
Sitecore CMS 6
Presentation Component Cookbook Rev: 2008-10-01

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Sitecore CMS 6

Presentation Component
Cookbook
Tips and Techniques for CMS Administrators, Architects, and Developers

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 2 of 54

Table of Contents

Chapter 1 Introduction .. 4
1.1 Common Procedures .. 5

1.1.1 How to Show Visual Studio Solution Explorer .. 5
1.1.2 How to Show or Hide All Files in Visual Studio Solution Explorer .. 5

Chapter 2 Development Infrastructure ... 6
2.1 Requirements Analysis ... 7

2.1.1 Name and Path Conventions .. 7
2.2 ASP.NET ... 9

2.2.1 ASP.NET Tag Prefixes .. 9
2.2.2 ASP.NET Control IDs .. 9
2.2.3 Code-Behind, Code-Beside, or CodeFile? .. 9

2.3 The Developer Center ... 11
2.3.1 How to Access the Developer Center ... 11
2.3.2 How to Access Recently-Used Items in the Developer Center ... 11
2.3.3 How to Access the Content Editor from within the Developer Center 12
2.3.4 The Developer Center Code Boilerplate Files .. 12

How to Edit the Developer Center Boilerplate Files ... 12
2.4 Microsoft Visual Studio .. 13

2.4.1 How to Create a Visual Studio Web Application Project ... 13
2.4.2 How to Add an Existing File to a Web Application Project .. 15
2.4.3 How to Add Sitecore Controls to the Visual Studio Toolbox ... 15
2.4.4 How to Debug .NET Code Using Visual Studio .. 16
2.4.5 How to Create a Collection of Web Service Methods ... 16
2.4.6 How to Optimize Visual Studio Performance .. 17

Chapter 3 Layout Details .. 19
3.1 How to Work Layout Details .. 20

3.1.1 The Device Editor .. 20
How to Open the Device Editor .. 20
How to Select a Layout .. 20
How to Add a Control ... 20
How to Order Controls ... 21
How to Remove a Control .. 21

3.2 How to Reset Layout Details to Standard Values ... 22
3.3 How to Copy Layout Details .. 23
3.4 How to Determine Presentation Components Used ... 24
3.5 Working with Devices .. 25

3.5.1 How to Create a Device .. 25
3.5.2 How to Define Device Activation Criteria .. 25

Chapter 4 Controls ... 26
4.1 How to View the Output of a Control ... 27
4.2 Presentation Component Definition Items .. 28
4.3 How to Access the Control Properties Dialog ... 29
4.4 How to Set Control Properties Using Visual Studio .. 30
4.5 Common Control Properties .. 31

4.5.1 How to Configure Control Caching Options .. 31
4.5.2 How to Configure the Data Source of a Control .. 31
4.5.3 How to Pass Parameters to a Control ... 31

4.6 Placeholders.. 33
4.7 Sublayouts ... 34
4.8 The FieldRenderer Web Control ... 35
4.9 XSL Renderings .. 36

4.9.1 How to Create an XSL Rendering ... 36
4.9.2 How to View the Output of an XSL Rendering .. 36
4.9.3 The Main XSL Template Block .. 36

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 3 of 54

4.9.4 The XSL Rendering Boilerplate File .. 37
4.9.5 Custom XSL Template Libraries ... 38

How to Create an XSL Template Library ... 38
How to Reference an XSL Template Library in an XSL Rendering ... 38

4.9.6 Custom XSL Extension Methods .. 39
How to Register a Custom XSL Extension Method Library ... 40
How to Register a .NET XSL Extension Library ... 40
How to Use a .NET XSL Extension Library .. 41

4.10 Web Controls... 42
4.10.1 How to Create a Web Control Class ... 42
4.10.2 How to Register a Web Control ... 42
4.10.3 How to Add a Property to a Web Control .. 43

4.11 Method Renderings ... 44
4.11.1 How to Create a Method Rendering Class and Method ... 44
4.11.2 How to Register a Method Rendering ... 44

4.12 URL Renderings .. 46
4.12.1 How to Register a URL Rendering .. 46

Chapter 5 Layouts and Sublayouts .. 47
5.1 Create a Layout ... 48

5.1.1 How to Create a Layout Using the Developer Center ... 48
5.1.2 How to Register a Web Form as a Layout .. 48

5.2 Create a Sublayout ... 49
5.2.1 How to Create a Sublayout in the Developer Center .. 49
5.2.2 How to Register a Web User Control as a Sublayout ... 49

5.3 Add a Control to a Layout or Sublayout .. 50
5.3.1 How to Add a Control to a Layout or Sublayout Using the Developer Center 50
5.3.2 How to Add a Control to a Layout or Sublayout Using Visual Studio 50

5.4 Add Code-Beside to a Layout or Sublayout .. 52
5.4.1 How to Add Code-Beside to a Layout or Sublayout by Deleting the Existing File 52
5.4.2 How to Add a Code-Beside file to a Layout or Sublayout by Creating Files 52

5.5 How to Add a Layout or Sublayout Partial Class File and Replace CodeFile with
CodeBehind .. 54

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 4 of 54

Chapter 1

Introduction

This cookbook provides tips and techniques for CMS Administrators, Architects, and
Developers working with Sitecore’s presentation components. For more information
about the topics described in this document, see the Presentation Component
Reference manual.

This document contains the following chapters:

 Chapter 1 — Introduction
A brief introduction to this cookbook and its intended audience.

 Chapter 2 — Development Infrastructure
Procedures to configure development infrastructure.

 Chapter 3 — Layout Details
Procedures for working with layout details

 Chapter 4 — Controls
Procedures for working with controls including sublayouts and renderings.

 Chapter 5 — Layouts and Sublayouts
Procedures for working with layouts and sublayouts

This chapter contains the following section:

 Common Procedures

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 5 of 54

1.1 Common Procedures

This section provides procedures used in various other sections of this and other Sitecore documents.
For information about additional common procedures, see the Client Configuration Cookbook.

Important
All references to .NET namespaces and class names in this document are case-sensitive. XML, XSL
and XPath are also case-sensitive.

1.1.1 How to Show Visual Studio Solution Explorer

To show Solution Explorer in Visual Studio, in the Web application project, click the View menu, and
then click Solution Explorer.

1.1.2 How to Show or Hide All Files in Visual Studio Solution Explorer

To show all files in Solution explorer, or hide files that are not included in the project, in the Web
application project, show Solution Explorer, and then toggle Show All Files (typically the second
button from the left at the top of Solution Explorer).

Important
Because the Visual Studio 2008 debugger may stop responding when showing all files, show all files,
add files to the project, and then hide all files.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 6 of 54

Chapter 2

Development Infrastructure

This chapter provides techniques for configuring development environments to work
with Sitecore layout engine presentation components.

This chapter contains the following sections:

 Requirements Analysis

 ASP.NET

 The Developer Center

 Microsoft Visual Studio

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 7 of 54

2.1 Requirements Analysis

To minimize development effort, perform thorough requirements analysis before implementation,
especially to identify reusable data, application, and presentation components. Document information
architecture, presentation, and functional requirements, and then map those requirements to
components including data templates, workflow, security, presentation, insert options, and other
properties. Document the key for each placeholder and the caching options for each presentation
component. Design presentation components to support output caching by the fewest possible
criteria. For more information about Sitecore output caching, see the Presentation Component
Reference manual.

1

2.1.1 Name and Path Conventions

Each component of the project should follow standardized naming conventions. Every project should
have a name, for example MyWebSite. Many projects also have an acronym, or a short name, for

example MWS or mws for MyWebSite.

Developers often use the project acronym as the ASP.NET tag prefix for the project as described in
the section ASP.NET Tag Prefixes. Administrators often use the project name or acronym in file
system paths and the names of other objects. For example, an administrator may install the

MyWebSite project to the C:\inetpub\sitecore\MyWebSite or

C:\inetpub\sitecore\MyWebSite\MWS folder.

Developers may store layout and sublayout files for the MyWebSite project in the /layout/mws

directory, with corresponding definition items within /sitecore/layout/layouts/mws and

/sitecore/layout/sublayouts/mws.

Developers may store XSL rendering files for the MyWebSite project in the /xsl/mws directory, with

corresponding definition items within /sitecore/layout/renderings/mws.

Developers may locate other resources, such as JavaScript and CSS files, in a directory named after
the project or project acronym, or use the project name or acronym in the file names.

An administrator may name the relational databases using the project name or acronym as a prefix.
For example, an administrator may name the default databases associated with the MyWebSite
project mwsCore, mwsMaster, and mwsWeb.

Developers may use the project name or acronym in the name of .NET assemblies. For example, if

the MyWebSite solution involves a single .NET assembly, a developer might configure the Visual

Studio project to generate an assembly named MyWebSite.dll. If the MyWebSite solution involves

multiple .NET assemblies, developers might configure the Visual Studio projects to generate several

assemblies with file names that start with the mws prefix, such as mwh.bl.dll for business logic and

mwh.web.dll for Web components.

In general, each .NET assembly should contain classes in a common namespace. For example, the

MyWebSite.dll assembly or the mwh.bl.dll assembly could contain classes in various

namespaces within the MyWebSite namespace, while the mwh.web.dll assembly might only

contain classes in the MyWebSite.Web.UI namespace.

Important
To simplify administration, such as duplicating resources from one Sitecore instance to another, store
presentation component definition items in project-specific folders corresponding to the path to the

file. For example, for the layout file /layouts/mws/Web.aspx, use the layout definition item

/Sitecore/Layout/Layouts/mws/Web.

1
 For access to the Sitecore Presentation Component Reference manual, see

http://sdn5.sitecore.net/Reference/Sitecore%206.aspx.

http://sdn5.sitecore.net/Reference/Sitecore%206.aspx

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 8 of 54

Important

Sitecore definition items and elements in web.config reference .NET components using

namespace, class, and assembly names. Choose and maintain appropriate names to avoid the
potential need for reconfiguration in the future.

Tip
Use namespaces that correspond to namespaces in the .NET framework or Sitecore APIs. For

example, Microsoft uses the System.Web.UI.WebControls namespace for Web controls, and

Sitecore uses Sitecore.Web.UI.WebControls. Consider using the equivalent of

MyWebSite.Web.UI.WebControls for your custom Web controls.

Note

By convention, developers typically store both layouts and sublayouts within the /layouts file

system directory.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 9 of 54

2.2 ASP.NET

This section provides procedures and considerations for working with ASP.NET.

2.2.1 ASP.NET Tag Prefixes

ASP.NET Web forms (Sitecore layouts) and Web user controls (Sitecore sublayouts) uses tag

prefixes to map tokens to namespaces in assemblies. By default, ASP.NET maps the tag prefix asp

to the System.Web.UI.WebControls namespace in the System.Web assembly, exposing Web

controls. For example:

<asp:textbox runat="server" />

When ASP.NET encounters this code, it creates an object from the

System.Web.UI.WebControls.TextBox class.

You can use ASP.NET tag prefix registration directives in web.config, in each Web form, and in

each Web user control to map additional tag prefixes to any namespace in any assembly. It is not

necessary to map the asp or the sc tag prefix.

You can make tag prefixes available to all layouts and sublayouts using

/configuration/system.web/pages/controls/add elements in web.config. For example,

Sitecore uses this approach by default for the asp and sc tag prefixes:

…

<system.web>

 <pages validateRequest="false">

 <controls>

 <add tagPrefix="sc" namespace="Sitecore.Web.UI.WebControls"

assembly="Sitecore.Kernel"/>

 ...

You can register tag prefixes in individual layouts and sublayouts. The following example code

demonstrates registration of the mws tag prefix to enable use of classes in the

MyWebSite.Web.UI.WebControls namespace implemented in the MyWebSite.dll assembly:

<%@ Register TagPrefix="mws" Namespace="MyWebSite.Web.UI.WebControls"

Assembly="MyWebSite" %>

Note
When a developer drags a Web control onto a layout or sublayout in the Developer Center, Sitecore
adds the appropriate registration directive to the layout or sublayout using the tag prefix specified in
the Web control definition item. When a developer drags a Web control from the Visual Studio
Toolbox onto a Web form or Web user control in Visual Studio, Visual Studio adds a tag prefix
registration directive, but uses an arbitrary tag prefix.

2.2.2 ASP.NET Control IDs

Sitecore’s layout engine uses ASP.NET. ASP.NET structures pages as hierarchies of literal controls
that result in static content and server controls that generate dynamic content. Sitecore layouts,
sublayouts, and renderings are ASP.NET controls. Each control must have a unique ASP.NET control
identifier within the page.

2.2.3 Code-Behind, Code-Beside, or CodeFile?

ASP.NET Web forms and Web user control can separate design from logic using code-behind. Code-

behind separates markup and controls in an .aspx or .ascx file from logic in a separate .NET code-

behind file. For example, the Web user control sublayout.ascx could have the C# code-behind file

sublayout.ascx.cs.

The CodeBehind attribute of the Page directive (for a layout) or Control directive (for a sublayout)

references the code-behind file. For example:

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 10 of 54

<%@ Control Language="C#" AutoEventWireup="true" CodeBehind="MySublayout.ascx.cs"

Inherits="Namespace.Web.UI.MySublayout" %>

ASP.NET 2.0 introduces partial classes. Implementing a layout or sublayout as a partial class creates

a third file called the designer file, for example MySubLayout.ascx.designer.cs. ASP.NET 2.0

also introduces the CodeFile attribute as an alternative to the CodeBehind attribute. For example:

<%@ Control Language="c#" AutoEventWireup="true"

Inherits="Namespace.Web.UI.MySublayout" CodeFile="/layouts/MyWebSite/MySublayout.ascx.cs" %>

One potential advantage of using the CodeFile attribute is that the code-behind file can be compiled

at runtime instead of being precompiled by a developer.

By default, Visual Studio 2008 creates Web forms and Web user controls using partial classes with

the CodeBehind attribute in the Page or Control directive.

By default, the Developer Center creates sublasyouts without code-behind. If the developer chooses
to create code-behind for a sublayout, the Developer Center does not create a partial class and uses

the CodeFile attribute. The Developer Center does not support creating layouts with code-behind.

Tip

While developing code-behind for a layout or sublayout, you can use the CodeFile attribute to avoid

the performance impact of compilation, which clears caches by restarting ASP.NET. Be sure to

change the attribute name from CodeFile attribute to CodeBehind and compile before moving the

component out of development, to avoid the need to copy the code file into the production
environment.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 11 of 54

2.3 The Developer Center

The Developer Center is a browser-based application for working with Sitecore presentation and other
components. The Developer Center provides the features and functionality of an Integrated
Development Environment (IDE) such as Microsoft Visual Studio, but runs in a Web browser instead
of running as a Windows application.

Tip
You can edit layouts, sublayouts, and XSL renderings using the Developer Center, or any text editor.
Sitecore recommends C# using Visual Studio 2008 with the Web Application project model.

Important
The Developer Center requires Microsoft Internet Explorer 6 or higher. Sitecore recommends Internet
Explorer (IE) 7 or higher.

2

Important
Both Internet Explorer and the Developer Center define a File menu. Unless otherwise specified, all
references to the File menu in this document refer to the File menu in the Developer Center, not the
File menu in Internet Explorer.

Important
While the Developer Center provides tools for manipulating tables, you can develop components
using tables, CSS, or both.

2.3.1 How to Access the Developer Center

Sitecore developers can access the Developer Center as a standalone browser-based application, or
from within the browser-based Sitecore Desktop.

To access the Developer Center as a standalone browser-based application:

1. In Internet Explorer, access the Sitecore login page (/sitecore).

2. Click the Advanced tab.

3. Click Developer Center.

4. Enter credentials in the User Name and Password fields, and then click Login.

To access the Developer Center from within the Sitecore Desktop:

1. In Internet Explorer, access the Sitecore login page (/sitecore).

2. Click the Advanced tab.

3. Click Desktop.

4. Enter credentials in the User Name and Password fields, and then click Login.

5. In the Sitecore Desktop, click the Sitecore button, and then click Developer Center. The
Developer Center appears in the Sitecore Desktop.

2.3.2 How to Access Recently-Used Items in the Developer Center

The Developer Center Start Page provides shortcuts to open layouts, sublayouts, XSL renderings,
and other recently-used Items.

To use shortcuts in the Developer Center to access recently-used items:

2
 For more information about Sitecore browser client requirements, see

http://sdn5.sitecore.net/Products/Sitecore%20V5/Sitecore%20CMS%206/Installation.aspx. For
information about browser configuration, see the Sitecore Installation Guide at
http://sdn5.sitecore.net/Reference/Sitecore%206.aspx.

http://sdn5.sitecore.net/Products/Sitecore%20V5/Sitecore%20CMS%206/Installation.aspx
http://sdn5.sitecore.net/Reference/Sitecore%206.aspx

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 12 of 54

1. In the Developer Center, click the View menu, and then click Startpage.

2. In the Recent Files window, click the recently used item. The recently used item appears in
the Developer Center.

2.3.3 How to Access the Content Editor from within the Developer
Center

To access the Content Editor from within the Developer Center:

1. In the Developer Center, click the View menu, and then click Content Explorer. The Content
Explorer appears in the Developer Center.

2. In the Content Explorer, double-click any item. Content Editor appears in the Developer
Center with the item selected.

2.3.4 The Developer Center Code Boilerplate Files

When you create a layout, sublayout, or XSL rendering, or other type of code asset in the Developer
Center, Sitecore creates a definition item and copies a code boilerplate file to create the new code

file. Sitecore stores these boilerplate files in the /sitecore/shell/templates folder in the

document root of the Web site.

Important
Before and after updating a boilerplate file, consider adding that file to a Visual Studio project and any
source code management system in use. Remember to hide all files in Visual Studio Solution Explorer
before debugging.

Consider updating the boilerplate files Developer Center uses:

 To cause all new layouts or sublayouts to contain an ASP.NET tag prefix.

 To cause all new layouts or sublayouts to inherit from a common base class or other
properties.

 To register custom namespaces in all new XSL renderings.

 To redefine the $home variable in all new XSL renderings, or to remove it.

 To include XSL template libraries in all new XSL renderings.

Disable (comment) code that may not be applicable to every use of the boilerplate file. For example,

an XSL rendering may contain a commented <xsl:include> XSL element for a template library

that may not be needed in every XSL rendering, which you can uncomment easily when needed.

How to Edit the Developer Center Boilerplate Files

You can edit the boilerplate files that the Developer Center uses to create layouts, sublayouts, and
XSL rendering in Visual Studio or any text editor, or in the Developer Center. To edit the boilerplate
files using the Developer Center, click the File menu, and then click Open File. The file selection
dialog appears.

The boilerplate files in /sitecore/shell/templates contain the following:

 layout.aspx: boilerplate for layout files.

 layout.aspx.cs: boilerplate for layout code files.

 sublayout.ascx: boilerplate for sublayout files.

 sublayout.aspx.cs: boilerplate for sublayout code files.

 xsl.xslt: boilerplate for XSL rendering files.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 13 of 54

2.4 Microsoft Visual Studio

This section provides information for developers working on Sitecore solutions working with Microsoft
Visual Studio. The following sections assume that the reader is familiar with Microsoft Visual Studio
2005 or higher.

Note
This document describes C# and Visual Studio 2008. User interface steps for other languages or
versions of Visual Studio may differ.

2.4.1 How to Create a Visual Studio Web Application Project

Sitecore supports the Visual Studio Web application project model for Sitecore solutions.

Note
The initial release of Visual Studio 2005 did not include the Web application project model. Visual
Studio 2005 Service Pack 1 includes the Web application project model.

3

Important
Create a Visual Studio solution and at least one project for each Sitecore solution that uses Visual
Studio. Follow the steps outlined below as a single sequence once for each new Sitecore solution,
then add new projects to the existing solution as appropriate.

To create a Visual Studio Web application project for an existing Sitecore solution:

1. In Visual Studio, click the File menu, then click New, and then click Project. The new project
dialog appears.

2. In the new project dialog, in the Project Types tree, expand Visual C#, and then click Web.

3. In the Templates list, click ASP.NET Web Application.

4. In the Name field, enter the name of the project, which is typically the name of the project, for

example MyWebSite. Visual studio will use this name as the default .NET namespace and

assembly name.

5. In the Location field, enter the document root of the Sitecore solution, for example

C:\inetpub\sitecore\MyWebSite\WebSite.

6. Select the Create directory for solution checkbox.

7. Accept the default value in the Location field, and then click OK. Visual Studio creates a
subdirectory in the directory specified by the Location field. The project appears in Visual
Studio.

To move the Visual Studio project:

1. Close Visual Studio.

2. In Windows file system explorer, navigate to the directory containing the project, for example

C:\inetpub\sitecore\MyWebSite\WebSite\MyWebSite\MyWebSite.

3. Move the Properties folder, the .csproj file, and the .csproj.user file to the document

root of the Sitecore solution. For example, move

C:\inetpub\sitecore\MyWebSite\WebSite\MyWebSite\MyWebSite\Properties,
C:\inetpub\sitecore\MyWebSite\WebSite\MyWebSite\MyWebSite\MyWebSite.c

sproj, and
C:\inetpub\sitecore\MyWebSite\WebSite\MyWebSite\MyWebSite\MyWebSite.c

sproj.user to C:\inetpub\sitecore\MyWebSite\WebSite.

3
 For more information about Visual Studio 2005 Service Pack 1, see http://msdn.microsoft.com/en-

us/vstudio/bb265237.aspx.

http://msdn.microsoft.com/en-us/vstudio/bb265237.aspx
http://msdn.microsoft.com/en-us/vstudio/bb265237.aspx

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 14 of 54

4. Delete the other file system resources created by Visual Studio. For example, delete the

entire C:\inetpub\sitecore\MyWebSite\WebSite\MyWebSite folder.

To remove the moved project from the Visual Studio start page:

1. In Visual Studio, click the View menu, then click Other Windows, and then click Start Page.

2. In the Recent Projects list, click the project name. Visual Studio prompts whether to remove
the entry from the list of recent projects.

To open the Visual Studio Web application Project:

1. In Visual Studio, click the File menu, then click Open, and then click Project/Solution. A file
selection dialog appears.

2. In the file selection dialog, navigate to the directory containing the Visual Studio project, for

example C:\inetpub\sitecore\MyWebSite\WebSite.

3. Click the .csproj file, and then click Open. For example, click MyWebSite.csproj, and

then click Open.

To create a Visual Studio solution for the Web application project, close Visual Studio. Visual Studio

prompts to save changes to the solution file, for example MyWebSite.sln.

To configure the Visual Studio Web application project:

1. In Visual Studio, open the Web application project.

2. In Visual Studio Solution Explorer, right-click default.aspx, and then click Exclude from

Project. This file is part of Sitecore, not the Visual Studio solution.

3. In Visual Studio Solution Explorer, right-click References, and then click Add Reference. An
assembly browser dialog appears.

4. In the assembly browser dialog, click the Browse tab. A file selection dialog appears.

5. In the file selection dialog, navigate to the /bin folder within the document root of the

Sitecore solution, for example C:\inetpub\siotecore\MyWebSite\WebSite\bin.

6. Click Sitecore.Kernel.dll, and then click OK.

7. In Visual Studio Solution Explorer, expand References, then right-click Sitecore.Kernel,

and then click Properties. The properties pallet appears in Visual Studio.

8. In the Visual Studio properties pallet, set the Copy Local property of the Sitecore.Kernel

assembly reference to False.

Important

If the Copy Local property of a reference to an assembly in the /bin folder in the document root of

the Sitecore solution is not False, Visual Studio may delete assemblies from the /bin folder, which

can cause the Sitecore solution to fail. Set the Copy Local property to False for each reference to an

assembly in the /bin folder within the document root of the Web site.

Important
Add additional assembly references only when necessary.

To configure the assembly name and default namespace for a Visual Studio Web application project:

1. In Visual Studio, open the Web application project.

2. Click the Project menu, and then click the Properties option for the project. For example, click
from the Project menu, and then click MyWebSite Properties. The project properties editor
appears in Visual Studio.

3. Click the Application tab.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 15 of 54

4. In the Assembly name field, enter a name for the assembly for the project to generate, without

the .dll extension. For example, enter MyWebSite.

5. In the Default Namespace field, enter the default namespace for the project. For example,

enter MyWebSite.

2.4.2 How to Add an Existing File to a Web Application Project

To add an existing layout, sublayout or XSL rendering file to a Visual Studio Web application project:

1. In Visual Studio, open the Web application project.

2. In Visual Studio Solution Explorer, show all files.

3. In Solution Explorer, expand the directory containing the file.

4. In Solution Explorer, right-click the file, and then click Include In Project.

Important
Always hide all files or the Visual Studio debugger may become unresponsive.

2.4.3 How to Add Sitecore Controls to the Visual Studio Toolbox

You can add the Sitecore controls to the Visual Studio Toolbox.

Important
If you work with a version of Sitecore other than that used to add the controls to the toolbox, when you
drag a Sitecore control from toolbox onto a layout or sublayout, Visual Studio may overwrite various

assemblies in the /bin folder with the version from the installation used to add the controls to the

toolbox. Whenever working with a version of Sitecore other than that used to add controls to the
toolbox, remove the controls from the toolbox, and add them again.

To add Sitecore controls to the Visual Studio toolbox:

1. In Visual Studio, close any open solutions or projects.

2. Click the Tools menu, and then click Choose Toolbox Items. The control selection dialog
appears.

3. In the control selection dialog, click Browse. The file selection dialog appears.

4. In the file selection dialog, navigate to the /bin folder in the document root of the Web site,

and then click the Sitecore.Kernel.dll assembly.

5. Click Open, but do not click OK until reading the following information.

By default, Visual Studio adds all of the controls in this assembly to the Toolbox. Most developers do
not use most of these controls. Removing unused controls from the Toolbox makes the Toolbox load
faster and makes it easier for developers to locate controls

To limit the controls added to the Toolbox:

1. In the control selection dialog, sort by Assembly Name.

2. Select the checkbox next to any of the Sitecore controls to clear the checkboxes for all of the
controls in the Sitecore library.

3. Sort by Namespace.

4. Scroll to the Sitecore.Web.UI.WebControls namespace.

5. Select the checkboxes next to each of the Sitecore controls to add to the toolbox, most

commonly FieldRender (the FieldRenderer Web control), Method (the method rendering

Web control), Sublayout, WebPage (the URL rendering Web control), and XslFile (the

XSL rendering Web control).

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 16 of 54

To group the Sitecore controls within a single tab in the Visual Studio toolbox:

1. Right-click in the Visual Studio Toolbox, and then click Add Tab. For the tab name, enter
Sitecore.

2. In the Visual Studio Toolbox, drag the Sitecore controls from the General tab onto the
Sitecore tab.

To remove the Sitecore controls from the Visual Studio toolbox:

1. In the Visual Studio Web application project, right-click in the Toolbox, and then click Choose
Items. The control selection dialog appears.

2. In the control selection dialog, sort by Namespace.

3. Scroll to the Sitecore.Web.UI.WebControls namespace.

4. Clear the checkboxes next to each of the Sitecore controls.

-or-

1. In Visual Studio, close any open projects and solutions.

2. Click the View menu, and then click Toolbox.

3. Right-click in the Toolbox, and then click Reset Toolbox.

2.4.4 How to Debug .NET Code Using Visual Studio

Use the Sitecore log files, administrative pages, and the browser-based debugger to identify
components containing logical errors, performance bottlenecks, and other unfavorable code
conditions. Then use the Visual Studio debugger to debug the .NET code.

To debug .NET code using Visual Studio:

1. To ensure the ASP.NET worker process is active, use a browser to request an ASP.NET
resource from the Sitecore solution, such as the home page.

2. In Visual Studio, hide all files.

3. Navigate to the appropriate line in the relevant .NET code file.

4. To create a breakpoint, click the Debug menu, and then click Toggle Breakpoint, or press F9.

5. Click the Debug menu, and then click Attach to Process, or press CTRL-ALT-P.

6. Select the Show processes from all users and Show processes in all sessions checkboxes.

7. Click the aspnet_wp.exe process on IIS 5 (Windows XP) or the w3wp.exe process on IIS 6

or 7 (Windows 2003, Windows Vista, or Windows 2008).

8. Click Attach.

9. Use a browser to request an ASP.NET resource that uses the code to debug.

Top stop debugging, in Visual Studio, click the Debug menu, and then click Stop Debugging.

Important
Do not click Start Debugging after clicking the Debug menu in Visual Studio. This would start the
Casini Web server built into Visual Studio, which can have undesirable results.

2.4.5 How to Create a Collection of Web Service Methods

All requests for resources that access Sitecore run in a Sitecore context that includes a logical site

definition (/configuration/sitecore/sites/site in web.config) providing access to

resources such as configuration. The location of the Web service file (.asmx) on the file system

determines the context site and hence the context in which the Web service request executes.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 17 of 54

The URL for the default Sitecore Web service library

is/sitecore/shell/webservice/service.asmx. These Web service methods run in the

context of the site /configuration/sitecore/sites/site element in web.config with

name shell. This request context sets Sitecore.Context.Database to the Core database and

Sitecore.Context.ContentDatabase to the Master database. Most of the default Web service

methods accept a parameter indicating the name of the database the service should access instead
of relying solely on configuration.

Requests for ASP.NET resources within the /sitecore modules/web directory run in the context

of the logical site named modules_website, which by default sets

Sitecore.Context.Database to the Web database and leaves

Sitecore.Context.ContentDatabase null. Place the Web service file in a directory that sets the

context databases as required for the Web service, or pass the database name to the Web service as

a parameter and avoid using Sitecore.Context.Database.

To add a collection of Web service methods to an ASP.NET Web application project in Visual Studio:

1. In the Visual Studio Web application project, in Solution Explorer, create a folder, add a folder
to the project, or locate an existing folder already in the project.

2. In Visual Studio Solution Explorer, right click the folder identified in the previous step, then
click Add, and then click New Item. The Add New Item dialog appears.

3. In the Add New Item dialog, for Templates, select Web Service.

4. In the Name field, enter a name for the file that will contain the Web service methods, and
then click Add.

5. Create Web service methods in the new code file.

2.4.6 How to Optimize Visual Studio Performance

This section provides tips to improve the performance of Visual Studio.

Before closing Visual Studio, close user interface components that do not need to be open the next
time you start the application.

To access the Visual Studio options dialog:

1. In Visual Studio, click the Tools menu, and then click Options.

To disable RSS feeds:

1. In the Visual Studio options dialog, expand Environment, and then click Startup.

2. Clear the value in the Start Page news channel field.

3. Clear the Download content every checkbox.

To disable the start page:

1. In the Visual Studio options dialog, expand Environment, and then click Startup.

2. For At Startup drop-down, select Show empty environment.

Note
To show the Visual Studio start page, in Visual Studio, click the View menu, then click Other
Windows, and then click Start Page.

To disable the splash screen:

1. Right-click the shortcut you use to start Visual Studio.

2. In the Target property, add the /nosplash command line option. For example:

"C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\devenv.exe" /nosplash.

To disable animation:

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 18 of 54

1. In the Visual Studio options dialog, click Environment.

2. Clear the Animate environment tools checkbox.

If you use Jetbrains ReSharper, pressing CTRL-F12 provides update the list of methods and fields
above the editing pane.4 To disable the Visual Studio navigation bar that provides equivalent
functionality, or if you do not use the Visual Studio navigation bar:

1. In the Visual Studio options dialog, expand Text Editor, and then click C#.

2. Clear the Navigation bar checkbox.

To disable change tracking:

1. In the Visual Studio options dialog, click Text Editor.

2. Clear the Track changes checkbox.

To turn off active item tracking:

1. In the Visual Studio options dialog, click Projects and Solutions.

2. Clear the Track Active Item in Solution Explorer checkbox.

To turn off AutoToolboxPopulate:

1. In the Visual Studio options dialog, click Windows Forms Designer.

2. Under Toolbox, set AutoToolboxPopulate to False.

To cause Visual Studio to open Layouts and Subalyouts in source code view rather than design view
by default:

1. In the Visual Studio options dialog, click HTML Designer.

2. For Start pages in, select the Source View option.

4
 For more information about JetBrains ReSharper, see http://www.jetbrains.com/resharper.

http://www.jetbrains.com/resharper

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 19 of 54

Chapter 3

Layout Details

This chapter provides procedures for working with layout details.

This chapter contains the following sections:

 How to Work Layout Details

 How to Reset Layout Details to Standard Values

 How to Copy Layout Details

 How to Determine Presentation Components Used

 Working with Devices

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 20 of 54

3.1 How to Work Layout Details

This section provides procedures for working with layout details.

Note
You can also use the Design Pane of Page Editor to edit layout details.

Important
Sitecore stores layout details in a field defined in the standard template from which all other data
templates inherit. Like all field values, layout details defined in individual items override layout details
defined in the standard values of the data template associated with the item. To reduce data
duplication and administration, assign layout details in standard values instead of individual items. If
different items based on a common data structure require different layout details, consider a new data
template that inherits from the existing data template, and using its standard values to define layout
details.

Important
For backwards compatibility with previous versions, Sitecore applies layout details defined in the data
template definition item if there are no layout details in the item or the standard values item
associated with its data template. Define layout details in the standard values item associated with the
data template definition item, not in the data template definition item itself.

Important
Always define layout details for the default device, which Sitecore activates by default for all incoming
HTTP requests that do not specify an alternate device.

3.1.1 The Device Editor

How to Open the Device Editor

To open the Device Editor:

1. In the Template Manager or the Content Editor, edit the standard values item or the individual
item.

2. Click the Presentation tab.

3. In the Layout group, click the Details command. The layout details dialog appears.

4. In the layout details dialog, below the device for which you want to configure layout details,
click Edit. The Device Editor appears.

How to Select a Layout

To select a layout to use for a device:

1. In the Device Editor, click the Layout tab.

2. In the Layout drop-down, select the layout.

How to Add a Control

To add a control in layout details:

1. In the Device Editor, click the Controls tab.

2. Click Add. The control selection dialog appears.

3. In the control selection dialog, click Browse. The control properties dialog appears.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 21 of 54

4. In the control properties dialog, in the Rendering field, click Browse, and then select the
sublayout or rendering definition item.

5. Set control properties.

How to Order Controls

To order controls in layout details:

1. In the Device Editor, click the Controls tab.

2. Click a control to select it.

3. With the control selected, click Move Up or Move Down to order the control relative to other
controls.

Important
The order of presentation components in layout details controls the order in which the layout engine
creates and binds them to the control hierarchy. Sort sublayouts containing placeholders before the
controls that bind to those placeholders.

Note
When multiple presentation components bind to a single placeholder, their order in layout details
controls the order of the markup written to the output stream.

How to Remove a Control

To remove a control from layout details:

1. In the Device Editor, click the Controls tab.

2. On the Controls tab, click a control to select it

3. With the control selected, click Remove.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 22 of 54

3.2 How to Reset Layout Details to Standard Values

To reset the layout details for an item to those defined in standard values item of the data template
associated with the item:

1. In the Content Editor, edit the item for which you will reset layout details to those defined in
the standard values item of the data template associated with the item.

2. Click the Presentation tab.

3. In the Layout group, click Reset. Sitecore prompts for confirmation before resetting the layout
details field in the selected item to its standard value.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 23 of 54

3.3 How to Copy Layout Details

To copy layout details from one item to another:

1. In the Content Editor, navigate to the source item from which to copy layout details.

2. Click the Presentation tab.

3. In the Details group, click the Layout command. The layout details dialog appears.

4. In the layout details dialog, under any device, click Copy To. The copy layout details wizard
appears.

5. In the copy layout details wizard, in the Target Devices list, select the checkboxes next to the
devices for which to copy layout details.

6. In the Target Item tree, click the item to which you will copy layout details.

7. Click Copy. The copy layout details wizard copies layout details for the selected devices from
the source item to the target item.

To copy layout details from a single source item to multiple target items:

1. In the Content Editor, navigate to the source item.

2. Show standard fields and raw values. For instructions to show or hide the standard template
fields and raw values, see the Client Configuration Cookbook.

5

3. In the source item, in the Layout section, triple-click the value of the Renderings field to select
that value, and then press CTRL-C to copy that value to the Windows clipboard.

4. For each target item, navigate to the item. In the Layout section, triple-click the value of the
Renderings field in the Layout section to select that value, and press CTRL-V to overwrite that
value with the value from the Windows clipboard.

5. Hide the standard template fields and raw field values.

5
 For access to the Client Configuration cookbook, see

http://sdn5.sitecore.net/Reference/Sitecore%206.aspx.

http://sdn5.sitecore.net/Reference/Sitecore%206.aspx

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 24 of 54

3.4 How to Determine Presentation Components Used

You can use Sitecore’s browser-based debugger to determine the presentation components used to
service an HTTP request.

Important
The Sitecore debugger uses the default device and the publishing target database unless otherwise
specified.

Important
Publish changes to layout details before debugging.

To determine the presentation components used to render a page:

1. In the Sitecore Debugger, in the Rendering group, select the Information checkbox.

2. In the Trace group, select the Active command.

3. Hover over the information icons (the green triangles) and investigate the controls.

4. Scroll down to Sitecore Trace and look for errors in layout details, such as no rendering
definition item corresponding to an ID reference, or no placeholder matching a specified
placeholder key.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 25 of 54

3.5 Working with Devices

This section provides procedures for working with Sitecore devices.

3.5.1 How to Create a Device

To create a device:

1. In the Content Editor, navigate to /Sitecore/Layout/Devices.

2. Insert a device definition item using the /System/Layout/Device data template.

3. If the device should have a fallback device, in the device definition item, in the Data section, in
the Fallback device field, select the fallback device.

4. Define the criteria that trigger the device.

Important
In the device item, in the Data section, do not select the Default checkbox.

3.5.2 How to Define Device Activation Criteria

If the layout engine should activate the device based on a specific user-agent string sent in the
headers of HTTP requests, enter that user-agent string in the Browser Agent string in the Detection

section of the device definition item. For example, enter blackberry to activate the device for all

blackberry clients. The user agent string comparison is not case sensitive.

If the layout engine should activate the device based on a specific query string parameter value, enter
that value in the Query String field in the Detection section of the device definition item. For example,

enter x=1 to activate the device for all URLs containing the query string parameter x with a value of 1.

If the layout engine should activate the device for all HTTP requests associated with a specific

hostname, configure a logical site in web.config and set the device attribute.
6

If .NET logic should activate the device, implement that logic and set Sitecore.Context.Device

using Visual Studio. Most commonly, this logic belongs in a pipeline processor to replace or follow the

default Sitecore.Pipelines.HttpRequest.DeviceResolver processor in the

httpRequestBegin pipeline.

6
 For information about configuring multiple logical sites, see

http://sdn5.sitecore.net/Articles/Administration/Configuring%20Multiple%20Sites.aspx.

http://sdn5.sitecore.net/Articles/Administration/Configuring%20Multiple%20Sites.aspx

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 26 of 54

Chapter 4

Controls

This chapter provides procedures for working with controls. In the context of this
document, the term controls includes placeholders, sublayouts, XSL renderings, Web
controls, URL renderings, method renderings, and the FieldRenderer Web control.

This chapter contains the following sections:

 How to View the Output of a Control

 Presentation Component Definition Items

 How to Access the Control Properties Dialog

 How to Set Control Properties Using Visual Studio

 Common Control Properties

 Placeholders

 Sublayouts

 The FieldRenderer Web Control

 XSL Renderings

 Web Controls

 Method Renderings

 URL Renderings

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 27 of 54

4.1 How to View the Output of a Control

To view the output of a single control using the Sitecore Debugger:

1. In the Sitecore Debugger, in the Rendering group, select the Information checkbox.

2. Hover over the information icon (the green triangle) representing the rendering.

3. Click the Output tab. The output of the rendering appears.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 28 of 54

4.2 Presentation Component Definition Items

Before you can use a presentation component in Sitecore, you must register the component. Sitecore
user interfaces including the Developer Center, the Device Editor, and the Page Editor Design Pane
allow you to use only those presentation components registered with Sitecore by creating a definition
item. If users do not work with a presentation component in Sitecore, it is not necessary to create a
definition item for the component in Sitecore.

Important
Whenever possible, define control properties in control definition items. Provide a default data source
item and parameters if needed, and apply default caching options.

Important
In the Data section of each presentation component definition item used with the Page Editor Design
Pane, in the Description field, enter a description of the output of the component, potentially including
an image demonstrating the location of the placeholder in a layout or sublayout, or the output of a
sublayout or rendering. For components that support caching, include a reminder to set caching
options if you do not apply caching options to the presentation component definition item. For cases
such as URL renderings that do not specify a URL, and method renderings that do not specify a
method, enter a reminder for the user to enter these properties. Otherwise, enter the URL or the name
of the method.

Important
Before creating a presentation component definition item, if necessary, use the Content Editor and
Windows file system Explorer to create Sitecore folders and file system directories to contain the
definition item and the file the definition item will reference.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 29 of 54

4.3 How to Access the Control Properties Dialog

To access the control properties dialog for a control bound statically to a layout or sublayout using the
Developer Center:

1. In the Developer Center, open the layout or sublayout.

2. In the layout or sublayout, click the Design tab.

3. In the layout or sublayout, double-click the control. The control properties dialog appears.

To access the control properties dialog for a control bound dynamically to a placeholder using layout
details:

1. In the Device Editor, click the Controls tab, then click the control to select it, and then click
Edit. The control properties dialog appears.

2. In the control properties dialog, click the Attributes tab. Unless otherwise specified, create or
update all control properties using the Attributes tab.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 30 of 54

4.4 How to Set Control Properties Using Visual Studio

To set control properties for a control bound statically to a layout or sublayout using Visual Studio:

1. In the Visual Studio Web application project, open the layout or sublayout.

2. Right-click the control, and then click Properties. The Visual Studio Properties pallet appears.

3. Use the Visual Studio Properties pallet to set properties, or click the Source tab and enter
attributes and values in the control definition element.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 31 of 54

4.5 Common Control Properties

This section describes properties common to various types of controls.

Important

Set the id attribute of each control to an ASP.NET control identifier. For information about ASP.NET

control identifiers, see the section ASP.NET Control IDs.

4.5.1 How to Configure Control Caching Options

Important
Configure caching options for each use of each control.

Important
Configure caching options whenever binding a sublayout or rendering, either statically to a layout or
sublayout, or dynamically to a placeholder in a layout or sublayout using layout details. When creating
a sublayout or rendering definition item, define default caching options for the component.

Important
To avoid unnecessary memory consumption, avoid caching the output of renderings used in cached
sublayouts.

To configure caching options using the control properties dialog:

1. In the control properties dialog, click the Caching tab.

2. Configure caching options.

To configure caching options using Visual Studio:

1. In Visual Studio, in the layout or sublayout, click the Design tab, then right-click the control,
and then click Properties. The Visual Studio Properties pallet appears.

2. In the Visual Studio Properties pallet, configure caching options.

4.5.2 How to Configure the Data Source of a Control

To pass a data source item to a control using the control properties dialog, in the Control Properties
Dialog, in the Data Source field, enter the full path to the data source item, or click Browse and select
an item.

To pass a data source item to a control using Visual Studio:

1. In Visual Studio, in the layout or sublayout, click the Design tab, then right-click the control,
and then click Properties. The Visual Studio Properties pallet appears.

2. In the Visual Studio Properties pallet, for the DataSource property, enter the full path to an
item.

4.5.3 How to Pass Parameters to a Control

To pass parameters to a control using the control properties dialog:

1. In the control properties dialog, click the Parameters tab.

2. Enter named parameters.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 32 of 54

Important

To set properties of a Web control, including the FieldName property of the FieldRenderer Web

control, use the Parameters tab, not the Attributes tab. If needed, use the parameter named

Parameters to set the Parameters property of the Web control.

To pass parameters to a control using Visual Studio:

1. In Visual Studio, in the layout or sublayout, click the Design tab, then right-click the control,
and then click Properties. The Visual Studio Properties pallet appears.

2. In the Visual Studio Properties pallet, for the Parameters property, enter named parameters

using URL-escaped key=value pairs, separated by ampersand characters (“&”).

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 33 of 54

4.6 Placeholders

The only property specific to placeholders is the placeholder key.

Note
Because a placeholder is a control, Sitecore uses the same dialog to set the properties on a
placeholder that it uses to set properties on all controls. If you double-click a placeholder, sublayout,
or any type of rendering control, Sitecore shows the same control properties dialog as when you set
control properties in layout details. In the Developer Center, the Placeholder field in this dialog is

irrelevant; for placeholders, enter the placeholder key using the key attribute on the Parameters tab.

In layout details, for each control, in the Placeholder field, enter the placeholder key or fully qualified
placeholder key to which the control should bind.

Important
When assigning a placeholder key in the Developer Center or Visual Studio, always use an individual

placeholder key such as content, not a fully qualified placeholder key such as /main/content.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 34 of 54

4.7 Sublayouts

For the path attribute of the <sc:sublayout> control, enter the path to the Web user control file

relative to the document root of the Web site.

Warning
Do not cache the output of sublayouts and Web controls that respond to ASP.NET events.

Warning
To avoid excess memory consumption, do not cache both the output of a rendering, and the output of
a sublayout that contains that rendering.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 35 of 54

4.8 The FieldRenderer Web Control

For the FieldName property of a FieldRenderer Web control, enter the name of the field for the

control to process.

Note
The FieldRenderer Web Control retrieves the value of the specified field from the context item by
default. Pass a data source to the FieldRenderer Web control to retrieve the value from a specific
item.

Note
The FieldRenderer Web control does not support output caching options. To support output caching
for this control, create a Web control that inherits from the FieldRenderer Web control

(Sitecore.Web.UI.WebControls.FieldRenderer). Define the GetCachingID() method to

return a cache key for the control, for example a string containing the GUID of the item and the GUID
of the field definition item. Use this Web control instead of the default FieldRenderer Web control.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 36 of 54

4.9 XSL Renderings

This section provides guidance for working with XSL renderings in both the Developer Center and
Visual Studio.

In the Path field in the Data section of an XSL rendering definition item, enter path to the XSL
rendering file relative to the document root of the Web site, such as

/xsl/mywebsite/myrendering.xslt.

Important
Avoid inline .NET code in XSL renderings in favor of custom .NET XSL extensions.

Note
The system invokes XSL rendering transformations on the server, not on the clients.

4.9.1 How to Create an XSL Rendering

To create an XSL rendering:

1. In the Developer Center, click the File menu, and then click New. The new presentation
component dialog appears.

2. In the new presentation component dialog, in the Categories tree, click Renderings.

3. In the Templates list, click XSLT File, and then click Create.

4. For Name, enter a name for the XSLT rendering, and then click Next. The wizard will use this
name for both the XSLT rendering definition item and the XSLT rendering file.

5. In the content tree, click the item that will contain the XSL rendering definition item, and then
click Next.

6. In the file system tree, click the directory that will contain the XSL rendering file, and then click
Create. The XSL rendering appears in the Developer Center.

4.9.2 How to View the Output of an XSL Rendering

Developers can analyze the output of an individual XSL rendering using the Sitecore Debugger, or
using the previewing pane in the Developer Center.

To view the output of an XSL rendering in the Developer Center:

1. In the Developer Center, open an existing XSL rendering.

2. At the top of the editing window, ensure the Preview button is selected.

3. In the drop-down list in the previewing pane below the editing pane, select an item. The
Developer Center will pass this item to the XSL transformation engine as the data source of

the rendering ($sc_item and $sc_currentitem).

4. Click the refresh button at the top right of the previewing window. The previewing window
shows the result of invoking the XSL transformation with the selected item as the data source.

4.9.3 The Main XSL Template Block

After you create an XSL rendering, add your code to the main XSL template.

Note

In XSL, blocks of code contained within <xsl:template> XSL elements are called XSL templates.

<!--==-->

<!-- main -->

<!--==-->

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 37 of 54

<xsl:template match="*" mode="main">

 <!--//TODO:enter XSL rendering code here-->

</xsl:template>

4.9.4 The XSL Rendering Boilerplate File

The boilerplate file that the Developer Center uses when creating a new XSL rendering contains the
following lines.

<?xml version="1.0" encoding="UTF-8"?>

XSL rendering files contain XSL code. XSL is a dialect of XML; all XSL files are XML files.

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:sc="http://www.sitecore.net/sc"

 xmlns:dot="http://www.sitecore.net/dot"

 exclude-result-prefixes="dot sc">

The root element of the XML document contained in an XSL file is the <xsl:stylesheet> XSL

element. In the same way that ASP.NET maps tag prefixes to assemblies, XSL maps namespace

identifiers to URLs. The xsl namespace exposes the XSL language. Sitecore by default defines the

sc and dot namespaces, which correspond to classes. A

/configuration/sitecore/xslExtension/extension element in web.config provides the

signature for each class, effectively mapping a namespace to a URL, and a URL to a .NET assembly.
For more information about .NET XSL extensions, see the section Custom XSL Extension Methods.

<xsl:output method="html" indent="no" encoding="UTF-8" />

This rendering outputs markup using HTML syntax, which does not require closing elements for

<hr>, , <meta>, and other elements. For an XHTML site, the value of the method attribute

should be xml.

<xsl:param name="lang" select="'en'"/>

<xsl:param name="id" select="''"/>

<xsl:param name="sc_item"/>

<xsl:param name="sc_currentitem"/>

Sitecore passes several parameters to the rendering:

 $lang: The context language.

 $id: The GUID of the data source item for the rendering.

 $sc_item: The data source item for the rendering.

 $sc_currentitem: The context item.

<xsl:variable name="home" select="$sc_item/ancestor-or-self::item[@template='site

root']" />

This line provides an example of creating a variable that references an item.

<xsl:template match="*">

 <xsl:apply-templates select="$sc_item" mode="main"/>

</xsl:template>

This code sets the data source of the rendering ($sc_item) as the context element and invokes the

following XSL template with mode attribute main.

<xsl:template match="*" mode="main">

</xsl:template>

Developers generally begin coding by inserting code within this <xsl:template> block.

</xsl:stylesheet>

This line closes the <xsl:stylesheet> root element.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 38 of 54

4.9.5 Custom XSL Template Libraries

XSL templates are blocks of XSL code enclosed in the <xsl:template> XSL element that function

similar to methods, functions, and procedures in other programming languages. Developers use XSL
templates to contain reusable blocks of XSL code. Developers can use XSL templates procedurally
by invoking them by name, or declaratively by invoking them through XPath match patterns.

The context element for each XSL template is the element that was the context element at the point
that the XSL transformation engine invoked the XSL template.

XSL templates can accept a variable number of named parameters using the <xsl:param> and

<xsl:with-param> XSL elements.

Note
For more information about XSL template libraries, see the Presentation Component XSL Reference.

7

How to Create an XSL Template Library

To create an XSL template library:

1. Using Windows File System Explorer or Visual Studio, create or navigate to the file system

directory that will contain the XSL template library code file, for example /xsl/mywebsite.

2. Create a new .xslt file, for example library.xslt. Use the following prototype:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:sc="http://www.sitecore.net/sc"

 xmlns:dot="http://www.sitecore.net/dot"

 exclude-result-prefixes="dot sc">

 <xsl:template name="TemplateName">

 <!--//TODO:logic-->

 </xsl:template>

</xsl:stylesheet>

3. Use <xsl:param> and <xsl:with-param> to pass parameter to XSL template blocks:

<xsl:template name="TemplateName" />

 <xsl:param name="ParamName" select="'DefaultValue'" />

 <!--logic->

</xsl:template

...

<xsl:call-template name="TemplateName">

 <xsl:with-param name="ParamName" select="'ParamValue'" />

</xsl:call-template>

4. Use variables to contain the results of an XSL template block:

<xsl:template>

 <xsl:choose>

 <xsl:when test="//TODO:logic">

 Variable Value

 </xsl:when>

 <xsl:otherwise>

 Default Value

 </xsl:otherwise>

 </xsl:choose>

</xsl:template>

<xsl:variable name="VariableName">

 <xsl:call-template name="TemplateName" />

</xsl:variable>

How to Reference an XSL Template Library in an XSL Rendering

To reference an XSL template library in an XSL rendering:

7
 For access to the Presentation Component XSL Reference, see

http://sdn5.sitecore.net/Reference/Sitecore%206.aspx.

http://sdn5.sitecore.net/Reference/Sitecore%206.aspx

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 39 of 54

1. Edit the XSL rendering.

2. Add a line of code such as the following below the existing <xsl:output> element:

<xsl:include href="/xsl/mywebsite/library.xslt" />

3. Replace library.xslt with the URL of the XSL template library file.

Note

The href attribute of the <xsl:include> element is a reference to a URL. This URL can be the full

path to the XSL template library file from the document root of the IIS Web site, a relative path such

as library.xslt or ../library.xslt, or even a fully qualified URL including a hostname.

To enable developers to easily add this reference to any rendering they create, see the section The
XSL Rendering Boilerplate File. Add a commented reference to the library in the boilerplate file used

for new XSL rendering using the appropriate value for the href attribute:

<!--<xsl:include href="library.xslt" />-->

Note

Sitecore 6 introduces support for XSL extension controls such as <sc:text> in XSL template

libraries. There is no need to limit code in XSL template libraries to XSL extension methods such as

sc:fld().

Important
In cases where performance is critical or you require the same logic in both XSL and .NET renderings,
.NET XSL extension libraries are more appropriate than XSL template libraries.

4.9.6 Custom XSL Extension Methods

XSL provides an excellent technology for transforming XML data sources, such as the XML
representation of a Sitecore database accessed by XSL renderings. XSL extensions written in .NET
present an optional solution in cases where XSL would be cumbersome, perform poorly, present
other disadvantages, or simply cannot support a requirement.

Note
For a more complete explanation the advantages and disadvantages of XSL relative to other
rendering technologies, see the Presentation Components Reference manual.

Consider XSL extension libraries:

 To access data stored in an external source like a database or other application.

 To access .NET APIs.

 To perform complex calculations which are difficult or even impossible to perform in XSLT, or
which consume inordinate resources.

Note
For more information about XSL extensions, see the Presentation Component XSL Reference.

8

Tip
Before implementing an XSL extension in .NET, investigate the default XSL extensions provided by
Sitecore to determine if the required functionality already exists.

There are two types of XSL extensions: XSL extension controls, and XSL extension methods. XSL
extension methods are more flexible than XSL extension controls; XSL extension methods support
any logic possible with XSL extension controls.

8
 For access to the Presentation Component XSL Reference, see

http://sdn5.sitecore.net/Reference/Sitecore%206.aspx.

http://sdn5.sitecore.net/Reference/Sitecore%206.aspx

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 40 of 54

XSL extension controls use the angle-bracket syntax, such as the following:

<sc:text field="FieldName">.

A use of an XSL extension method corresponding to this example would be:

<xsl:value-of select="sc:field('FieldName',.)" disable-output-escaping="yes" />

How to Register a Custom XSL Extension Method Library

You can register any class as a custom XSL extension method library. The class does not need to
implement any interface or inherit from any specific base class.

To register a .NET class as an XSL extension library:

1. In web.config, navigate to the /configuration/sitecore/xslExtensions element.

2. Within the <xslExtensions> element, insert a new line based on the following:

<extension mode="on" type="Namespace.Class, Assembly"

namespace="http://domain.tld/class" singleInstance="true"/>

3. Replace the values of the type and namespace attributes with the appropriate class

signature and URL.

Note

The value of the namespace attribute must be a valid, unique URL, but it does not have to be a valid

Web page.

To use the new extension in XSL renderings and the boilerplate file used for XSL renderings, map the

namespace to the URL and the exclude-result-prefixes attribute of the rendering.

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:sc="http://www.sitecore.net/sc"

 xmlns:dot="http://www.sitecore.net/dot"

 xmlns:namespace="http://www.domain.tld/class"

 exclude-result-prefixes="dot sc namespace">

Important

Add the namespace to the exclude-result-prefixes attribute. Otherwise, the generated markup

may contain the namespace.

Tip
Consider adding the namespace definition to the boilerplate file used for XSL renderings.

To create a library of .NET XSL extension methods:

1. In the Visual Studio Web application project, create a class containing methods representing
each of the custom XSL extension methods. This class must have a constructor that accepts
no parameters. XSL extension methods typically return strings or objects of type
XPathNodeIterator, which generally represent items in the database, data retrieved from an
external system, or data generated dynamically.

How to Register a .NET XSL Extension Library

1. In web.config, navigate to /configuration/sitecore/xslExtensions.

2. Insert a new line such as the following within the xslExtensions block. Replace the value of
the type attribute with the appropriate class and assembly references. Replace the value of
the namespace attribute with a URL.

<extension mode="on" type="<MyNamespace.MyClass>, <MyAssembly>"

namespace="http://mydomain.tld/myclass" singleInstance="true"/>

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 41 of 54

Note
The value of the namespace attribute must be a valid URL and must be unique (no other XSL
extensions should use the same URL), but it does not have to be a valid Web page.

How to Use a .NET XSL Extension Library

To use a .NET XSL extension library:

1. Edit the XSL rendering file.

2. In the <xsl:stylesheet>, element add an attribute mapping a namespace to the URL

associated with the extension. Add the namespace to the exclude-result-prefixes attribute,
which contains a list of namespaces separated by whitespaces. For example:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:sc="http://www.sitecore.net/sc"

xmlns:dot="http://www.sitecore.net/dot"

xmlns:my="http://mydomain.tld/myclass"

exclude-result-prefixes="dot sc my">

Important

If you do not add the namespace to the value of the exclude-result-prefixes attribute, the XSL

transformation engine may output attributes that are not valid by the HTML specification.

3. Use this namespace to invoke methods in the XSL extension library. For example, if the class

contains the method MyMethod() that accepts a string parameter and returns a string,

that method can be used to populate an XSL variable:

<xsl:variable name="myvariable" select="my:MyMethod('MyParameterValue')" />

Alternatively, the rendering can write that string directly to the output stream:

<xsl:value-of select="my:MyMethod('MyParameterValue')" />

Tip
Consider adding the custom namespace definition to the boilerplate file used for XSL renderings as
described in the section The XSL Rendering Boilerplate File.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 42 of 54

4.10 Web Controls

This section provides procedures for working with Web controls.

For the name of a Web control definition item, use the name of the Web control class.

To set Web control properties, in the control properties dialog, click the Attributes tab, and add or
update or named properties.

For the Tag property of a Web control, enter name of the Web control class, such as MyWebControl.

For the Tag Prefix property, enter the ASP.NET tag prefix for the namespace containing the Web

control, such as mws.

For the Namespace property, enter the namespace containing the Web control class, such as

MyWebSite.Web.UI.WebControls.

For the Assembly property, enter the name of the assembly containing the Web control class, without

the .dll extension, such as MyWebSite.

4.10.1 How to Create a Web Control Class

To create a Web control class:

1. In the Visual Studio Web application project, create a class using the following prototype:

Namespace.Web.UI.WebControls

{

 public class ClassName : Sitecore.Web.UI.WebControl

 {

 protected override void DoRender(HtmlTextWriter output)

 {

 //TODO: write to output

 }

 protected override string GetCachingID()

 {

 return GetType().ToString();

 }

 }

}

2. Replace Namespace.Web.UI.WebControls with the appropriate namespace to contain

the class.

3. Replace ClassName with the name of the class.

4. Replace //TODO: write to output with logic to write to the output HtmlTextWriter.

5. Replace GetType().ToString() with logic to return a cache key for the control.

4.10.2 How to Register a Web Control

You can register a Web control using a wizard in the Developer Center, or using the Content Editor.

Tip
Use the wizard to register the first Web control in a namespace. To register additional Web controls in
the same namespace, use the Content Editor to duplicate an existing Web control definition item, and
then update values in the new item.

To register a Web control using the Developer Center:

1. In the Developer Center, click the File menu, and then click New. The New File dialog
appears.

2. In the New File dialog, in the Categories tree, expand the Renderings node.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 43 of 54

3. In the Templates list, click Web Control, and then click Create. The Web control configuration
dialog appears.

4. In the Web control configuration dialog, enter Web control properties.

5. Click Test, resolve any issues until the Developer Center successfully finds the Web control,
and then click Next.

6. Click the folder that will contain the Web control definition item, and then click Create. The
Web control definition item appears in the Developer Center.

To register a Web control using the Content Editor:

1. In the Content Editor, navigate to the project-specific folder within

/Sitecore/Layout/Renderings that will contain the Web control definition item.

2. Insert a Web control definition item using the

/System/Layout/Renderings/Webcontrol data template.

3. In the Web control definition item, enter the properties of the Web control.

4.10.3 How to Add a Property to a Web Control

To add a property to a Web control using Visual Studio:

1. In the Visual Studio Web application project, open the Web control class.

2. In the class, attribute the property with Sitecore.Web.UI.WebControlProperty. For

example:

[Sitecore.Web.UI.WebControlProperty]

public string PropertyName

{

 get { throw new NotImplementedException() };

 set { throw new NotImplementedException() };

}

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 44 of 54

4.11 Method Renderings

This section provides procedures for working with method renderings.

A method rendering definition item may or may not specify a method. If a method rendering definition
item does not specify a method, the user who binds the method rendering to a placeholder in layout
details or drags it onto a layout or sublayout in the Developer Center must specify the method. To
provide default methods for different method renderings, insert multiple method renderings definition
items that specify different methods.

For the name of a method rendering definition item, if the definition item will specify a method, use a
name of the method, possibly including the namespace and class name. Otherwise, create the

method rendering definition item in the /Sitecore/Layout/Renderings/System folder, and use

the name Method Rendering.

For the Method property, enter the name of the method.

For the Class property, enter the name of the class containing the method.

For the Assembly property, enter the name of the assembly containing the class, without the .dll

extension.

Important
Consider using a Web control to wrap a method instead of using a method rendering.

Note
The method rendering Web control does not support output caching options. To support output
caching for method renderings, create a Web control that inherits from the method rendering Web

control (Sitecore.Web.UI.WebControls.Method). Define the GetCachingID() method to

return a cache key for the control, for example a string containing the namespace, class, and method
name. Use this Web control instead of the default method rendering Web control. Alternatively, create

Web controls to invoke methods, and define the GetCachingID() method in these Web controls.

4.11.1 How to Create a Method Rendering Class and Method

To create a method rendering class and method:

1. In the Visual Studio Web application project, if a class containing method renderings already
exists, consider adding a method to that class. Otherwise, create a new class.

2. In the class, create a method with the following signature:

public string MethodName()

3. Complete the body of the method.

4.11.2 How to Register a Method Rendering

You can register a method rendering using the Developer Center or the Content Editor.

To register a method rendering using the Developer Center:

1. In the Developer Center, click the File menu, and then click New. The New File wizard
appears.

2. In the New File wizard, in the Categories tree, click Renderings.

3. In the Templates list, click Method Rendering, and then click Create.

4. Enter method rendering properties.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 45 of 54

5. Click Test, resolve any issues until the Developer Center successfully finds the method, and
then click Next.

6. Click the folder that will contain the method rendering definition item, and then click Create.

To register a method rendering using the Content Editor:

1. In the Content Editor, navigate to the folder within /Sitecore/Layout/Renderings that

will contain the method rendering definition item.

2. Insert a method rendering definition item using the

/System/Layout/Renderings/Method Rendering data template.

3. In the method rendering definition item, enter method rendering properties as appropriate.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 46 of 54

4.12 URL Renderings

This section provides procedures for working with URL renderings.

A URL rendering definition item may or may not reference a URL. If a URL rendering definition item
does not specify a URL, the user who binds the URL rendering to a placeholder in layout details or
drags it onto a layout or sublayout in the Developer Center must specify a URL. To provide default
URLs for different URL renderings, insert multiple URL renderings definition items that specify
different URLs.

For the name of a URL rendering definition item, if the definition item will specify a URL, use a name
that identifies the URL. Otherwise, create the URL rendering definition item in the

/Sitecore/Layout/Renderings/System folder, and use the name URL Rendering.

For the URL property, enter the URL to process.

Note
URL renderings invoke the rendering from the server, not from the client.

4.12.1 How to Register a URL Rendering

To register a URL rendering using the Developer Center:

1. In the Developer Center, click the File menu, and then click New. The New File wizard
appears.

2. In the New File wizard, in the Categories tree, click Renderings.

3. In the Templates list, click Url Rendering, and then click Create.

4. Enter URL rendering properties.

5. Click Test, resolve any issues with the URL, and then click Next.

6. Click the folder that will contain the URL rendering definition item, and then click Create.

To register a URL rendering using the Content Editor:

1. In the Content Editor, navigate to the appropriate folder within

/Sitecore/Layout/Renderings.

2. Insert a URL rendering definition item using the /System/Layout/Renderings/Url

Rendering data template.

3. In the URL definition item, specify URL rendering properties as appropriate.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 47 of 54

Chapter 5

Layouts and Sublayouts

This chapter provides procedures for working with layouts and sublayouts.

This chapter contains the following sections:

 Create a Layout

 Create a Sublayout

 Add a Control to a Layout or Sublayout

 Add Code-Beside to a Layout or Sublayout

 How to Add a Layout or Sublayout Partial Class File and Replace
CodeFile with CodeBehind

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 48 of 54

5.1 Create a Layout

You can create a layout using the Developer Center or using Visual Studio or any text editor.

5.1.1 How to Create a Layout Using the Developer Center

To create a layout using the Developer Center:

1. In the Developer Center, click the File menu, and then click New. The New File wizard
appears.

2. In the New File wizard, in the Categories tree, click Layouts.

3. In the Templates list, click Layout, and then click Create.

4. In the Name field, enter a name for the layout, and then click Next. The wizard will use this
name for both the layout definition item and the layout file.

5. Click the folder that will contain the layout definition item, and then click Next.

6. Click the directory that will contain the layout file, and then click Create. The layout appears in
the Developer Center.

5.1.2 How to Register a Web Form as a Layout

To register a Web form as a layout:

1. Create the Web form in the appropriate project-specific subdirectory of the /layouts

directory in the document root of the Web site, for example

/layouts/MyWebSite/MyWebLayout.aspx.

2. In the Content Editor, navigate to the appropriate project-specific folder within

/Sitecore/Layout/Layouts, for example /Sitecore/Layout/Layouts/MyWebSite.

3. Insert a layout definition item using the /System/Layout/Layout data template. For the

name of the item, enter the name of the Web form file, without the .aspx extension, for

example MyWebLayout.

4. In the layout definition item, ignore any exception on the Grid Designer tab, and click the
Content tab.

5. In the Path field, enter the path and name of the layout file relative to the document root of the

Web site, including the .aspx extension, for example

/layouts/MyWebSite/MyWebLayout.aspx.

Important
Do not attempt to register an existing Web form as a Sitecore layout using the Layout command

template that appears in insert options for the /Sitecore/Layout/Layouts folder. The Layout

command template attempts to create the layout file, and generates an error if that file already exists.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 49 of 54

5.2 Create a Sublayout

You can use the Developer Center to create a sublayout, or register a Web user controls created in
Visual Studio or another text editor as a sublayout.

5.2.1 How to Create a Sublayout in the Developer Center

To create a sublayout in the Developer Center:

1. In the Developer Center, click the File menu, and then click New. The New File wizard
appears.

2. In the New File wizard, in the Categories tree, click Renderings.

3. In the Templates list, click Sublayout, and then Click Create.

4. For Name, enter a name for the sublayout, and then click Next. The Developer Center will use
this name for both the sublayout definition item and the sublayout file.

5. Click the item that will contain the sublayout definition item, and then click Next.

6. Click the directory that will contain the sublayout file.

7. Select the Create Associated C# Code Files checkbox to create a code file.

8. Click Create. The new sublayout appears in the Developer Center.

5.2.2 How to Register a Web User Control as a Sublayout

To register a Web user control as a sublayout:

1. In the Content Editor, navigate to the project-specific folder under

/Sitecore/Layout/Sublayouts that will contain the sublayout, for example

/Sitecore/Layout/Sublayouts/MyWebSite.

2. Insert a sublayout definition item using the /System/Layout/Sublayout data template.

For the name of the item, enter the name of the Web user control file, without the .ascx

extension, for example MySublayout.

3. In the sublayout definition item, ignore any exception on the Grid Designer tab, and click the
Content tab.

4. For the Path field, enter the path and name of the layout file relative to the document root of

the Web site, including the .ascx extension, for example

/layouts/MyWebSite/Sublayouts/MySublayout.aspx.

Important
Do not attempt to register an existing Web form as a Sitecore sublayout using the Sublayout
command template that appears under the Insert menu when you right-click the

/Sitecore/Layout/Sublayouts folder. The Sublayout command template attempts to create the

sublayout file, and generates an error if that file exists.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 50 of 54

5.3 Add a Control to a Layout or Sublayout

This section provides procedures for adding placeholders and statically binding sublayouts and
renderings to placeholders in layouts and sublayouts.

Note
Developers generally dynamically bind sublayouts to placeholders, and rarely statically bind
sublayouts to layouts or other sublayouts. If several layouts or sublayouts always share a single
sublayout, such as several layouts that use the same header sublayout, the developer might statically
bind the sublayout.

Important
Never allow a sublayout to bind statically or dynamically to another instance of itself or to a control
which is a descendant of the sublayout, as this could result in infinite recursion.

5.3.1 How to Add a Control to a Layout or Sublayout Using the
Developer Center

To add a control to a layout or sublayout using the Developer Center:

1. In the Developer Center, open the layout or sublayout.

2. In the layout or sublayout, click the Design tab.

3. Click the View menu, and then click Toolbox.

4. Drag the control from the Toolbox onto the layout or sublayout.

5. In the layout or sublayout, double-click the control. The control properties dialog appears.

6. In the control properties dialog, apply control properties.

5.3.2 How to Add a Control to a Layout or Sublayout Using Visual
Studio

To add a control to a layout or sublayout using Visual Studio:

1. In the Visual Studio Web application project, click the View menu, and then click Toolbox.

2. Edit the layout or sublayout that will contain the control.

3. In the layout or sublayout, click the Design tab.

4. Drag the control from the toolbox onto the layout or sublayout, or insert the control markup.
For a placeholder, use the following markup template:

<sc:placeholder key="" id="" runat="server" />

For a sublayout, use the following markup template:

<sc:sublayout path="/layouts/path/to/file.ascx" id="" runat="server" />

For an XSL rendering, use the following markup template:

<sc:xslfile path="/xsl/path/to/file.xslt" id="" runat="server" />

For a FieldRenderer Web control, use the following markup template:

<sc:fieldrenderer fieldname="FieldName" id="" runat="server" />

For a Web control, register the tag prefix as described elsewhere in this document, and use
the following markup template:

<tagprefix:classname id="" runat="server" />

For a method rendering, use the following markup template:

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 51 of 54

<sc:method methodname="MethodName" assemblyname="AssemblyName"

classname="Namespace.Class" id="" runat="server" />

For a URL rendering, use the following markup template:

<sc:webpage id="" runat="server" url="" />

5. Right-click the control, and then click Properties. The Visual Studio Properties pallet appears.

6. In the Properties pallet, apply control properties.

Note
To support Sitecore output caching for statically bound sublayouts, use the Sitecore sublayout Web
control instead of invoking the Web user control directly.

Important
You cannot pass parameters to a sublayout bound statically using named control properties. Instead,
use the parameters property of the Sitecore sublayout Web control.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 52 of 54

5.4 Add Code-Beside to a Layout or Sublayout

When you create a layout or sublayout in the Developer Center, the Developer Center does not
create a code-beside file by default. You can add a code-beside file to an existing layout or sublayout
in one of two ways: by copying the text of, then deleting the existing layout or sublayout file, recreating
that file in Visual Studio, and then pasting the text, or by creating the code-beside and designer files
manually.

5.4.1 How to Add Code-Beside to a Layout or Sublayout by Deleting
the Existing File

To add a code-beside file to an existing layout or sublayout by deleting the existing file:

1. In the Visual Studio Web application project, open the layout or sublayout. Note the exact
name and location of the layout or sublayout file.

2. In the layout or sublayout, click the Source tab.

3. Select all of the code in the layout or sublayout file, excluding the Page directive at the top of

a layout file or the Control directive at the top of a sublayout file.

4. Press CTRL-C to copy the selected text to the Windows clipboard.

5. In Visual Studio Solution Explorer, delete the layout or sublayout.

6. Use Visual Studio Solution Explorer to add a new Web Form (layout) or Web User Control
(sublayout) using the original layout or sublayout file name in the directory that contained it.

7. In the new layout or sublayout file, click the Source tab.

8. Select all of the text except for the Page or Control directive at the top of the file.

9. Press CTRL-V to overwrite the existing text with the text in the Windows clipboard.

5.4.2 How to Add a Code-Beside file to a Layout or Sublayout by
Creating Files

To add a code-beside file to an existing layout or sublayout by creating code-beside and designer
files:

1. In the Visual Studio Web application project, note the name of the layout or sublayout file.

Tip
To copy the name of the layout or sublayout file to the Windows clipboard, click the file in Visual
Studio Solution Explorer, press F2 to rename the file, then CTRL-C to copy the file name to the
Windows clipboard, then ESC to cancel the rename operation.

2. In Solution Explorer, right-click the folder containing the layout or sublayout, then click Add,
and then click Class. The Add New Item dialog appears.

3. In the Add New Item dialog, in the Name field, enter the name of the layout or sublayout file

including the .cs extension, for example MyLayout.aspx.cs or MySublayout.ascx.cs,

and then click Add. Visual Studio creates the new class as a child of the existing layout or
sublayout.

4. In the class, enter an appropriate namespace and class name.

5. Open the layout or sublayout.

6. Click the Source tab.

7. Replace the existing Page (layout) or Control (sublayout) directive. For a layout, use code

such as the following:

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 53 of 54

<%@ Page language="C#" autoeventwireup="true" inherits="Namespace.Class"

codebehind="MyLayout.aspx.cs" %>

For a sublayout, use code such as the following:

<%@ Control language="C#" autoeventwireup="true" inherits="Namespace.Class"

Codebehind="MySubalyout.aspx.cs" %>

8. For the inherits attribute, enter the namespace and class name. For the codebehind

attribute, enter the name of the code-behind file.

9. See the following section How to Add a Layout or Sublayout Partial Class File and Replace
CodeFile with CodeBehind.

Sitecore CMS 6 Presentation Component Cookbook

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The
contents of this document are the property of Sitecore. Copyright © 2001-2008 Sitecore. All rights reserved.

Page 54 of 54

5.5 How to Add a Layout or Sublayout Partial Class File and
Replace CodeFile with CodeBehind

To add the layout or sublayout partial class file and replace CodeFile with CodeBehind:

1. In the Visual Studio Web application project, in Solution Explorer, right-click the .aspx or

.ascx file, and then click Include In Project.

2. Right-click the .aspx or .ascx file, and then click Convert to Web Application. Visual Studio

creates the partial class file and adds it to the project and replaces the CodeFile attribute in

the .aspx or .ascx file with a CodeBehind attribute.

