IntegrationItem The name of the Sitecore item integrated with SharePoint.

IntegrationItemID The ID of the Sitecore item integrated with SharePoint.

IntegrationItemTemplateID The ID of the template assigned to the Sitecore item
integrated with SharePoint.

SourceSharepointItem The name of the SharePoint list item integrated with
Sitecore. Sitecore item fields are mapped to this
SharePoint list item.

SynchContext This enables synchronization of data between mapped
fields.

Options Additional settings on the item, For example, expiration
interval, BLOB transfer or item limit.

Custom Processors

You can create your own custom pipeline processors that hook into the pipeline arguments. For
example, when you integrate a SharePoint list item with Sitecore you could create a processor with
logic for choosing the templates that a Sitecore item is based on. To do this, reference the

IntegrationItemTemplateID argument in the ProcessIntegrationItemArgs class to get all

template IDs. This would enable you to choose a different template rather than the default template
normally used for that item.

Each argument enables you to retrieve information about the Sitecore items and SharePoint lists that
you want to integrate and can be used in different ways.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 21 of 30

1.4 SharePoint Web Services

The SharePoint Integration Framework uses SharePoint 2010 Web services to connect to a
SharePoint SQL Server database. The Sitecore SharePoint Integration Object model includes the
following classes that enable you to communicate with Microsoft SharePoint Web services.

Note
You can use earlier versions of SharePoint with this module; however you will get the best results if
you use SharePoint 2010.

When you request a list from SharePoint, Web services retrieve the appropriate data from your
SharePoint SQL database.

Some key Web services used by the SharePoint Integration Framework:

Web Service Name Description

SharepointCopy Methods for copying files between SharePoint sites.

SharepointLists Methods for working with lists and list data.

SharepointSearch Entry point for Enterprise search.

SharepointViews Methods for working with views of lists.

SharepointWebs Methods for working with sites and sub sites.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 22 of 30

Chapter 2

Using the API

This chapter contains use cases and tutorials that show how you can use the SPIF
API to solve business problems.

This chapter contains the following sections:

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 23 of 30

2.1 API Use Cases

This section contains the SPIF API use cases. These use cases are designed to illustrate how you
can overcome some particular business challenges.

2.1.1 How to Protect a SharePoint Revision

The Problem and the Expected Behavior

An organization has configured item level integration between Sitecore and SharePoint.

They have configured a considerably long expiration interval, for instance, one hour.

On some occasions, editors update items in SharePoint within the expiration interval. If you edit the
corresponding item in Sitecore within the same interval, you don’t see the latest revision from
SharePoint and Sitecore overwrites the revision on SharePoint with your changes when you save the
item in Sitecore.

Sitecore must therefore check whether there is a conflict between the revisions in the Sitecore item
and the SharePoint item. If there is a conflict, Sitecore should:

 Create a log entry in the Sitecore log file that indicates that there is a conflict.

 Keep the item in SharePoint intact.

Sitecore's Solution

The following list outlines the main points that we perform in our solution:

 plug into the updateSharepointItem pipeline. Sitecore executes this pipeline when it

updates SharePoint items and you want to control this process.

 add a custom processor to the updateSharepointItem pipeline that aborts the pipeline

and adds a log entry if it detects a revision conflict.

The custom processor uses the Modified property of the integrated item. This property

contains the time when the integrated item in Sitecore was last updated from SharePoint.

The custom processor must run before the UpdateItem processor.

to solve this task:

1. Create a Visual Studio web application project for the existing SIP solution.

2. In Visual Studio, add a reference to the following assemblies:

Sitecore.Kernel

Sitecore.Sharepoint.Common

Sitecore.Sharepoint.Data.Providers

Sitecore.Sharepoint.ObjectModel

For information about how to add a reference, see section 2.2.1, Adding a Reference to a
Sitecore Library in Visual Studio.

3. In your project, create a code file.

4. In the code file, enter the code from the following Code Sample section .

5. Build the project and put the compiled DLL file in the \bin\ folder of your SIP solution.

6. In the sharepoint.config file, in the updateSharepointItem pipeline, insert the

reference to your custom processor.

Insert the reference to your processor before the UpdateItem processor:

<updateSharepointItem>

...

 <processor type="SPIF_Customization.DoNotOverrideSharepointRevision,

SPIF_Customization" />

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 24 of 30

 <processor

type="Sitecore.Sharepoint.Pipelines.UpdateSharepointItem.UpdateItem,

Sitecore.Sharepoint.Data.Providers" />

...

 </updateSharepointItem>

The custom processor is configured.

Code Sample

namespace SPIF_Customization

{

 using System;

 using Sitecore.Diagnostics;

 using Sitecore.Sharepoint.Pipelines.ProcessSharepointItem;

 using Sitecore;

 /// <summary>

 /// Sitecore must check whether there is a conflict between revisions in the

Sitecore integrated item and the SharePoint item, and if there is a conflict, it should:

 /// * Create a log entry in the Sitecore log file that indicates that there is a

conflict.

 /// * Not overwrite the SharePoint item.

 /// </summary>

 public class DoNotOverrideSharepointRevision

 {

 //The updateSharepointItem pipline requires that the class we create contains

a method called Process.

 //The updateSharepointItem pipline changes SharePoint items, we therefore use

the ProcessSharepointItemArgs type for the args parameter.

 public virtual void Process(ProcessSharepointItemArgs args)

 {

 //Getting the modification time of the given SharePoint item.

 string lastModified = args.SharepointItem["ows_Modified"];

 //Getting the time when the integrated item in Sitecore was last updated

from SharePoint.

 string updated = args.SourceIntegrationItem["Modified"];

 //Converting the time to universal format

 DateTime time1 = DateTime.Parse(lastModified).ToUniversalTime();

 DateTime time2 = DateTime.Parse(updated);

 if (time1.CompareTo(time2) == 1)

 {

 //If there is a conflict between revisions in the Sitecore integrated

item and the SharePoint item, create a log entry in the Sitecore log file and not change item

in SharePoint.

 Log.Error(string.Format("SharePoint item {0} and the corresponding

integrated item in Sitecore are in conflict. Wait until the item in Sitecore is updated and

then make your changes.", args.SharepointItem.Title), this);

 args.AbortPipeline();

 }

 }

 }

}

2.1.2 How to Prevent New Items from Being Deleted

The Problem and the Expected Behavior

An organization requires:

 That new items that were created in SharePoint within a specified period of time (for example,
eight hours ago or less) must not be deleted from SharePoint even if a user deletes the
corresponding integration items in Sitecore. This is because an editor must review new items
first.

 That when a user deletes an integrated item, Sitecore must check whether this item was
created within a given interval and if it was, Sitecore must abort the deletion pipeline and add
a message to the log file which explains why the SharePoint item cannot be deleted.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 25 of 30

Sitecore’s Solution

The following list outlines the main points that we perform in our solution:

 plug into the deleteSharepointItem pipeline. Sitecore executes this pipeline when it

deletes SharePoint items and you want to control this process.

 In the pipeline, add a custom processor that checks whether the item was created within the
given interval. If it was, the custom processor adds a message to the log file and aborts the
pipeline.

to solve this problem:

1. Create a Visual Studio web application project for the existing SIP solution.

2. In Visual Studio, add a reference to the following assemblies:

Sitecore.Kernel

Sitecore.Sharepoint.Common

Sitecore.Sharepoint.Data.Providers

Sitecore.Sharepoint.ObjectModel

For information about how to add a reference, see section 2.2.1, Adding a Reference to a
Sitecore Library in Visual Studio.

3. In your project, create a code file. In the code file, enter the code from the following Code
Sample section.

4. Build the project and put the compiled DLL file in the \bin\ folder of your SIP solution.

5. In the \App_Config\Include\ folder, create a configuration file called interval.config

and put the following code in it:

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">

 <sitecore>

 <settings>

 <setting name="MyTimeInterval" value="08:00:00"/>

 </settings>

 </sitecore>

</configuration>

6. In the sharepoint.config file, in the deleteSharepointItem pipeline, insert the

reference to the custom processor. Insert the reference to the processor before the

DeleteItem processor:

<deleteSharepointItem>

...

 <processor type="SPIF_Customization.KeepNewItems, SPIF_Customization" />

 <processor

type="Sitecore.Sharepoint.Pipelines.DeleteSharepointItem.DeleteItem,

Sitecore.Sharepoint.Data.Providers" />

</deleteSharepointItem>

The custom processor is configured.

Code Sample

namespace SPIF_Customization

{

 using System;

 using Sitecore.Diagnostics;

 using Sitecore.Sharepoint.Pipelines.ProcessSharepointItem;

 public class KeepNewItems

 {

 //The deleteSharepointItem pipline requires that the class contains a method

called Process.

 //The deleteSharepointItem pipline changes SharePoint items, we therefore use

the ProcessSharepointItemArgs type for the args parameter.

 public virtual void Process(ProcessSharepointItemArgs args)

 {

 //Getting the creation time of the given SharePoint item

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 26 of 30

 string created = args.SharepointItem["ows_Created"];

 string now = DateTime.Now.ToString();

 //Converting the time to universal format

 DateTime time1 = DateTime.Parse(created).ToUniversalTime();

 DateTime time2 = DateTime.Parse(now).ToUniversalTime();

 //Calculating how much time has passed since the given item was created

 var peroid = time2 - time1;

 //Getting the interval variable from the configuration file. If there is

no setting called MyTimeInterval, the GetTime SpanSetting method sets the time interval as

defined by the "new TimeSpan" expression.

 var interval =

Sitecore.Configuration.Settings.GetTimeSpanSetting("MyTimeInterval", new TimeSpan(2,0,0));

 if (peroid < interval)

 {

 //If the item was created within the given interval, add a message to

the log file and abort the pipeline.

 Log.Info(string.Format("Integration item \"{0}\" was created within

this interval (HH:MM:SS): {1}. It has not been reviewed yet and cannot be deleted!",

args.SharepointItem.Title, interval), this);

 args.AbortPipeline();

 }

 }

 }

}

2.1.3 How to Monitor Delete Operations

The Problem and the Expected Behavior

An organization requires:

 That when you delete an item in SharePoint, Sitecore must add an entry to the log file when a
corresponding integrated item is deleted in Sitecore.

Sitecore's Solution

The following list outlines the main points that we perform in our solution:

 plug into the deleteIntegrationItem pipeline. Sitecore executes this pipeline when it

deletes integrated items and you want to control this process.

 In the pipeline, add a custom processor that monitors the delete operations. The custom

processor must run before the DeleteItem processor.

to solve this problem:

1. Create a Visual Studio web application project for the existing SIP solution.

2. In Visual Studio, add a reference to the following assemblies:

Sitecore.Kernel

Sitecore.Sharepoint.Common

Sitecore.Sharepoint.Data.Providers

Sitecore.Sharepoint.ObjectModel

For information about how to add a reference, see section 2.2.1, Adding a Reference to a
Sitecore Library in Visual Studio.

3. In your project, create a code file. In the code file, enter the code from the following Code
Sample section.

4. Build the project and put the compiled DLL file in the \bin\ folder of your SIP solution.

5. In the sharepoint.config file, in the deleteIntegrationItem pipeline, insert the

reference to the custom processor. Insert the reference to the custom processor before the

DeleteItem processor:

<deleteIntegrationItem>

...

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 27 of 30

 <processor type="SPIF_Customization.MonitorDeleteOperation,

SPIF_Customization" />

 <processor

type="Sitecore.Sharepoint.Pipelines.DeleteIntegrationItem.DeleteItem,

Sitecore.Sharepoint.Data.Providers" />

 </deleteIntegrationItem>

The custom processor is configured.

Code Sample

namespace SPIF_Customization

{

 using Sitecore.Diagnostics;

 using Sitecore.Sharepoint.Pipelines.ProcessIntegrationItem;

 public class MonitorDeleteOperation

 {

 //The deleteIntegrationItem pipline requires that the class you create contains a

method called Process.

 //The deleteIntegrationItem pipline makes changes to Sitecore items, we therefore

use the ProcessIntegrationItemArgs type for the args parameter.

 public virtual void Process(ProcessIntegrationItemArgs args)

 {

 Log.Info(string.Format("Integration item \"{0}\" is going to be deleted!",

args.IntegrationItem.Paths.FullPath), this);

 }

 }

}

2.1.4 How to Fill in a Field when It is Empty in SharePoint

The Problem and the Expected Behavior

An organization has a SharePoint repository and all items contain the Author field.

In Sitecore, some integration items contain the Author field and some do not.

The organization wants:

 Sitecore to check whether or not items contain the Author field.

o If the item contains the Author field and it is empty, Sitecore must insert the string “An
author is not specified”.

o If the item does not contain the Author field, Sitecore must add the field mapping that
maps the Author field to the current integration definition item.

Sitecore Solution

The following list outlines the main points that we perform in our solution:

 plug into the updateIntegrationItem pipeline. since Sitecore executes this pipeline

when updating integrated items and we want to check whether those items have the Author
field in them. If there is no Author field, then the processor adds this field in the template and
adds the mapping between the new field and the corresponding field in SharePoint.

 plug into the translateSharepointValue pipeline to check the value of the Author field

in SharePoint and to change this value in the integrated item, . Sitecore runs this pipeline for
every field in a SharePoint item.

to solve this problem:

1. Create a Visual Studio web application project for the existing SIP solution.

2. In Visual Studio, add a reference to the following assemblies:

Sitecore.Kernel

Sitecore.Sharepoint.Common

Sitecore.Sharepoint.Data.Providers

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 28 of 30

Sitecore.Sharepoint.ObjectModel

For information about how to add a reference, see section 2.2.1, Adding a Reference to a
Sitecore Library in Visual Studio.

3. In your project, create a code file. In the code file, enter the code from the following Code
Sample section.

4. Build the project and put the compiled DLL file in the \bin\ folder of your SIP solution.

5. In the sharepoint.config file, in the updateIntegrationItem pipeline, insert the

reference to the custom processor that adds the author mapping. Insert the reference to the

custom processor before the UpdateFields processor:

<updateIntegrationItem>

...

 <processor type="SPIF_Customization.AddAuthorMapping, SPIF_Customization" />

 <processor

type="Sitecore.Sharepoint.Pipelines.ProcessIntegrationItem.UpdateFields,

Sitecore.Sharepoint.Data.Providers" />

 <processor

type="Sitecore.Sharepoint.Pipelines.ProcessIntegrationItem.UpdateBlob,

Sitecore.Sharepoint.Data.Providers" />

</updateIntegrationItem>

6. In the sharepoint.config file, in the translateSharepointValue pipeline, insert the

reference to the custom processor that fills in the author field when it is empty:

<translateSharepointValue>

...

 <processor type="SPIF_Customization.FillAuthorField, SPIF_Customization" />

</translateSharepointValue>

the custom processor is configured.

Code Sample

namespace SPIF_Customization

{

 using Sitecore.Sharepoint.Data.Providers.IntegrationConfig;

 using Sitecore.Sharepoint.Pipelines.ProcessIntegrationItem;

 using Sitecore.Sharepoint.Pipelines.TranslateSharepointValue;

 class AddAuthorMapping

 {

 //The updateIntegrationItem pipline requires that the class contains a method

called Process.

 //The updateIntegrationItem pipline makes changes to Sitecore items, we

therefore use the ProcessIntegrationItemArgs type for the args parameter.

 public virtual void Process(ProcessIntegrationItemArgs args)

 {

 if (args.IntegrationItem.Fields["Author"] == null)

 {

 args.IntegrationItem.Template.AddField("Author", "SharePoint Data");

 IntegrationConfigData.FieldMapping fieldMapping = new

IntegrationConfigData.FieldMapping("ows_Author", "Author");

args.SynchContext.IntegrationConfigData.FieldMappings.Add(fieldMapping);

 //In the previous line the method adds the field mapping to the

current contextual configuration. To make the mapping work the next time the pipeline runs,

Sitecore must save the configuration in the integration definition item.

IntegrationConfigDataProvider.SaveToItem(args.SynchContext.IntegrationConfigData,

args.SynchContext.ParentItem);

 }

 }

 }

 class FillAuthorField

 {

 //The translateSharepointValue pipline requires that the class we create

contains a method called Process.

 //The translateSharepointValue pipline processes SharePoint items, thus we use

the TranslateSharepointValueArgs type for the args parameter.

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 29 of 30

 public virtual void Process(TranslateSharepointValueArgs args)

 {

 if (args.SourceFieldName != "ows_Author")

 {

 return;

 }

 if (string.IsNullOrEmpty(args.SourceSharepointItem["ows_Author"]))

 {

 args.TranslatedValue = "Author is not specified.";

 }

 }

 }

}

SharePoint Integration Framework API Reference

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2013 Sitecore. All rights reserved.

Page 30 of 30

2.2 Tips and Tricks

This section contains some tips and tricks for developers.

2.2.1 Adding a Reference to a Sitecore Library in Visual Studio

To add a reference to a library In Visual Studio:

1. In the Visual Studio Solution Explorer, right-click References, and then click Add
Reference.

2. In the Add Reference dialog box, select the Browse tab.

3. Navigate to the \bin folder within the Sitecore solution, for example

C:\inetpub\siotecore\MyWebSite\WebSite\bin and select the required libraries.

2.2.2 Creating a Visual Studio Web Application Project

For information about creating a Visual Studio web application project for an existing Sitecore
solution, see the section How to Create a Visual Studio Web Application Project in the following
document: http://sdn.sitecore.net/upload/sitecore6/64/presentation_component_cookbook-a4.pdf

http://sdn.sitecore.net/upload/sitecore6/64/presentation_component_cookbook-a4.pdf

	Chapter 1 API Integration
	1.1 Developer Pre-requisites and Considerations
	1.2 The SharePoint Integration Framework API
	1.3 API Reference
	1.3.1 Object Model Classes
	1.3.2 Item Provider Classes
	1.3.3 Connector Classes
	1.3.4 Pipelines
	Pipeline Arguments
	Custom Processors

	1.4 SharePoint Web Services

	Chapter 2 Using the API
	2.1 API Use Cases
	2.1.1 How to Protect a SharePoint Revision
	2.1.2 How to Prevent New Items from Being Deleted
	2.1.3 How to Monitor Delete Operations
	2.1.4 How to Fill in a Field when It is Empty in SharePoint

	2.2 Tips and Tricks
	2.2.1 Adding a Reference to a Sitecore Library in Visual Studio
	2.2.2 Creating a Visual Studio Web Application Project

