
Sitecore CMS 6
Sitecore Dynamic Links Rev: 2015-03-04

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Sitecore CMS 6

Sitecore Dynamic Links
A Developer's Guide to Constructing URLs with Sitecore

Sitecore CMS 6 Sitecore Dynamic Links

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 2 of 13

Table of Contents

Chapter 1 Introduction .. 3
Chapter 2 Sitecore Dynamic Links ... 4

2.1 IIS and ASP.NET URLs .. 5
2.1.1 IIS HTTP 404 Page ... 5
2.1.2 IIS Wildcards ... 7

Windows XP and Windows 2000 Server (IIS5) .. 7
Windows 2003 (IIS6) .. 8
Windows Vista and Windows 2008 (IIS7) .. 8

2.1.3 URL Rewriting ISAPI Filter .. 9
2.2 Sitecore Dynamic Link Management .. 10

2.2.1 Dynamic Link Configuration .. 10
The Rendering.SiteResolving Setting .. 11
The LinkItemNotFound Setting .. 11

2.2.2 How to Access the URL of a Content Item ... 12
2.2.3 How to Access the URL of a Media Item .. 12

2.3 Search Engine Optimized (SEO) URLs .. 13

Sitecore CMS 6 Sitecore Dynamic Links

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 3 of 13

Chapter 1

Introduction

This document describes how to configure Sitecore dynamic link management. Sitecore
administrators and developers can use this information to configure and implement
Search Engine Optimization and other link management features.

This document contains the following chapters:

 Chapter 1 – Introduction

 Chapter 2 – Sitecore Dynamic Links

Sitecore CMS 6 Sitecore Dynamic Links

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 4 of 13

Chapter 2

Sitecore Dynamic Links

This chapter describes how IIS and ASP.NET process URLs, how Sitecore generates
URLs dynamically, and Search Engine Optimization (SEO) techniques that you can use
with Sitecore.

This chapter contains the following sections:

 IIS and ASP.NET URLs

 Sitecore Dynamic Link Management

 Search Engine Optimized (SEO) URLs

Sitecore CMS 6 Sitecore Dynamic Links

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 5 of 13

2.1 IIS and ASP.NET URLs

IIS responds to HTTP requests in one of three ways:

 IIS serves a file from disk.

 By invoking a process such as ASP.NET that may process a file from disk, respond with an error
message, or return control to IIS.

 IIS responds handles an error by redirecting, displaying the contents of a file, or displaying a
hard-coded error message.

By default, both IIS6 and IIS7 with a classic ASP.NET pipeline only use ASP.NET to process requests

with file paths that end with specific extensions such as .aspx and .ashx. For requests that end with

other extensions or no extension, IIS attempts to serve files from the document root or a subdirectory of
the IIS Web site.

Because Sitecore is an ASP.NET application, when IIS does not use ASP.NET to process a request,
Sitecore cannot process the request. This can lead to apparent inconsistencies, such as when IIS,
ASP.NET, and Sitecore handle the HTTP 404 Page Not Found condition differently.

You can use any of the following techniques to configure IIS to use ASP.NET to process additional
requests:

 IIS HTTP 404 Page

 URL Rewriting ISAPI Filter

 IIS Wildcards

Note
Process additional requests using ASP.NET may consume additional machine resources.

2.1.1 IIS HTTP 404 Page

You can configure IIS to use ASP.NET to process additional requests that do not correspond to files by

configuring the IIS HTTP 404 page to a URL that includes an ASP.NET extension such as .aspx, such

as /default.aspx. If the URL of the IIS 404 page ends with an extension that would cause IIS to

process the request with ASP.NET, IIS invokes ASP.NET to handle the request, whether or not the file
exists.

Note

You must update the parameters passed to the FilterUrlExtensions processor in the

preprocessRequest pipeline defined in web.config to allow Sitecore to process requests with

specific extensions. For example, to allow Sitecore to process requests with the .htm and .html

extensions:

<processor type="Sitecore.Pipelines.PreprocessRequest.FilterUrlExtensions,

Sitecore.Kernel">

 <param desc="Allowed extensions (comma separated)">aspx, ashx, asmx, htm, html</param>

 …

To allow Sitecore to process requests with any extension:

<processor type="Sitecore.Pipelines.PreprocessRequest.FilterUrlExtensions,

Sitecore.Kernel">

 <param desc="Allowed extensions (comma separated)">*</param>

 <param desc="Blocked extensions (comma separated)"> </param>

Sitecore CMS 6 Sitecore Dynamic Links

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 6 of 13

Note
Sitecore removes the extension from the URL before attempting to determine the context item. If you
configure IIS to process requests with additional extensions or no extensions, whether the path in the

URL is /item.aspx, /item, /item/, or /item.html, if the /Sitecore/Content/Home/Item item

exists, Sitecore sets that item as the context item for this request.

To configure the IIS HTTP 404 page on Windows XP or Windows 2003:

1. In the Windows desktop, click the Start button, and then click Run. The Run dialog appears.

2. In the Run dialog, enter inetmgr, and then click OK. The IIS management console appears.

3. In the IIS management console, right-click the machine to apply the change to all Web sites, or
expand both the machine and Web sites, then right-click a Web site to apply the change to an
individual Web site, and then click Properties. The Web Sites Properties dialog appears.

4. Click the Custom Errors tab. For each of the 404 errors, click Edit, and then set Message type to

URL and URL to /default.aspx.

To configure the IIS HTTP 404 page on Windows Vista or Windows 2008:

Warning
Changes through the IIS management console on some versions of Windows Vista may remove text

values from web.config.1

Note
On Windows Vista, you must install Internet Information Services/World Wide Web Servers/Common
HTTP Features/HTTP Errors. On Windows 2008, you must install Web Server/Common HTTP
Features/HTTP Errors.

1. In the Windows desktop, click the Start button. The Windows Start menu appears.

2. In the text field on the Windows Start menu, type inetmgr, and then press the Enter key. The

IIS management console appears.

3. In the IIS management console, in the Connections tree, select the machine to apply the change
to all Web sites, or expand the machine and Sites, and then click an individual Web site to apply
the change to an individual Web site.

4. In the IIS management console, under IIS, double-click Error Pages. A list of error codes
appears.

5. In the list of error codes, double-click the 404 entry. The Edit Custom Error Page dialog appears.

6. In the Edit Custom Error Page dialog, select Execute URL or Execute a URL on this site, enter

/default.aspx as the Path or URL, and then click OK.

7. In the Actions list in the IIS management console, click Edit Feature Settings. The Edit Error
Pages Settings dialog appears.

8. In the Edit Error Pages Settings dialog, select Custom error pages.

1 For more information about the defect in IIS that can corrupt web.config, see

http://sdn5.sitecore.net/Products/Sitecore%20V5/Sitecore%20CMS%205,-d-
,3/Installation/Installing%20Sitecore%20on%20Vista.aspx.

http://sdn5.sitecore.net/Products/Sitecore%20V5/Sitecore%20CMS%205,-d-,3/Installation/Installing%20Sitecore%20on%20Vista.aspx
http://sdn5.sitecore.net/Products/Sitecore%20V5/Sitecore%20CMS%205,-d-,3/Installation/Installing%20Sitecore%20on%20Vista.aspx

Sitecore CMS 6 Sitecore Dynamic Links

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 7 of 13

2.1.2 IIS Wildcards

Except in integrated mode, IIS configuration maps specific extensions, such as .aspx, .ashx, and

.asmx, to an ISAPI filter that implements ASP.NET. You can configure IIS to process all requests with the

ASP.NET ISAPI filter by configuring wildcard extensions.2

Important
Configuring IIS to use ASP.NET to process additional requests could have performance and security
implications.

Important
For each file name extension that you use for Sitecore items including media items, it may be necessary
to disable the option in the IIS management console that requires that the file exist.

Important

You may need to configure the StaticFileHandler in web.config for each file name extension that

you use for both files and Sitecore items. For example, to process requests with the .htm extension as

either Sitecore items or static files:

<httpHandlers>

 <add verb="GET,HEAD" path="*.htm" type="System.Web.StaticFileHandler, System.Web,

 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />

 ...

Windows XP and Windows 2000 Server (IIS5)

To configure wildcard processing on II5 (Windows XP or Windows 2000):

1. In the IIS management console, right-click the Web site, and then click Properties. The Web Site
Properties dialog appears.

2. In the Web Site Properties dialog, click the Home Directory tab, and then click Configuration. The
Application Configuration Dialog appears.

3. In the Application Configuration dialog, select the .aspx entry, and then click Edit. The Add/Edit

Application Extension Mapping dialog appears.

4. In the Add/Edit Application Extension Mapping dialog, copy the value of the Executable field to
the Windows clipboard, and then click Cancel.

5. In the Application Configuration dialog, click Add. The Add/Edit Application Extension Mapping
dialog appears.

6. In the Add/Edit Application Extension Mapping dialog, in the Executable field, paste the value
from the Windows clipboard, or enter the equivalent of the following:

C:\windows\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll

7. In the Add/Edit Application Extension Mapping dialog, set Extension to a period character

followed by a star character (“.*”).

8. In the Add/Edit Application Extension Mapping dialog, select All verbs.

9. In the Add/Edit Application Extension Mapping dialog, clear the Check that file exists checkbox,
and then click OK.

2 For more information about wildcard extensions, see
http://professionalaspnet.com/archive/2007/07/27/Configure-IIS-for-Wildcard-Extensions-in-
ASP.NET.aspx.

http://professionalaspnet.com/archive/2007/07/27/Configure-IIS-for-Wildcard-Extensions-in-ASP.NET.aspx
http://professionalaspnet.com/archive/2007/07/27/Configure-IIS-for-Wildcard-Extensions-in-ASP.NET.aspx

Sitecore CMS 6 Sitecore Dynamic Links

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 8 of 13

Windows 2003 (IIS6)

To configure wildcard processing on II6 (Windows 2003):

1. In the IIS management console, right-click the Web site, and then click Properties. The Web Site
Properties dialog appears.

2. In the Web Site Properties dialog, click the Home Directory tab, and then click Configuration. The
Application Configuration Dialog appears.

3. In the Application Configuration dialog, click the Mappings tab, select the.aspx entry, and then

click Edit. The Add/Edit Application Extension Mapping dialog appears.

4. In the Add/Edit Application Extension Mapping dialog, copy the value of the Executable field to
the Windows clipboard, and then click Cancel.

5. In the Application Configuration dialog, click Insert. The Add/Edit Application Extension Mapping
dialog appears.

6. In the Add/Edit Application Extension Mapping dialog, in the Executable field, paste the value
from the Windows clipboard, or enter the equivalent of the following:

C:\windows\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll

7. In the Add/Edit Application Extension Mapping dialog, clear the Check that file exists checkbox,
and then click OK.

Windows Vista and Windows 2008 (IIS7)

To configure wildcard processing on IIS7 with a classic application pool:

1. In the IIS management console, click the Web site, then double-click Handler Mappings, then

select the .aspx entry, and then click Edit. The Edit Script Map dialog appears.

2. In the Edit Script Map dialog, copy the value of the Executable field to the Windows clipboard,
and hten click Cancel.

3. Click Add Script Map… The Add Script Map dialog appears.

4. In the Add Script Map dialog, in the Executable field, paste the value from the Windows clibboard,
or enter the equivalent of the following:

%windir%\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll

5. In the Add Script Map dialog, in the Request path field, enter a star character (“*”).

6. In the Add Script Map dialog, in the Name field, enter a name for the handler mapping, such as
Wildcard ASP.NET ISAPI.

7. In the Add Script Map dialog, click Request Restrictions. The Request Restrictions dialog
appears.

8. In the Request Restrictions dialog, click the Mapping tab, and then clear the Invoke handler only if
the request is mapped to checkbox.

9. In the Request Restrictions dialog, click the Verbs tab, then select All Verbs, and then click OK.

Important
To use this solution on Windows 2008, you must install Web Server/Application Development/ISAPI
Extensions and Web Server/Application Development/ISAPI Filters. To use this solution on Windows
Vista, you must install World Wide Web Services/Application Development Features/ISAPI Extensions.

Sitecore CMS 6 Sitecore Dynamic Links

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 9 of 13

2.1.3 URL Rewriting ISAPI Filter

You can configure IIS to use ASP.NET to process additional requests by implementing an ISAPI filter to
rewrite URLs before IIS determines how to process them.3

3 For more information about using ISAPI filters to rewrite URLs, see
http://sdn.sitecore.net/Scrapbook/Friendlier%20Marketing%20URLs.aspx.

http://sdn.sitecore.net/Scrapbook/Friendlier%20Marketing%20URLs.aspx

Sitecore CMS 6 Sitecore Dynamic Links

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 10 of 13

2.2 Sitecore Dynamic Link Management

Sitecore URLs do not correspond to files on disk, but to items in a Sitecore database. Items contain
layout details, which specify the presentation components used to service requests for the item from
different types of devices.

URLs that correspond to data items provide numerous advantages over URLs that correspond to files,
such as simplifying the ability to share content between multiple devices, translate content into multiple
languages, and reuse, update, and change presentation components at any time. With dynamic URLs,
you can ihclude information into the path that might otherwise require a query string parameter. For

example, you can specify a content language using the path prefix /en instead or the URL query string

parameter sc_lang=en.

2.2.1 Dynamic Link Configuration

You can configure the following attributes of the /configuration/sitecore/providers/add

element in web.config with name sitecore to control how Sitecore generates URLs:

 type: You can override the link provider by updating the type attribute (.NET class signature).

 addAspxExtension: Whether to include the .aspx extension in URLs (true or false). If you

set addAspxExtension to false, you muse configure IIS to process all requests with

ASP.NET as described in the section IIS and ASP.NET URLs.

 alwaysIncludeServerUrl: Whether to include the HTTP protocol and domain

(http://localhost) in friendly URLs (true or false).

 encodeNames: Whether to encode names in paths according to the

/configuration/sitecore/encodeNameReplacements/replace elements in

web.config (true or false).

 languageEmbedding: Whether to include the language in the URL (always, never, or

asNeeded). When languageEmbedding is asNeeded, Sitecore includes the language in the

URL if it cannot determine the context site from the incoming HTTP request, if that HTTP request
does not include a cookie that specifies a language, or if the language of the linked item differs
from the context language.

 languageLocation: Whether to specify language as the first step in the URL path or using the

sc_lang URL query string parameter (filePath or queryString).

 useDisplayName: Whether to use item display names or item names when constructing URLs

(true or false). If the useDisplayName attribute is true, different languages can have

different URLs for the same content item.

Important
Consider the impact of URL configuration changes on other applications that rely on URLs, such as Web
analytics solutions.

Note
You may see other URL formats in content management user interfaces, such as the raw value of a Rich
Text Editor (RTE) fields. Presentation constructs transform these links to friendly URLs before
transmitting markup to user agents.

Sitecore CMS 6 Sitecore Dynamic Links

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 11 of 13

Tip
Before configuring the link manager, see the search engine optimization techniques and considerations
described in the section Search Engine Optimized (SEO) URLs.

The Rendering.SiteResolving Setting

A single instance of Sitecore supports multiple logical Web sites. By default, administrators configure

multiple logical Web sites within the /configuration/sitecore/sites element in web.config.

Each /configuration/sitecore/sites/site element specifies a start item for a Web site, which

represents the home page for that site.

The /configuration/sitecore/settings/setting element in web.config with name

Rendering.SiteResolving controls whether the renderField pipeline and XSL constructs determine

the hostname to include in URLs by matching the path to the linked item with the logical site definitions.

The Sitecore.Links.LinkManager.GetItemUrl() method does not respect the value of the

Rendering.SiteResolving setting.

If the alwaysIncludeServerUrl attribute of the /configuration/sitecore/providers/add

element in web.config with name sitecore is True, then the link manager determines the hostname

from the first defined logical Web site with attributes that match the path to the linked item.

If the Rendering.SiteResolving setting is False, if the logical Web site associated with the linked

item is undefined, or if that logical Web site is the context site, then the hostname in the friendly URL is
the hostname in the current HTTP request.

If the Rendering.SiteResolving setting is true, and the dynamic link manager can determine a

logical Web site for the item, and that site is not the context site, and the targetHostName attribute of

that site has a value, then the hostname in the friendly URL is the targetHostName attribute of that site.

If the targetHostName attribute has no value, and the hostName attribute has a value, and that value

does not contain a star (“*”) or pipe character (“|”), then the hostname in the friendly URL is the value of

that hostName attribute. Otherwise, the URL does not include a hostname or protocol.

Important

All attributes are case-sensitive. The hostName attribute has an uppercase N.

You can implement code such as the following to apply the Rendering.SiteResolving setting:4

Sitecore.Data.Database master = Sitecore.Configuration.Factory.GetDatabase("master");

Sitecore.Data.Items.Item home = master.GetItem("/sitecore/content/home");

Sitecore.Links.UrlOptions urlOptions =

 (Sitecore.Links.UrlOptions) Sitecore.Links.UrlOptions.DefaultOptions.Clone();

urlOptions.SiteResolving = Sitecore.Configuration.Settings.Rendering.SiteResolving;

string url = Sitecore.Links.LinkManager.GetItemUrl(home,urlOptions);

The LinkItemNotFound Setting

The value attribute of the /configuration/sitecore/settings/setting element in

web.config with name LinkItemNotFoundUrl controls the item to which Sitecore links when the item

referenced by a link does not exist.

4 For a solution that applies the Rendering.SiteResolving setting consistently, see

https://marketplace.sitecore.net/Modules/Link_Provider.aspx.

https://marketplace.sitecore.net/Modules/Link_Provider.aspx

Sitecore CMS 6 Sitecore Dynamic Links

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 12 of 13

2.2.2 How to Access the URL of a Content Item

You can use the Sitecore.Links.LinkManager.GetItemUrl() method to access the URL of a

content item.5 For example, to access the URL of the context item:

Sitecore.Data.Items.Item item = Sitecore.Context.Item;

Sitecore.Links.UrlOptions urlOptions =

 (Sitecore.Links.UrlOptions) Sitecore.Links.UrlOptions.DefaultOptions.Clone();

urlOptions.SiteResolving = Sitecore.Configuration.Settings.Rendering.SiteResolving;

string url = Sitecore.Links.LinkManager.GetItemUrl(item,urlOptions);

2.2.3 How to Access the URL of a Media Item

You can use the Sitecore.Resources.Media.MediaManager.GetMediaUrl() method to access

the URL of a media item. For example, to access the URL of the media item /Sitecore/Media

Library/Images/Sample in the Master database:

Sitecore.Data.Database master = Sitecore.Configuration.Factory.GetDatabase("master");

Sitecore.Data.Items.Item sampleItem = master.GetItem(

 "/sitecore/media library/images/sample");

Sitecore.Data.Items.Item sampleMedia = new Sitecore.Data.Items.MediaItem(sampleItem);

string url = Sitecore.StringUtil.EnsurePrefix(

 '/',

 Sitecore.Resources.Media.MediaManager.GetMediaUrl(sampleMedia));

Warning

Sitecore does not automatically include the leading slash character (“/”) in media URLs. This causes

relative URLs for media items, which IIS resolves to the document root due to the tilde character (“~”). In

solutions with very deep information architectures, relative media URLs can exceed limits imposed by the

Web client or the Web server. Use the Sitecore.StringUtil.EnsurePrefix() method as shown in

the previous example to ensure media URLs include the leading slash character.6

Note
There is no provider for media URLs.

You can use the Sitecore.Resources.Media.MediaUrlOptions class to specify media options

when retrieving the URL of a media item. For example, to retrieve the URL of the thumbnail of the

/Sitecore/Media Library/Images/Sample media item in the Master database:

Sitecore.Data.Database master = Sitecore.Configuration.Factory.GetDatabase("master");

Sitecore.Data.Items.Item sampleItem = master.GetItem(

 "/sitecore/media library/images/sample");

Sitecore.Data.Items.MediaItem sampleMedia =

 new Sitecore.Data.Items.MediaItem(sampleItem);

Sitecore.Resources.Media.MediaUrlOptions mediaOptions =

 new Sitecore.Resources.Media.MediaUrlOptions();

mediaOptions.Thumbnail = true;

string url = Sitecore.StringUtil.EnsurePrefix('/',

 Sitecore.Resources.Media.MediaManager.GetMediaUrl(sampleMedia, mediaOptions));

5 For an example using the Sitecore.Links.LinkManager.GetItemUrl() method to access the

URL of a content item, see the Sitecore.Sharedsource.Data.Items.Item.GetUrlExtension

class described at https://marketplace.sitecore.net.
6 For a solution to transform the prefix in media URLs consistently, see
https://marketplace.sitecore.net/Modules/Link_Provider.aspx.

https://marketplace.sitecore.net/SearchResults#ff=f1
https://marketplace.sitecore.net/Modules/Link_Provider.aspx

Sitecore CMS 6 Sitecore Dynamic Links

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 13 of 13

2.3 Search Engine Optimized (SEO) URLs

You can iimprove search engine ranking by using Search Engine Optimized (SEO) URLs, such as by
applying the following techniques:7

 Use hierarchies of words in the path to indicate topical categorization, such as

/humanresources/policies/ to represent a catalog of Human Resources policies.

 Avoid URL query string parameters.

 Avoid extensions such as .aspx and .ashx except for media, such as .pdf for PDF files.

 End URLs with a trailing slash character (“/”).

 Avoid multiple URLs for a single content or media item.

7 For an example that applies these techniques, see
https://marketplace.sitecore.net/Modules/Link_Provider.aspx.

https://marketplace.sitecore.net/Modules/Link_Provider.aspx

	Chapter 1 Introduction
	Chapter 2 Sitecore Dynamic Links
	2.1 IIS and ASP.NET URLs
	2.1.1 IIS HTTP 404 Page
	2.1.2 IIS Wildcards
	Windows XP and Windows 2000 Server (IIS5)
	Windows 2003 (IIS6)
	Windows Vista and Windows 2008 (IIS7)

	2.1.3 URL Rewriting ISAPI Filter

	2.2 Sitecore Dynamic Link Management
	2.2.1 Dynamic Link Configuration
	The Rendering.SiteResolving Setting
	The LinkItemNotFound Setting

	2.2.2 How to Access the URL of a Content Item
	2.2.3 How to Access the URL of a Media Item

	2.3 Search Engine Optimized (SEO) URLs

