
Sitecore® Experience Platform™ 7.5 or later
Developer's Guide to Item Buckets and Search Rev: 18 September 2015

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Sitecore® Experience Platform™ 7.5 or later

Developer's Guide to Item
Buckets and Search
A developer's guide to working with item buckets, search, and indexing in Sitecore

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 2 of 142

Table of Contents

Chapter 1 Introduction .. 6
1.1 Introduction .. 7

1.1.1 Backwards Compatibility ... 7
1.2 Fundamental Concepts ... 8

1.2.1 Item Bucket ... 8
1.2.2 Why Use an Item Bucket? ... 8

Viewing Hidden Items .. 9
Chapter 2 Configuring Item Buckets .. 10

2.1 Creating an Item Bucket .. 11
2.1.1 Item bucket Icon in the Quick Actions Bar .. 12

2.2 Making Content Items Bucketable .. 13
2.2.1 Making a Template Bucketable ... 14

Changing a Bucketable Template to a Non-Bucketable Template .. 15
2.2.2 Changing the Bucketable Settings .. 15
2.2.3 Synchronizing an Item Bucket ... 16
2.2.4 Locking Parent/Child Relationships .. 16

2.3 Managing Item Buckets ... 18
2.3.1 Building the Search Indexes ... 18
2.3.2 Clearing the HTML Cache ... 18
2.3.3 Item Bucket Settings ... 19

Bucket Folder Paths ... 19
Chapter 3 Searching .. 21

3.1 Configuring Search ... 22
3.1.1 Specifying which Fields are Displayed in the Search Results .. 22
3.1.2 Specifying a Search Result Image and Search Result Text ... 23
3.1.3 Displaying Media Library Images in Search Results ... 23
3.1.4 Viewing the Search Results .. 24

Different Ways to Display Search Results ... 24
3.1.5 Exclude Current Item from Search .. 25

3.2 Using Facets to Refine your Search ... 26
3.2.1 Language Search .. 27
3.2.2 Complex Searches .. 27

Searching within a Range .. 28
Combining, and, or, and not ... 28

3.2.3 Opening Items in the Search Results.. 28
3.3 Using Search Filters .. 31

3.3.1 Auto-Organizing .. 33
3.3.2 Paging Results .. 33
3.3.3 Predefined Search Options ... 34
3.3.4 Default Search Query .. 35
3.3.5 Persistent Search Query ... 36

3.4 Security and Item Buckets .. 37
Locking ... 37

3.4.1 Identification and Authentication Modifications ... 37
Keyboard Shortcuts .. 38

3.5 Using a Custom Class to Create a Query ... 40
3.6 Using Item Buckets with the Data Source of a Control ... 41

Tips ... 41
Chapter 4 Sitecore DMS and Item Buckets ... 43

4.1 Personalization and MV Tests .. 44

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 3 of 142

4.1.1 Setting the Data Source .. 45
4.2 Inserting and Managing Links ... 46

4.2.1 Inserting a Link in the Rich Text Editor ... 46
Inserting a General Link with Search ... 47

4.3 Tagging Associations across Many Items ... 49
4.3.1 Creating a Tag ... 49

Chapter 5 Developing with Item Buckets ... 50
5.1 New Field Types ... 51

Multilist with Search Field ... 51
General Link with Search Field .. 52
Treelist with Search Field ... 52

5.2 Creating a Tag Repository .. 53
5.3 LINQ to Sitecore .. 54

Complex Searches ... 57
Adding a New Linq Provider ... 57

5.4 Adding a New Search Provider ... 60
New Logging Classes .. 61
Query Warm-up .. 61

5.4.1 Pipelines .. 62
5.4.2 Miscellaneous .. 64

5.5 Linq to Provider ... 66
5.5.1 Accessing the Linq to Sitecore API ... 66
5.5.2 Custom Search Type / Object Mapping .. 66
5.5.3 Supported IQueryable methods .. 68
5.5.4 IQueryable Extensions .. 70

Filtering ... 70
Facets ... 70
Other .. 71

5.6 Searching .. 73
5.6.1 Searching in the Default Language ... 73
5.6.2 Searching and Facets ... 73
5.6.3 Using a Field as a Tag Repository .. 73
5.6.4 Including and Excluding Search Filters ... 74
5.6.5 Editing Search Filters .. 74
5.6.6 In-Memory Index ... 74
5.6.7 Applying Quick Actions to Search Results .. 75

Add New Quick Actions .. 76
5.6.8 Showing Dynamic Fields in Search Results ... 77
5.6.9 Adding New Filters and Setting up Alias Filters .. 77

Alias Filters ... 78
5.6.10 Creating a New Search Facet ... 78
5.6.11 Default Bucket Queries ... 78
5.6.12 A Persistent Bucket Filter .. 79
5.6.13 Default Queries and Filters ... 79

5.7 Rule-based Boosting ... 80
5.7.1 Creating a New Boosting Rule Condition .. 81
5.7.2 Implementing Rule-Based Boosting for Fields .. 81

5.8 Multiple Index Support .. 84
5.9 Adding a New View ... 85

Chapter 6 Contact Search .. 87
6.1 Null and Empty String Support .. 88
6.2 Joins .. 89

6.2.1 Joining Data .. 89
6.2.2 Testing in the LINQScratchPad ... 89

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 4 of 142

6.2.3 Extra Join Notes .. 90
6.2.4 When is it OK to Use a Join? .. 90
6.2.5 What is the Difference Between JOIN, SELFJOIN and GROUPJOIN 90

6.3 QueryParser .. 92
6.3.1 Typical Use Case .. 93

6.4 LINQ vs DynamicExpressions ... 94
6.4.1 Example Dynamic Queries .. 94
6.4.2 Complex Examples of Dynamic Queries .. 95

6.5 Embedded/Collapsed Types ... 98
6.6 Other features ... 99

6.6.1 Showing Percentage of Audience ... 99
6.6.2 Get Number of Results .. 99
6.6.3 Get All Fields from an Index .. 99
6.6.4 Get All Facets from an Index ... 99
6.6.5 Get All Autocomplete fields from an Index .. 99

6.7 NGram Support (Autocomplete).. 100
6.8 IndexCrawler ... 101
6.9 Observing Aggregation Data - Best Practice .. 102

6.9.1 Definitions .. 102
6.9.2 Overview ... 102
6.9.3 ObservableAggregator<T> .. 102
6.9.4 ObserverCrawler<T> ... 103
6.9.5 Filtering .. 105
6.9.6 IIndexable .. 106
6.9.7 Indexing ... 107
6.9.8 TimedIndexRefreshStrategy ... 108

6.10 Building a custom UI with a rule style ... 109
6.11 Rule to IQueryable .. 110
6.12 Queries .. 111

6.12.1 Full Text Query .. 111
6.12.2 Field Query .. 111
6.12.3 Performance Expectations .. 111

Chapter 7 Crawlers .. 112
7.1 Types of crawler .. 113
7.2 Defining what is crawled ... 114
7.3 The Cleanup Pipeline .. 115
7.4 Configuration ... 117

Chapter 8 Configuration and Tuning .. 118
8.1 Configuration Files .. 119
8.2 Scaling Test Tool .. 121
8.3 Index Analyzer... 122
8.4 Scaling with Placeholders ... 123
8.5 Indexing ... 124

8.5.1 TimedIndexRefreshStrategy ... 124
8.5.2 Configuration ... 124

8.6 Sharding .. 125
8.6.1 When to use sharding ... 125
8.6.2 How to configure sharding for an index .. 125
8.6.3 Default Strategy... 126
8.6.4 Sharding Strategies ... 126
8.6.5 How to Create Your Own Sharding Strategy .. 127
8.6.6 Sharding and Solr.. 127

8.7 Filtering .. 128
8.7.1 Configuration ... 128

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 5 of 142

8.7.2 Observable specific filter ... 128
Chapter 9 Backup and Maintenance of Contact Search Indexes .. 130

9.1 When you use Lucene .. 131
9.1.1 Hobocopy .. 131
9.1.2 Using Hobocopy .. 131

9.2 When you use Solr .. 132
9.2.1 Backup .. 132
9.2.2 Restore .. 132
9.2.3 Alternative ... 132

9.3 What happens when you change the schema for the Observable index? 133
9.4 Moving between search providers .. 134

Chapter 10 Appendix ... 135
10.1 Tips and Tricks .. 136
10.2 Default Fields in Lucene .. 139
10.3 Contact Search Field Names .. 140

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 6 of 142

Chapter 1

Introduction

This document describes how to set up, configure, and tune search and indexing in
Sitecore 7.5 0r later.

The document contains the following chapters:

 Chapter 1 — Introduction
This chapter is an introduction to search and item buckets and describes the fundamental
concepts.

 Chapter 2 — Configuring Item Buckets
This chapter describes how to set up and configure Item Buckets.

 Chapter 3 — Searching
This chapter contains practical advice on configuring and using the module from an
administrator’s perspective.

 Chapter 4 — Sitecore DMS and Item Buckets
This chapter describes how to use Item Buckets when setting up, for example, MV tests.

 Chapter 5 — Developing with Item Buckets
This chapter describes how to develop with Item Buckets, and how to use the API.

 Chapter 6 — Contact Search
This chapter describes features that are specific to contact search.

 Chapter 7 — Crawlers
This chapter gives advice about creating and using crawlers.

 Chapter 8 — Configuration and Tuning
This chapter describes the configuration files, and some tools for tuning performance.

 Chapter 9 — Backup and Maintenance of Contact Search Indexes
This chapter describes best practices for backup and maintenance of the indexes used
for contact search.

 Chapter 10 — Appendix
This chapter contains advice about upgrading existing solutions to using Items Buckets,
as well as some other tips and tricks.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 7 of 142

1.1 Introduction

Item Buckets is a system that lets you store millions of content items in one container. You can convert
individual items in the content tree into item buckets that can contain any number of subitems. These
subitems are not listed in the content tree and do not have a direct parent-child relationship with the item
bucket item.

You can search in each item bucket to find the content items that you are interested in.

Item buckets allow content authors to:

 Hide content items in the content tree.

 Use the search functionality to retrieve content items from the item buckets.

 Use the search functionality to set the value of fields in content items.

 Alter the parent-child relationship of content items.

Important
Converting content items into item buckets removes the hierarchy of that content and can cause your
code not to work as intended if the code depends on the hierarchical structure. For more information
about coding and item buckets, see the chapter Developing with Item Buckets.

You don’t have to use the item buckets functionality when you install Sitecore. The buckets system only
starts to work when you create the first item bucket.

In an item bucket, you can create a hybrid structure that consists of content items that are hidden in the
item bucket and content items that are structured in the normal way.

You can also define a sub-structure within an item bucket.

1.1.1 Backwards Compatibility

The old Sitecore search API — Sitecore.Search — has been retained for backwards compatibility.

We recommend that you use the new search API — Sitecore.ContentSearch.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 8 of 142

1.2 Fundamental Concepts

This section explains some of the basic concepts used in item buckets.

1.2.1 Item Bucket

An item bucket is a repository in the content tree that can store other content items. The difference
between an item bucket and a regular container in the content tree is that an item bucket can store a
theoretically unlimited amount of items without displaying them in the content tree.

The items in an item bucket are by default hidden in the content tree, which is why you no longer can use
the content tree to navigate to and select the items. Instead you can search for and open the items in an
item bucket from the Sitecore search engine available from every item in the Content Editor or from the
ribbon in the Page Editor.

Furthermore, the parent to child relationship between the content items in an item bucket is completely
removed and instead the items are automatically organized into folders. By default, the items are
organized according to the date and time of when the item was created, but this can be configured to use
different behavior, such as the item’s globally unique identifier (GUID).

To provide the content author with a helpful overview of which containers are item buckets and which are
normal containers, an item bucket icon can be enabled in the Quick Action Bar to the left of the content
tree in the Content Editor. Additionally, if you expand an item bucket in the content tree you will also see a
visible cue, that the container is an item bucket. If the items in an item bucket are hidden, a small
notification tells you that there are hidden items in the container.

Using item bucket has many advantages, including:

 Automatically organizing all the content items in an item bucket in a logical format, so that the
performance of the search engine increases.

 A single item bucket can contain millions of content items without slowing down the UI or
congesting the content tree.

 You can have as many buckets as you want. This is useful if you want to split up your buckets
into logical containers for example one for products and one for articles.

1.2.2 Why Use an Item Bucket?

An item bucket addresses the problem of managing large numbers of items within the content tree,
retrieving them, and working with them in a speedy and efficient manner. To decide if you should turn an
item into an item bucket, and in-turn, hide all its descendants, you must ask yourself if you care about the
structure of the data that is stored in the item bucket.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 9 of 142

For example, if you have items within the content tree that contain a large number of sub items such as
products, media, or tags, it may be an advantage to turn these items into item buckets and thereby
remove the need for hierarchically managing the content.

Important
Note that a connection between two or more items does not necessarily need to be hierarchically.

Then when you want to work with a particular item placed in an item bucket, you can search for it and
open it. The advanced Sitecore search functionality allows you to search among all items in Sitecore
using for example free text, search filters, or facets, that makes it easier for you to find exactly what you
need.

Viewing Hidden Items

Even when the bucketable items are hidden in the item bucket you have the option to view the items
anyway by selecting the Bucket check box in the Content Editor, on the View tab, in the View group.

However, we recommend that you clear the Buckets check box when working with item buckets. This will
prevent the system from unnecessarily loading all the items in the content tree. Remember that you can
use the search tab to find and work with the hidden content items.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 10 of 142

Chapter 2

Configuring Item Buckets

This chapter describes how to convert a content item into an item bucket that can contain
thousands of items.

This chapter contains the following sections:

 Creating an Item Bucket

 Making Content Items Bucketable

 Managing Item Buckets

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 11 of 142

2.1 Creating an Item Bucket

Content items that are stored in item buckets are just like any other content items — you can create, edit,
and delete them.

When you convert a content item that already exists into an item bucket, the item bucket organizes and
hides all its descendants if they are based on templates that are bucketable or if the item itself is set as
bucketable. Depending on how many items it contains, it can take a considerable amount of time to
organize the items after converting the item into an item bucket. A progress bar appears displaying a
running tally of the items being processed. During the bucketing process it is possible to cancel the
construction of the item bucket, in case you regret before the organizing of the items are complete.

You can create an item bucket from a new content item or convert an existing item structure into an item
bucket.

To create an item bucket:

1. In the Content Editor, in the content tree, create a content item, for example a folder, and give it
a suitable name.

2. In the content tree, select the content item and then on the Home tab, click Edit to lock the item.

3. Click the Configure tab and then in the Buckets group, click Bucket to convert the new item into
an item bucket.

When you convert a content item into an item bucket, a new Search tab appears in the right-hand pane.

You use this tab to search for content items in the item bucket.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 12 of 142

2.1.1 Item bucket Icon in the Quick Actions Bar

In the Quick Action Bar you can enable an item buckets icon, to indicate which content items in the
content tree are item buckets.

To display the item buckets icon, right-click the quick action bar left of the content tree, and select Item
Buckets.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 13 of 142

2.2 Making Content Items Bucketable

When you set up an item bucket, you must ensure that the content items that you want to store in the
item bucket are bucketable.

To make a content item bucketable, you can:

 Make the individual content item bucketable.

 Make the template standard values that it is based on bucketable.

Content items that are bucketable are hidden and searchable when they are stored in an item bucket.

If the content items are based on a template that is not bucketable, the system will not automatically
structure and hide the content items for you. Instead, the content items are treated like normal items in
the content tree.

To make a content item bucketable:

1. In the Content Editor, on the View tab, in the View group, select the Standard Fields check
box.

2. Select the content item that you want to make bucketable.

3. In the right hand pane, click the Content tab and scroll down and expand the Item Buckets
section.

4. Select the Bucketable check mark.

5. Save your changes.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 14 of 142

After you have made the content item bucketable, you must synchronize the item bucket and update its
structure. For more information about synchronizing an item bucket, see the section Synchronizing an
Item Bucket.

2.2.1 Making a Template Bucketable

 If you have a large number of similar content items that you want to hide in an item bucket, it makes
more sense to make the template that they are based on bucketable.

To make a template bucketable:

1. In the Content Editor, on the View tab, in the View group, select the Standard Fields check box.

2. Select one of the content items that you want to make bucketable.

3. In the right-hand pane, on the Content tab, expand the Quick Info section.

4. Click the template link and the template that this content item is based on opens in the Template
Manager.

5. In the Template Manager, in the content tree, expand the template in question and select the
_Standard Values item.

6. In the right hand pane, click the Content tab.

7. Scroll down and expand the Item Buckets section.

8. Select the check box for Bucketable - Can be stored as an unstructured item in an item
bucket.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 15 of 142

9. Save your changes.

After you have made the template bucketable, you must synchronize every item bucket that
contains content items that are based on this bucketable container. This updates their structure
and hides the bucketable items.

10. In the Content Editor, select the item bucket folder that contains items based on this template.

11. On the Configure tab, in the Buckets group, click Sync.

If you create any content items based on this template in another folder that is not an item bucket, these
items are treated like normal content items and are displayed in the content tree.

Changing a Bucketable Template to a Non-Bucketable Template

If you change the template of an item in an item bucket from bucketable to non-bucketable, synchronizing
the item bucket will not make the item visible in the item bucket. To achieve this, you must revert the item
bucket to a normal container and then convert it into an item bucket again.

2.2.2 Changing the Bucketable Settings

You can change the setting of the Bucketable field of an item and the template that the item is based on.

To change the Bucketable setting for the current item:

1. In the Content Editor, on the Configure tab, in the Bucketable Settings group, select the
Current Item check box:

2. Sitecore shows a confirmation dialog if this makes the setting different from the Bucketable
setting of template that the item is based on:

If an item has a different Bucketable setting than the template of the item, the Bucketable Settings group
has a Reset button:

When you click this button, the Bucketable setting of the item is reset so that it is the same as the setting
in the template of the item.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 16 of 142

To change the Bucketable setting for the template of the current item:

1. In the Content Editor, on the Configure tab, in the Bucketable Settings group, select the News
Article Template check box:

“News Article Template” is the actual name of the template, and it will probably be different for
other items than the item in this example.

2. Sitecore shows a confirmation dialog before making changes:

When you select this setting for the template, the setting of the current item is also changed.

2.2.3 Synchronizing an Item Bucket

When you create an item bucket, you can store both bucketable unstructured content items and normal
structured content items in it. If you decide to convert some of the normal content items into bucketable
items or make the templates that they are based on bucketable, you should always synchronize the item
bucket to make sure all the items are organized correctly.

You should synchronize an item bucket when you make items bucketable.

To synchronize an item bucket:

1. In the content tree, select the item bucket whose structure you want to update.

2. On the Configure tab, in the Buckets group, click Sync.

The structure of the contents in the item bucket is now updated:

o The bucketable items are organized and hidden.

o All the content items that are based on bucketable templates are organized and hidden.

o The normal content items remain visible.

You can use the Sitecore search engine to search for all the content items in the item bucket.

2.2.4 Locking Parent/Child Relationships

In some cases, you may want to lock the relationship between a parent item and its child items even
though both are stored in an item bucket. You might need to ensure that the child items are always stored
below the parent item, for example, you might want to lock the parent to child relationship between news
articles and comments.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 17 of 142

To lock the parent to child relationship:

1. In the Template Manager, navigate to the template for the parent item. In this case it would be
the news article template.

2. Expand the template in the Content Tree, and select the _Standard Values item.

3. In the right-hand pane, scroll down to the Item Buckets section.

4. Select the Lock Child Relationship check box.

If you create a content item that is a child of a content item based on this template, it is not automatically
structured in the item bucket. Instead it retains its relationship with the parent item. For example,
comments will always be children of the news article that they refer to.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 18 of 142

2.3 Managing Item Buckets

There are a number of settings and tools that you can use to configure the way item buckets works on
your installation.

These can build the item buckets indexes, specify a number of search settings, set up default search
queries, and create facets among other things.

2.3.1 Building the Search Indexes

You can build the search indexes from the Control Panel.

You use the Indexing section in the control panel to:

 Generate a Solr schema.xml file — if you are using SOLR as your provider.

 Rebuild search indexes — only supporting the indexes in Sitecore.ContentSearch.

2.3.2 Clearing the HTML Cache

It is possible to have Sitecore clear the HTML cache for presentation components (such as renderings or
sublayouts) each time the search index has been updated. This is useful for components that retrieve
items or render information from a search index.

This is how to enable it:

1. Select an item in the Content Editor.

2. On the Presentation tab, click Details.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 19 of 142

3. Select a control in the Layout Details dialog box and click it:

4. In the Caching section, select the Clear on Index Update option.

2.3.3 Item Bucket Settings

There are a number of settings that you use to configure how search works with item buckets. These

settings are stored at /sitecore/system/Settings/Buckets.

You can use these settings to define various features including:

 Changing the keyboard shortcut for searching.

 Defining the facets that are available on your website.

 Specifying the way that an item opens when you click it in the search results.

 Specifying the way Sitecore resolves bucket folder paths.

 Specifying the number of items displayed on a search results page.

You can also specify which fields are used when you perform a tag search. To specify which fields are
used for tag searches, in the Item Buckets Settings item, you must ensure that the Tag Parent field
points to the item in the content tree that contains all your tags — the tag repository.

You can then create a field called Tags in any template and set the type to multi-list.

Bucket Folder Paths

The BucketConfiguration.BucketFolderPath setting defines the format Sitecore uses for

creating folder trees for item buckets. The default setting creates a structure based on dates.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 20 of 142

You can change this by creating rules in the Item Buckets Settings item. The field is called Rules for
Resolving the Bucket Folder Path. Click Edit Rule to open the Rule Set Editor:

You select a condition (such as “where the bucket item template is…” and an action. The action is the
specification of the bucket folder path. Only bucket items that match the condition will use the action. You
can create any number of rules. Sitecore will use the format defined by BucketFolderPath for items that
do not match any condition.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 21 of 142

Chapter 3

Searching

Once you start using item buckets, you will soon have buckets that contain hundreds if
not thousands of content items. This underlines the need for search functionality that can
help content authors and developers find the individual content items that they need to
edit and update.

To this end, Sitecore has implemented a new search interface.

This chapter describes how to search for content items.

This chapter contains the following sections:

 Configuring Search

 Using Facets to Refine your Search

 Using Search Filters

 Security and Item Buckets

 Using a Custom Class to Create a Query

 Using Item Buckets with the Data Source of a Control

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 22 of 142

3.1 Configuring Search

After you have created an item bucket and specified which content items can be stored in it, you can
configure how search will work.

You can specify many aspects of how search works including which:

 Facets you can use to filter your search results.

 Fields are displayed in the search results.

 Image is displayed with each content item in the search results.

 Text is displayed with each content item in the search results.

You can also specify a default query that is run every time you open a search pane.

3.1.1 Specifying which Fields are Displayed in the Search Results

You can specify which fields are displayed in the search results when you search an item bucket.

To specify that a field should be displayed in the search results:

1. Open the template in the Template Manager.

2. Click the View tab and then in the View group, select the Standard Fields check box.

3. In the content tree, expand the template and select the field that you want to be displayed in the
search results.

4. On the Content tab, scroll down to the Search Results section.

5. In the Search Results section, select the Is Displayed in Search Results check box.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 23 of 142

3.1.2 Specifying a Search Result Image and Search Result Text

When you search in an item bucket, Sitecore displays an image with each content item that is listed in the
search results. The Search tab displays the template icon by default.

You can specify which of the image fields in the template should be shown in the search results.

To specify which image field should be displayed in the search result:

1. Open the template in the Template Manager.

2. Click the View tab and then in the View group, select the Standard Fields check box.

3. In the content tree, navigate to the template and expand it.

4. Select the image field that you want to appear in the search results.

5. On the Content tab, scroll down to the Search Results section.

6. In the Item Buckets section, select the Is Displayed in Search Results check box.

The image that is displayed in this field is shown in the search results.

You can also use this check box to specify which text field should be displayed in the search results.

These values are cached, so that this search does not have to be run again every time you run a search.
It is therefore required that you clear the cache after you have made changes for this by resetting the

cache in /sitecore/admin/cache.aspx.

3.1.3 Displaying Media Library Images in Search Results

The entire content tree can work with item buckets, including the Media Library. If you need to search for
media items and want the images to appear in the search results, you must make sure that the Is
Displayed in Search Results check box is selected in:

 /sitecore/templates/System/Media/Versioned/File/Media/Blob - for Versioned

media item

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 24 of 142

 /sitecore/templates/System/Media/Unversioned/File/Media/Blob - for

Unversioned media item

After you make these changes, you must use /sitecore/admin/cache.aspx to clear the cache.

3.1.4 Viewing the Search Results

When you convert a content item into an item bucket, it automatically inherits the new search interface.

To search for an item in the item bucket, enter a search term that you think the item contains, then press
ENTER and a list of search results is displayed. You can return all the content items by typing“*” and
pressing ENTER.

You can use the buttons on the right to specify how you want the results displayed.

Different Ways to Display Search Results

Sitecore 7.5 comes with several different views that you can use to display search results.

The three default views are:

 List — The default view. Items are shown in a plain list.

 Grid — Item information is shown in rectangular cells laid out in rows containing several columns
of cells.

 Image — Item images are shown in a grid. Obviously, if an item is an image, this image is shown.
Other items are represented by their icons.

You can also use the following views, but you must enable them first:

 ID — The ID View is useful to developers and administrator. It can be used as a quick way of
assigning multiple values to a list. When you click the ID view for a search, you get a list of item
IDs (GUIDs) that you can copy and paste into a multilist field, for example.

 Lock — Similar to the Grid View, but also shows whether the items in the result set are locked or
not.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 25 of 142

 Media — Similar to image, but for media such as videos.

 Preview — Show a preview of each item in the result – that is: what this item looks like in context
on the website.

 Table — Show the items in the result as a table.

 Tag — This view orders items in the result by tags.

To enable another view:

1. In the Content Editor, navigate to /sitecore/system/settings/Buckets/Views and

select the view that you want to enable.

2. In the View Details section, select the Enabled check box.

3. If you want this to be the default view, select the Default check box.
The default view must be enabled.

4. You can now select views for an item by selecting the item in the Content Editor, and then scroll
down to Item Buckets section on the Content tab. Here you can select the views that should be
abled for this item.

3.1.5 Exclude Current Item from Search

When you search within an item bucket, the item you search from — the item that is selected when the
search starts — is included is the search results by default — when it matches the search.

To exclude the current item from the search results, in Sitecore.Buckets.config file, set the

BucketConfiguration.ExcludeContextItemFromResult setting to true.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 26 of 142

3.2 Using Facets to Refine your Search

After you have run a search, you can use facets to filter the results into a smaller and more concise list.

A facet is a characteristic or a way in which a content item can be viewed or classified. For example, you
can classify a content item in terms of the language that it is in, the date on which it was created, or the
template that is based on.

When you run a search query, a facet search is also performed. The facets are listed on the right of the
search pane. You can use these facets to filter the search results.

To filter your query, click one of the facet links. For example, in the previous image, the facets show that
for the five results returned by this search, they were all based on the news article template, they are all in
English, four were created by sitecoreadmin and one by sitecoreaudrey, and they were created at a
number of different times.

Sitecore uses the following facets:

Facet Description

Author Groups the results according to the authors who created the
items.

Author Template Groups the results according to a combination of author and
template.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 27 of 142

Facet Description

Bucket Groups the results according to the buckets that they are
stored in.

Creation Date & Author Groups the results according to the date items were created
and who authored them.

Date Range Groups the results in three categories — created within a
day, a week, or a month.

File Size Groups the results according to the size of the file.

File Type Groups the results according to file type.

Image Dimensions Groups the results according to the dimensions of the images
they contain.

In Workflow Groups the results according to the workflow they are in.

Language Groups the results according to language.

Language Template Groups the results according to the languages the template
are in.

Location Searches all the bucket locations to see which buckets the
results are stored in.

Owner Groups the results according to their owner.

Tags Groups the results according to their tags.

Template Groups the results according to templates.

Template Author Groups the results according to a combination of template
and author.

3.2.1 Language Search

The search functionality supports many different languages including Chinese, Arabic, and non-UTF
based characters.

3.2.2 Complex Searches

Sitecore supports complex searches such as wildcard, replacement, and exact text searches.

Examples that are supported:

 Tim*

 *Tim

 *Tim*

 T*m

 T?m

 ?im

 Ti?e

 Ti*e

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 28 of 142

 “Tim Tim”

To run one of these searches, enter the text in the search box.

If you want to search

Searching within a Range

Sitecore also supports range searches.

Examples that are supported:

 price:[400 TO 500] – use square brackets to include the endpoints in the range.

 price:{ 400 TO 500} – use curly brackets to exclude the endpoints from the range.

 price:[400 TO 500} – square and curly brackets can be mixed. In this example, 400 is included
in the range, while 500 is excluded.

 title:[Algeria TO Bahrain]

Combining, and, or, and not

Sitecore also supports complex text searches.

For any of the filters you use, you can click on the icon for that filter and it will toggle between that filter
using MUST, MUST NOT or SHOULD logic.

3.2.3 Opening Items in the Search Results

To open an item that appears in the search results, click the image, the title, or any of the links in the
results and the item opens in a new tab in the Content Editor.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 29 of 142

You can edit this item in the new tab. You can open as many extra tabs as you need.

This allows you to open multiple content items at the same time. These content items can come from
multiple searches. You can also have multiple search tabs open at the same time. Be aware that search
tabs and content tabs are reloaded when you select a different item in the content tree.

To open another search tab, in the editing pane, click the tab.

If you select another item in the content tree and open it, all the open tabs persist — but the search
results are lost.

When you click a content item in the search results, it opens in a new tab in the Content Editor by default.
You can configure the way that search results open in the Item Bucket Settings item —

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 30 of 142

/sitecore/System/Settings/Buckets/Item Buckets Settings

The Show Search Results In field contains the following options:

Option Description

New Content Editor The content item opens in a new instance of the Content
Editor.

New Tab The content item opens in a new tab.

New Tab Not Selected The content item opens in a new tab. However this tab is
not the current tab.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 31 of 142

3.3 Using Search Filters

You can insert filters into a search string to narrow down the results.

To use a search filter, enter the reserved filter keyword and Sitecore either auto-suggests a filter or
prompts you to enter a date or a text.

The following filters are supported:

Template Filter

Version Filter

Language Filter

Start and End Date Filter

When you work with the calendar, you can use the following keyboard shortcuts:

Keyboard Shortcut Description

PAGE UP & PAGE DOWN Previous month, next month

CTRL+PAGE UP/DOWN Previous year, next year

CTRL+HOME Current month or open when closed

CTRL+LEFT/RIGHT Previous day, next day

CTRL+UP/DOWN Previous week, next week

ENTER Accept the selected date

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 32 of 142

Keyboard Shortcut Description

CTRL+END Close and remove the date

ESC Close the calendar without making a selection

Note
Depending on browser, browser version, and operating system, these shortcuts may not always be
available.

File Type Filter

Author Filter

You must enter at least 2 characters before the system makes any suggestions.

Tag Filter

Site Filter

Advanced Text

When the text: prefix is used, the words (if more than one) are split into individual search terms. When
text: is not used and there is more than one word, they are turned into one search term — as if they were
inside a pair of quotation marks.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 33 of 142

Combining Filters

You can combine various filters by entering them consecutively — they are ORed:

3.3.1 Auto-Organizing

If you enter too many terms in the drop-down box, the search filters are shrunk automatically.

3.3.2 Paging Results

The search results are displayed in lists of 20 items per page by default, and the number of pages is
displayed at the bottom of the tab.

To specify the number of items shown per page, in the Sitecore.Buckets.config file, change the

value of the BucketConfiguration.DefaultNumberOfResultsPerPage setting.

If more than 10 pages are listed, you can move on to the next 10.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 34 of 142

3.3.3 Predefined Search Options

When you click the drop-down arrow on the left hand side of the search field, a list of categories appears.
You can expand each category to see a more detailed list of search options.

You can add more search options to this list. The search options are stored at:

/sitecore/system/Settings/Buckets/Settings/Search Box Dropdown.

The search categories are:

Category Description

My Recent Searches A list of your recent searches.

Recently Modified A list of the items that have been modified recently.

Recently Created A list of the items that have been created recently.

Recent Tabs A list of the tabs that you have opened recently.

Search Filters A list of filters that you can use in your searches.
These filters are stored in
/sitecore/system/Settings/Buckets/Search

Types/. It is recommended that you store custom

search filters in a subfolder called User Defined.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 35 of 142

Category Description

Search Operations A list of operations that you can perform on the search
results.
This is a powerful feature that lets you run any
operation on the search results.
You can add more operations to this list.

The available search operations are:

Operation Description

Add Tag Add a single tag to many items at once.

Search and Replace Replace all results text, link etc. values.

Clone Results to Clone all items that were found (a dialog will open)

Delete Results Delete all items that were found (you will not be asked
to confirm, so be careful)

Publish Items Publish the items that were found

Apply Campaigns Goals Event
to All Items

(Only if DMS installed)

Apply Presentation to All Items Apply Presentation to many items

Copy to Datasource Query Copy this search that gave this result in a way so that
it can be used as a datasource query

Apply Security Rule Apply a security setting to many items.

Copy Results To Copy all items found (a dialog will open)

Move Results To Move all items found (a dialog will open)

Serialize Items This will save the search results in a file in a subfolder

called serialization under the Data folder in the

root of the web site.

Apply Profile Score to All Items Add a profile score to many items

3.3.4 Default Search Query

On every item bucket, you can specify a default query that runs when you open the Search tab and
displays a list of items that match that query.

To define a default search query:

1. In the content tree, locate the item bucket that you want to define a default query for:

2. On the Content tab, expand the Item Buckets section.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 36 of 142

3. In the Default Bucket Query field, enter a query, for example text:new.

This query finds all the content items in this item bucket that contain the word new and displays
them on the Search tab every time you open it.

On the Search tab, you can remove this default query if you want to perform a different search. The
default query reappears the next time you open the Search tab for this item bucket.

3.3.5 Persistent Search Query

You can also add a query to the search field that you cannot remove and is always a part of your search.
This query cannot be deleted in the Search tab.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 37 of 142

3.4 Security and Item Buckets

If you need to restrict the ability of a user or role to convert a content item into an item bucket or to
convert an item bucket back into a normal item, you can use the Security Editor to change their access
rights.

The Sitecore security system contains two access rights to support item buckets:

 Create Bucket

 Revert Bucket

If these security settings are not immediately available in the Security Editor, in the Security group, click
Columns and then in the Columns dialog box, select Create Bucket and Revert Bucket.

Tip
We recommend that you use the Sitecore security system to prevent particular users from performing
certain operations. For example, you do not want someone to accidentally delete a lot of items.

Locking

You must lock a content item before you can convert it into an item bucket or turn an item bucket into an
ordinary content item.

To minimize the possibility of accidentally creating an item bucket or making a template bucketable, all
users but administrators must place a lock on the item before they can place it in a bucket.

3.4.1 Identification and Authentication Modifications

Item buckets drastically improves the way that identification and authentication — IA — is managed on a
website. Items that are stored in a bucket no longer maintain a child to parent relationship and the item
bucket is simply a pool of items.

Item buckets support all the normal IA operations including:

 Copy To

 Copy From

 Move To

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 38 of 142

 Move From

 Clone To

 Clone From

 Delete

If you copy or move a content item that is based on a bucketable template into an item bucket, the item is
placed in the bucket and automatically organized in the bucket structure.

If you copy or move a content item that is not based on a bucketable template into an item bucket, it is
placed in the bucket and is treated like a normal content item.

You can also:

 Drag a copy into an item bucket.

 Drag a copy out of an item bucket.

 Drag an item to move it into an item bucket.

 Drag an item to move it out of an item bucket.

If you delete an item bucket, a message appears informing you that when you delete an item bucket you
also delete the content items that are stored in it. You can restore these content items from the recycle
bin by restoring the item bucket. If you want to see the content items that are in the item bucket, revert the
bucket.

Note
After you restore an item bucket from the Recycle Bin, you must rebuild the search index.

Keyboard Shortcuts

Here is a list of the keyboard shortcuts that you can use with item buckets. Note, however, that there are
many possible combinations of browsers, browser versions, and operating systems, and all shortcuts may
not always work.

Shortcut Description

CTRL + SHIFT + B Converts a content item into an item bucket. You must
lock the item first.

CTRL + SHIFT + D Converts an item bucket into a content item. You must
lock the item first.

CTRL + X Clears the text box.

CTRL + SHIFT + S Opens a new search tab on the selected content item.
This shortcut does not convert the item into an item
bucket.

CTRL + SHIFT + A Selects the closest item bucket ancestor of the current
item and adds a search tab to it.

Space Bar Scrolls down the results when the search box is not
selected.

CTRL + Space Bar Displays the dropdown options when the search box is
selected.

ESC This hides the drop-down list if it is shown.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 39 of 142

Shortcut Description

CTRL + B Shifts the focus to the text box if it is outside the
textbox.

SHIFT + Number Runs the search in a particular view. 1 will run the first,
2, the second, and so on.

1-9 The numeric characters move focus to the
corresponding page of the search results.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 40 of 142

3.5 Using a Custom Class to Create a Query

To quickly query a field, you can use a compiled class that returns an Item[] as the source of your

fields. Start your query with the word code and then enter the .class, assembly namespace as the

source field.

You do this by implementing the IDataSource interface.

code:Sitecore.Namespace.Class, Assembly

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 41 of 142

3.6 Using Item Buckets with the Data Source of a Control

If all the items in a bucket are hidden and cannot be selected, you can choose the data source for a
control by specifying a search query. This section describes the syntax for setting the data source to run a
query in an item bucket.

Types of queries:

 Template

 Version

 Language

 Creation Start and End Date

 File Type

 Author

 Tag (Facet)

 Site

 Advanced Text

 ID

 Custom

You must place the queries in a semicolon separated list. For example, to search for all the Nicam
products, you could specify:

+text:Nicam;template:<Product Template ID>;

This is passed to your control as a string and you can then use UIFilters helper class to create a

list of items. Please refer to the Sample Datasource Sublayout in the Layouts folder to see how to use
this.

Tips

Sitecore runs the query in the context of its location. For example, if you run a query on a control,
Sitecore starts the query from the context item and works through all its descendants. If you need to
perform a global search or search in another part of the content tree, you can pass the location parameter
to the query for the data source.

For example, the following query looks for all the items that are tagged Nicam and that exist under the

/sitecore/content/home node — the ID of the home item is shown:

tag:{TagId};location:{110D559F-DEA5-42EA-9C1C-8A5DF7E70EF9};

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 42 of 142

To paste queries, search for content in the normal way. Once you have a filter, click the drop down menu
and in the Search Operations section, click Copy to Datasource Query.

When you configure your presentation data source, you can paste the query into a Data Source field.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 43 of 142

Chapter 4

Sitecore DMS and Item Buckets

As you work with Sitecore, you may need to link to an item that is stored in an item
bucket. For example, you may need to insert a link to a bucketable item or use a
bucketable item as a variation when you are creating an MV test. To help you locate
items in these situations, Sitecore provides search functionality in the appropriate dialog
boxes in the Page Editor and in the Content Editor.

This chapter contains the following sections:

 Personalization and MV Tests

 Inserting and Managing Links

 Tagging Associations across Many Items

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 44 of 142

4.1 Personalization and MV Tests

When you set up a personalization rule or create an MV test, you must specify the data source for each
variant in the test.

For example, when you create an MV test, you must select the content items that should be used as
variants in the test. Selecting a normal content item is straightforward — you browse the content tree and
select the item in question. However, this is not so simple when you want to use a content item that is
stored and hidden in an item bucket. A search tab has therefore been added to the Select the
Associated Content dialog box to help you find the items that you need.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 45 of 142

4.1.1 Setting the Data Source

When you specify the data source for a control, you can also use the new search functionality to either
set an individual item or a list of items as the data source.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 46 of 142

4.2 Inserting and Managing Links

This section describes how to insert and manage links to items that are stored in item buckets.

4.2.1 Inserting a Link in the Rich Text Editor

When you edit content items in the Page Editor or in the Content Editor, you often use the Rich Text
Editor.

To insert a link into a rich text field:

1. In the Content Editor, open the content item that you want to edit.

2. Scroll down to the rich text field that you want to edit and click Show Editor.

3. In the Rich Text Editor, select the text that you want to use as a link.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 47 of 142

4. Click the Insert Sitecore Link button and an Insert a Link dialog box appears. This dialog box
contains a Search tab.

5. Enter the search terms that you want to use.

6. In the search results, click the item that you want to link to and the link to this item is inserted into
the text.

If you want to insert an image that is stored in an item bucket into a rich text field, the Insert Media Item
dialog box also contains a Search tab that you can use to find the image.

Inserting a General Link with Search

The Item Buckets functionality has also introduced some new field types. One of these is the General
Link with Search field.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 48 of 142

To insert a link into a General Link with Search field, click Search for a Link and the Internal Link dialog
box opens.

For more information about the bucket link field types, see the chapter Developing with Item Buckets.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 49 of 142

4.3 Tagging Associations across Many Items

Because the parent to child relationship is removed, content items that are stored in an item bucket need
a way to connect to other content items. The item buckets functionality supports a semantic tagging
system which allows you to tag associations on every item.

To support item tagging, add a field to the template and call it, for example, tags. This field should be a
Multilist with Search field. To comply with best practices, we recommend that you add this field to a base
template. If you want to tag every item in the content tree, add this field to the standard template.

For example, if you want to tag media items, set the tags field on the File template and set the source of
the field type to:

StartSearchLocation={Tag Repository ID} } (if you are using the sharded

approach to indexes then you can add) &IndexName=itembuckets_sitecore

This is where semantics come in. You can add any tag to any content item. If you create a tag called
Work in Progress, you can tag all of the content items that are not yet ready for publication as Work in
Progress. You can then search for all items that are marked Work in Progress.

4.3.1 Creating a Tag

The tags are stored in the /sitecore/system/settings/buckets/tag repositories folder. You

can create as many tags in this folder as you want. These tags can be based on any template that you
think is appropriate. You can use these items to tag the content items that make up your website.

Sitecore searches on the tag field of an item by default. If you add your own field and would like it to also
work with the tag repository, you must add this new field as shown below. You must also go through all

the config files and add your field to the indexes so that it is aggregated into the _tags field in the index.

<fields hint="raw:AddCustomField">

 <field luceneName="_tags" storageType="no" indexType="tokenized">semantics</field>

 <field luceneName="_tags" storageType="no" indexType="tokenized">mycustomtaggingfield</field>

</fields>

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 50 of 142

Chapter 5

Developing with Item Buckets

This chapter describes how to use develop with item buckets, and how to the Sitecore
API to work with item buckets.

This chapter contains the following sections:

 New Field Types

 Creating a Tag Repository

 LINQ to Sitecore

 Adding a New Search Provider

 Linq to Provider

 Searching

 Rule-based Boosting

 Multiple Index Support

 Adding a New View

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 51 of 142

5.1 New Field Types

There are some new field types available that have been extended so that they can support vast amounts
of content without degrading performance.

Sitecore contains a multilist field that can scale to hundreds of items. However, performance starts to
degrade when there are more than a hundred items in the field.

Note the following about the parameters in the source field:

StartSearchLocation: This is the location where the search will start from (the place in the content tree).

TemplateFilter: You can specify a Template ID or a pipe delimited list of Template ID and it will filter the
result to only those templates.

PageSize: You can set a number, and the result of the search will be returned this many items at a time.

Multilist with Search Field

A Multilist with Search field has no limitation and can scale to thousands of items. We recommend that
you use a Multilist with Search field to list items that are stored in an item bucket.

Use this field to attach a search query to a multilist field and display the search results as selectable
items. For example, if you want a multilist of all the product items, you can set the source field of the field

to TemplateFilter=”Product ID” and it returns the items in the list.

You can use optional filters as in this example:

StartSearchLocation=<GUID>&Filter=text:jim

You can specify that it is possible for users to change the starting location dynamically. You do this by
entering this in the Source field:

 EnableSetNewStartLocation=True

These queries populate the list and you can then select the items from the list. You can also use a search
filter to filter the list even more.

For more information about the search filters that are available, see the section Using Search Filters.

You can set a field to sort the list on by adding SortField=_name to the Source property of the field.

You can add a sorting direction like this: SortField=_name[asc|desc]. If you specify a SortField

without a sorting direction, Sitecore uses asc sorting.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 52 of 142

General Link with Search Field

Use this field to create a link to an item that is stored in an item bucket.

Treelist with Search Field

Treelist with Search is a new field type that allows you to reference items in much the same way as a
multilist field. However, unlike the multilist field, you can search within this field. In addition, you can enter
a GUID to determine the start location of the search.

This will override the default filter that has been set on the template. The text field will search for the key
item in this field, including any filters applied.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 53 of 142

5.2 Creating a Tag Repository

To create a tag repository and to enable the tag filter in searches, you must create a new class in your

Visual Studio solution and implement the ITagRepository interface.

You must implement methods that return All Tags, Single Tags, First Tag, Tags by Name, Tags by Value.

You can have as many tag repositories as you need and they can also come from different sources. After
you have written your code, you must create a tag repository item in the content tree, under

/sitecore/system/Modules/Item Buckets/Tag Repositories. You must point to the class

you just compiled with the namespace.class assembly syntax.

Sitecore comes with a built-in tag repository.

To enable the built-in tag repository on your website:

1. In any template, create a field called Tags. This must be a multilist or multilist woith search field.

2. Navigate to the /sitecore/system/Settings/Buckets/Item Buckets Settings item.

3. In the Tag Parent field, point to the parent item that stores all the tags.

The parent item that stores all the tags can also be an item bucket. The parent item that stores all
the tags is a suitable candidate for an item bucket.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 54 of 142

5.3 LINQ to Sitecore

 Sort by standard string, integer, float, or any type that implements IComparable

The Linq to Items layer does not implement all of IQueryable. The following methods have been
implemented:

 All

 Any

 Between — with an extra overload for including or excluding the start and end ranges.

 Boost — makes this part of the query more important than the other parts.

 Cast — you can use this instead of Select.

 Contains

 Count

 ElementAt

 EndsWith

 Equal

 Facets — an extension that fetches the facets of predicates.

 First

 FirstOrDefault

 Last

 LastOrDefault

 Min

 Max

 Match — an extension for running regular expression queries.

 OrderBy

 OrderByDescending

 Select

 Single

 SingleOrDefault

 Skip

 Reverse

 Take

 ToList()

 ToLookUp()

 ToDictionary()

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 55 of 142

 Page — an extension that does Skip and Take automatically for you.

 StartsWith

Not supported

 Join

 GroupBy

 GroupByJoin

 Intersect

 Sum

 Average

 Concat

 TakeWhile

 SkipWhile

 Union

Lucene
Syntax Linq to Sitecore

Terms &
Phrases

"test" or "hello
dolly"

c.Where("test") or

c.Where("hello dolly") or

c.Where("test" || “hello dolly")

Fields title:"The Right way"

and

text:”go”

c.Title == "The Right way" or

c.Text == "go" or

c.Equals(“go”)

WildCard *amber*
c.ContactName.Contains ("amber")

Prefix amber* *amber c.ContactName.StartsWith("amber")

or c.ContactName.EndsWith("amber")

Fuzzy roam~ or roam~0.8 c.ContactName.Like("roam") or

c.ContactName.Like("roam", 0.8)

Proximity "jakarta apache"~10
c.ContactName.Like("jakarta

apache", 10)

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 56 of 142

Inclusive

Range

mod_date:[20020101 TO

20030101]

c.ModifiedDate.Between("20020101",

"20030101", Inclusion.Both)

Exclusive

Range

title:{Aida TO

Carmen}

c.Title.Between("Aida", "Carmen",

Inclusion.None)

Boosting jakarta^4 apache
c.Title.Equals("jakarta".Boost(4))

|| c.Title.Equals(“apache”)

Boolean

Or

"jakarta apache" OR
jakarta

where c.Title.Equals("jakarta

apache") || c.Equals("jakarta")

Boolean

And

"jakarta apache" AND

"Apache Lucene"

where c.Equals("jakarta apache")

&& c.Equals("Apache Lucene")

Boolean

Not

"jakarta apache" NOT

"Apache Lucene"

where c.Equals("jakarta apache")

&& !c.Equals("Apache Lucene")

Grouping (jakarta OR apache)

AND website

where (c.Title == "jakarta" ||

c.Title == "apache") && (c.Title

== "website")

Sitecore supports two search providers:

 Lucene.net

 SOLR — shipped separately

The Linq layer is an abstract layer that converts common queries to something that a search provider
understands.

For example, with a query like

var query = context.GetQueryable<Product>.Where(item => item.Name == “Sample

Item”)

the Linq layer resolves it to something that SOLR or Lucene.net understands. If you implement a new
search provider, this provider can also understand the query. Although the Linq layer converts it to a
common query, the implementation of your search provider determines exactly what comes back.

The Linq layer is used internally by Sitecore but can also be used by developers. You can use this layer
in your sublayouts.

To start a search, you must set up a search context:

using (var context = ContentSearchManager.GetIndex(item).CreateSearchContext())

{

 IQueryable<SearchResultItem> searchQuery =

context.GetQueryable<SearchResultItem>().Where(item => item.Name == “Sitecore”)

}

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 57 of 142

This returns the results of a query on your search index and returns it as a SearchResultItem type.

You can also use the indexer to run queries:

using (var context = ContentSearchManager.GetIndex(item).CreateSearchContext())

{

 IQueryable<SearchResultItem> searchQuery =

context.GetQueryable<SearchResultItem>().Where(item => item[“_name”] == “Sitecore”)

}

This converts the query to something your provider understands. For example, for Lucene it is converted
to:

_name:sitecore

This is something that Lucene understands and can work with.

Complex Searches

using (var context = ContentSearchManager.GetIndex(item).CreateSearchContext())

{

 IQueryable<SearchResultItem> searchQuery =

context.GetQueryable<SearchResultItem>().Where(item => item[“_name”] == “Sitecore”).Where(item =>

item.Title == “Test || item.Body.Contains(“CMS”))

}

OR

using (var context = ContentSearchManager.GetIndex(item).CreateSearchContext())

{

 IQueryable<SearchResultItem> searchQuery =

context.GetQueryable<SearchResultItem>().Where(item => item.Name == “Sitecore”).Where(item =>

item.Title == “Test || item.Body.Contains(“CMS”))

}

For Lucene, the Linq layer converts it to:

+(+_name:sitecore) +(title:test body:*cms*)

For Solr, the Linq layer converts it to:

(+(+_name:sitecore) +(title:test body:*cms*))

There is no great difference; they should both return the same results. The SOLR provider needs to parse
the queries differently.

You can use the Predicate Builder Helper that comes with Sitecore 7.0 to make subtle changes to the
way the Linq Queries are built. The Linq Layer uses expression trees to evaluate the LINQ to a lower
level that any provider can understand.

Adding a New Linq Provider

You can add a new Linq Provider by creating a new project in Visual Studio, and then adding a reference

to Sitecore.ContentSearch.Linq to the project.

If you use a RESTFul layer, you do not need anything else. If not, you must add a reference to your
provider to the project, as well.

There are a few classes that you must construct, at a minimum. These classes are listed below. You can
implement others as well, to have more control.

QueryObject

YourNewQuery : IDumpable

The IDumpable interface allows you to dump debug information into Visual Studio.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 58 of 142

Index

YourNewIndex<TItem> : Index<TItem, YourNewQuery>

This interface is responsible for constructing your QueryMapper and QueryOptimizer.

Override QueryMapper, QueryOptimizer, Execute, FindElements

QueryMapper

YourNewQueryMapper : QueryMapper<YourNewQuery>

This is where all the magic happens. This is where you map an IQueryable method to the logic that

your search provider uses to solve this functionality.

The Strip methods in this class pass the query in your Query object to an IEnueramble collection of

query method objects and prevent the query from being directly implemented.

For example, if you run Count on IQueryable within the Lucene provider, it cannot just pass count:10

or size:10 in the query and expect Lucene to understand. However, it can use the input when it is ready

to resolve the Linq Query to Lucene.

TopDocs hits = indexSearcher.Search(parser.Parse(query), null, count);

The Visit methods are used in expression trees to build up a query in Linq and convert it to something

else.

An example that uses StartsWith:

protected virtual Query VisitStartsWith(StartsWithNode node)

{

 var fieldNode = QueryHelper.GetFieldNode(node);

 var valueNode = QueryHelper.GetValueNode<string>(node);

 return new WildcardQuery(new Term(fieldNode.FieldKey, valueNode.Value + "*"));

}

The LuceneProvider for Linq maps StartsWith in IQueryable to a WildcardQuery in Lucene and

produces the following output:

Fieldname:fieldvalue*

If you were to implement, for example, a search provider for MongoDB, it would look something like this

for EndsWith:

protected virtual Query VisitStartsWith(EndsWithNode node)

{

 var fieldNode = QueryHelper.GetFieldNode(node);

 var valueNode = QueryHelper.GetValueNode<string>(node);

 return Query<TItem>.Find(b => b[fieldNode.FieldKey], "/^” + valueNode.Value);

}

QueryOptimizer

This is an abstract class that is used to optimize queries.

QueryOptimizerState

This is used to store the state of every query, for example, the default boost of 1 on every query. This can
also be used to store things like the default analyzer and so on.

Boosting Items

Every content item contains a Boost Field. This field is used to increase the relative importance of items
in the content tree. The values start at 1.0 — default — and can go up to, for example, 1.0 or 2.3. After

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 59 of 142

you set this value, save the item and the order of your results will immediately reflect the new boost
values.

Note
You must not dispose manually of Lucene indexes that implement the IDisposable interface. Sitecore
disposes of these indexes when the CMS is restarted. Doing it manually can cause index data
inconsistency.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 60 of 142

5.4 Adding a New Search Provider

Sitecore has been designed with flexibility in mind and it is quite easy to add your own search provider.

There are many end points that you must implement, and you need to translate back and forth between
Sitecore syntax and semantics and the syntax and semantics of the search provider. It is not mandatory
to translate all the features in Sitecore, only the ones you want to use.

Abstract Document Builder

Sitecore.ContentSearch.AbstractDocumentBuilder is the entry point for mapping the

configuration.

Computed Fields

In its simplest form, an index takes a text and places it in an index. Sometimes you may need more
control over the way that data is stored or, more importantly, what data is stored. Sitecore uses computed
fields to perform lookups and complex logic to determine what gets placed in your index.

For example, Sitecore uses computed fields to store the parsed Created Dates of items, whether or not
an item has a lock or whether or not an item is a clone. To create your own computed fields, you need to

create a new class and implement the IComputedIndexField interface.

The IComputedIndexField interface is quite simple. It expects a string and an object. The FieldName

string is the name that the field uses in your index. The object is the value. ComputeFieldValue takes

the item that is being indexed. It is from here that you can use it to look up other things to index — for
example, the presentation data sources of the items.

public class IsClone : IComputedIndexField

{

 public object ComputeFieldValue(IIndexable indexable)

 {

 Item item = (Item) (indexable as SitecoreIndexableItem);

 return item.IsClone;

 }

 public string FieldName { get; set; }

 public string ReturnType { get; set; }

}

Computed fields are useful for storing data that needs to be calculated or logic for looking values up from
an item. They can also be used for faceting and scaling inbuilt fields or for scaling facets.

Converters

In a classic data in and data out situation, it can sometimes be a good idea to convert your data so that it
is stored in a certain way and then extracted in another way. For example, if you want to store dates in
the index in a certain format — 20121212 — and fetch them from the index as a strongly typed DateTime,
this is the job of a converter.

To create a new converter for a type, create a class that inherits from

Sitecore.ContentSearch.Convertors.TypeConvertor and override the methods as necessary.

For example, to cast a GUID in the index to a Sitecore.Item.ID in code, use the following converter:

public class IndexFieldIDValueConverter : TypeConverter

 {

 public override bool CanConvertFrom(ITypeDescriptorContext context, Type

sourceType)

 {

 if (sourceType == typeof(ID))

 return true;

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 61 of 142

 return base.CanConvertFrom(context, sourceType);

 }

 public override bool CanConvertTo(ITypeDescriptorContext context, Type

destinationType)

 {

 if (destinationType == typeof(string))

 return true;

 return base.CanConvertTo(context, destinationType);

 }

 public override object ConvertTo(ITypeDescriptorContext context,

System.Globalization.CultureInfo culture, object value, Type destinationType)

 {

 return ((ID)value).ToShortID().ToString().ToLowerInvariant();

 }

 }

New Logging Classes

Sitecore comes with a logging framework called Log4net. This is wrapped up in the

Sitecore.Diagnostics namespace, and you can use it to write to log files. Sitecore 7.0 introduces

two new log files for searching and crawling.

To write to the search and crawling log files, use SearchLog.Log.xxx and CrawlingLog.Log.xxx

respectively. They write to separate files.

In the Sitecore.Buckets.config file, set the BucketConfiguration.EnableBucketDebug

setting to true and Sitecore uses these files to log all your searches. All the crawling is also logged by
default so that developers can see exactly what is being placed in the index and what is being searched
for.

Query Warm-up

When Sitecore starts up for the first time, it runs through a list of pre-defined queries that warm up the
index cache of your search provider. The warm-up queries are listed in the

Sitecore.Buckets.WarmupQueries.config.example file:

<configuration>

 <sitecore>

 <search>

 <warmup>

 <query>-

_template:adb6ca4f03ef4f47b9ac9ce2ba53ff97|+(_path:110d559fdea542ea9c1c8a5df7e70ef9)|+_lastestver

sion:1|-_id:110d559fdea542ea9c1c8a5df7e70ef9*</query>

 <query>-_template:adb6ca4f03ef4f47b9ac9ce2ba53ff97|+_lastestversion:1</query>

 <query>+_language:en|-

_template:adb6ca4f03ef4f47b9ac9ce2ba53ff97|+(_path:3c1715fe6a134fcf845fde308ba9741d)|+(+is

displayed in search results:1)|+_lastestversion:1|-_id:3c1715fe6a134fcf845fde308ba9741d*</query>

 <query>__smallupdateddate:[20121111 TO 20121113]</query>

 <query>__smallcreateddate:[20121111 TO 20121113]</query>

 <query>__smallcreateddate:[20121111 TO 20121113]</query>

 </warmup>

 </search>

 </sitecore>

</configuration>

To add new queries, delimit every search term with a pipe “|” symbol and then normalize and escape the
queries — that is, prevent strange characters from being passed on.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 62 of 142

You can use the search log files to identify the most common searches and then place them in the warm-
up phase so that the indexes are already warm when the users start to use them.

Field Readers

You can use field readers to convert known Sitecore field types to other values that you would prefer to
store in the index. For example, a check box that is selected stores a 1 in the index and a cleared check
box stores a blank.

You can use field readers to map both existing and any new field types that you create to different values
in the index.

ContentSearchManager

The ContentSearchManager class is useful for getting access to everything you can do with your

indexes.Use this class when you need to update, delete, search, or simply fetch information from an
index.

The ContentSearchManager class has many useful properties and also gives you access to the

IQueryable interface. It also gives you access to all the indexes so that you can rebuild them or get

statistics about the health of each index.

5.4.1 Pipelines

Sitecore uses pipelines for searching, crawling, and UI interaction. This makes it very easy for you to plug
in your own code when you need to.

contentSearch.getContextIndex

You can use the contentSearch.getContextIndex pipeline to control where Sitecore starts to

search from. Sitecore currently uses Context.Item to determine where it should search. You can use

this pipeline, for example, to specify that Sitecore should start searching from a certain part of the content
tree in certain situations.

contentSearch.getGlobalSearchFilters

Searches run through the Linq Layer have some default filters. These filters contain things like ignoring
certain templates, setting the path to start the search from and always returning the latest version of the
item in the search results. You can add your own global filters here. You have access to the IQueryable
collection where you are able to add your own filters.

contentSearch.QueryWarmup

Run specific queries when the application pool starts for the first time.

contentSearch.translateQuery

This pipeline gives you the raw query that is sent from the UI or from a query to the Search.ashx

handler, and it allows you to manipulate the query before it is consumed by the Linq layer.

For example, Solr supports dynamic queries and this pipeline can be used to change a UI query from, for

example, title:sitecore to title_string:sitecore before the Linq layer converts it to

IQueryable.

buckets.createBucket

When an item bucket is created through the UI or through code, you can hook onto this pipeline to
manipulate the bucketing process.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 63 of 142

buckets.removeBucket

When an item bucket is converted into a normal container through the UI or through code, you can hook
onto this pipeline to manipulate the unbucketing process.

buckets.syncBucket

When an item bucket is synchronized through the UI or through code, you can hook onto this pipeline to
manipulate the synchronization process.

Buckets.isBucket

This pipeline is used to determine whether or not a content item is an item bucket. This pipeline allows
you to modify the way in which you determine whether a content item is an item bucket or not.

buckets.isItemContainedWithinBucket

This pipeline is used to determine whether or not a content item is stored in an item bucket.

buckets.isTemplateBucketable

This pipeline is used to determine whether or not an item is bucketable. There are many ways to
determine this.

You can modify this behavior so that it uses complex logic to specify that if the item is based on a
template that has a very large numbers of items, it should be bucketable.

buckets.addSearchTabToItem

This pipeline is used add a search tab to an item. You can modify this to add many tabs or even have
tabs that contain predefined searches that are already run when you open the tab.

buckets.cloneItemIntoBucket

This pipeline is used for cloning items into an item bucket.

buckets.copyItemIntoBucket

This pipeline is used for copying items into an item bucket.

buckets.moveItemIntoBucket

This pipeline is used for moving items into an item bucket.

buckets.getFacets

This pipeline is used to return facets in results.

buckets.dynamicFields

This pipeline is used to fill the SearchResultItem DynamicFields Dictionary with values that can be
dynamically displayed in the search results.

This is useful if you are building new views for the UI, as you use this pipeline to dynamically generate
values to display.

buckets.fillItem

This pipeline is used internally by Sitecore to add all the built-in fields that can be displayed in the search
UI, for example, Template, Author, Created Date, and so on.

This pipeline is similar to the Dynamic Fields pipeline.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 64 of 142

buckets.dynamicQuickActions

This pipeline is used to return quick actions. Quick actions are helper links that are displayed in search
results. They allow you to quickly perform operations on items in the search results without having to
open the item. You can use the QuickActions pipeline to create dynamic QuickActions, for example, an
action that allows users to quickly translate an item. It could also be used to show a quick link to the next
workflow state of items.

buckets.uiLaunchResult

This pipeline makes it possible to open search results from different data sources in different views. You
do this by adding your own processor to the uiLaunchResult pipeline and implement how an item from a
specific data source is opened.

The intended use is where you have implemented a crawler that indexes data from external data sources
and the crawler saves these index entries with a value such as, for example, “media” in datasource.

You update the “buckets.resolveUIDocumentMapperFactoryRules” pipeline and add your own processor
that defines a new rule that makes it possible to search for items with a datasource that is not “sitecore”
(for example, “media”). The processor you have implemented in uiLaunchResult can manage how these
items are opened.

5.4.2 Miscellaneous

SearchStringModel

This is the model that is passed between the UI and the Linq Layer to determine which query to run. The
model contains three simple properties:

Property Description

Type The name of the field that you want to use in
the search.

Value The value of the field.

Operation Whether the search should use this value,
must use this value, or must not use this value.

When you make requests directly to Search.ashx that do not go through the Sitecore search API, you

must use this model.

For example, if you are using JavaScript to make an AJAX post to the ASHX handler to return search
results, you must use this model to run your searches.

Create an array in JavaScript:

var searchQuery = new Array();

searchQuery.push({

 type: “text”,

 value: “sitecore”,

 operation: “must”

 })

function runQuery(o, pageNumber, onSuccessFunction, onErrorFunction) {

 $.ajax({

 type: "GET",

 url: QueryServer +

"/sitecore/shell/Applications/Buckets/Services/Search.ashx?callback=?",

 contentType: "application/json; charset=utf-8",

 dataType: "jsonp",

 cache: false,

 data: {

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 65 of 142

 selections: searchQuery,

 pageNumber: pageNumber,

 type: "Query",

 pageSize: 20,

 version: "1"

 },

 responseType: "json",

 success: onSuccessFunction,

 error: onErrorFunction

 });

}

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 66 of 142

5.5 Linq to Provider

The Linq search API provides access to search the indexes using standard Linq queries in the same way
that other Linq providers works like Linq to SQL, Linq to Objects, and so on.

The search API is using the standard IQueryable<T> interface and has support for most of the

available operations. For a general introduction to Linq, see http://msdn.microsoft.com/en-
us/library/vstudio/bb397926.aspx.

Note
There are some operations that are not supported even though they are available through the

IQueryable<T> interface. If these methods are called, a NotSupportedException or

InvalidOperationException exception is thrown at runtime.

5.5.1 Accessing the Linq to Sitecore API

All searches are performed through IProviderSearchContext search context. The search context

exposes the method GetQueryable<T> method which returns an instance of IQueryable<T>.

Example

public IEnumerable< MySearchResultItem > PerformSearch()

{

var index = ContentSearchManager.GetIndex ("[My Index]");

using (var context =

index.CreateSearchContext(SearchSecurityOptions.EnableSecurityCheck))

{

var queryable = context.GetQueryable<MySearchResultItem>();

var results = queryable.Where(d => d.Name == "Sitecore");

return results;

}

}

5.5.2 Custom Search Type / Object Mapping

Because the search API uses the generic IQueryable<T> interface to expose the search indexes, it is

possible to use custom classes/POCO classes to describe the information in the indexes.

To implement custom search types, the class must:

 Have an empty constructor.

 Expose public properties with getters and setters and/or a public indexer to hold the search result
data.

The Linq provider automatically maps document fields in the index to properties on the custom search
type by the names of the properties. Properties or fields from the index that have not been matched
together by name are skipped during the object creation/mapping.

It is also possible to map properties that do not match to fields in the index by decorating the properties

with the IndexField attribute. You can use this, for example, to expose special Sitecore fields like

_name as a property called Name. A different use case is field names with spaces, because they cannot
be mapped directly to a property by name.

http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 67 of 142

Furthermore, you can implement an indexer that is populated with the field name as key and the value for

each field in the index document. There is also an ObjectIndexerKey that you can use to wrap

indexers as different types. This is useful if you only have the string version of a property name but need
to use it as an indexer for a property type which is actually something like an int.

Depending on the search provider being used, the indexed and stored data in the index might not be the
native types for the value. For Lucene everything is stored and indexed as strings.

Supported Types

The following types are supported for automatic type conversion when mapping index document fields to
properties:

 .NET built-in integral types

 .NET built-in floating-point types

 Boolean

 String

 DateTime

 Guid

 Sitecore ID

 Sitecore ShortID

 Sitecore ItemUri

 IEnumerable<T>

 DateTimeOffset

 Language

 Version

 Database

 CultureInfo

 TimeSpan

Custom Search Type Example

public class MySearchResultItem

{

// Fields

private readonly Dictionary<string, stringfields = new Dictionary<string, string>();

// Properties

// Will match the _name field in the index

[IndexField("_name")]

public string Name { get; set; }

// Will match the myid field in the index

public Guid MyId { get; set; }

public int MyNumber { get; set; }

public float MyFloatingPointNumber { get; set; }

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 68 of 142

public double MyOtherFloatingPointNumber { get; set;}

public DateTime MyDate { get; set; }

public ShortID MyShortID { get; set; }

public ID SitecoreID { get; set; }

// Will be set with key and value for each field in the index document

public string this[string key]

{

get

{

return this.fields[key.ToLowerInvariant()];

}

set

{

this.fields[key.ToLowerInvariant()] = value;

}

}

}

5.5.3 Supported IQueryable methods

Restriction Operators

Where

var results = from d in queryable where d.Name == "Sitecore" select d;

or

var results = queryable.Where(d => d.Name == "Sitecore");

Projection Operators

Select

var results = from d in queryable select d.Name;

or

var results = queryable.Select(d => d.Name);

Anonymous types

results = queryable.Select(d => new { d.Name, d.Id });

Unsupported

SelectMany

Partitioning Operators

Take

results = queryable.Take(10);

Skip

results = queryable.Skip(10);

Page

results = queryable.Page(2, 100);

Ordering Operators

OrderBy

results = queryable.OrderBy(d => d.Name);

OrderBy Descending

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 69 of 142

results = queryable.OrderByDescending(d => d.Name);

ThenBy

results = queryable.OrderBy(d => d.Name).ThenBy(d => d.Id);

ThenBy Descending

results = queryable.OrderBy(d => d.Name).ThenByDescending(d => d.Id);

Unsupported

Reverse

Grouping Operators

Unsupported

GroupBy -Simple 1

GroupBy -Simple 2

GroupBy -Simple 3

GroupBy -Nested

GroupBy -Comparer

GroupBy -Comparer, Mapped

Set Operators

Unsupported

Distinct

Union

Intersect

Except

Element Operators

First -Simple

results = queryable.First();

First -Condition

results = queryable.First(d => d.Name == "Sitecore");

FirstOrDefault -Simple

results = queryable.FirstOrDefault();

FirstOrDefault -Condition

results = queryable.FirstOrDefault(d => d.Name == "Sitecore");

ElementAt

results = queryable.ElementAt(10);

Last

result = queryable.Last();

result = queryable.Last(d => d.Id > 10);

LastOrDefault

result = queryable.LastOrDefault();

result = queryable.LastOrDefault(d => d.Id > 10);

Single

result = queryable.Single();

result = queryable.Single(d => d.Id > 10);

SingleOrDefault

result = queryable.SingleOrDefault();

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 70 of 142

result = queryable.SingleOrDefault(d => d.Id > 10);

Quantifiers

Any -Simple

results = queryable.Any();

Any -Grouped

results = queryable.Any(d => d.Name == "Sitecore");

Unsupported

All

Aggregate Operators

Count -Simple

results = queryable.Count();

Count -Conditional

results = queryable.Count(d => d.Id < 10);

Unsupported

Sum

Min

Max

Average

Aggregate

Join Operators

Unsupported

Cross Join

Group Join

Cross Join with Group Join

Left Outer Join

5.5.4 IQueryable Extensions

Filtering

Filtering is similar to using Where to restrict the result list. Both methods will affect the result in the same

result list, but when you use a Filter the scoring/ranking of the search hits is not affected by the filters.

Note

To avoid affecting the ranking of the search results, use Filter when applying restrictions to search

queries in the GetGlobalFilters pipeline.

Furthermore, filters can be cached to optimize search performance.

Example:

results = queryable.Filter(d => d.Id > 4 && d.Id < 8);

Facets

Simple Faceting

var results = queryable.FacetOn(d => d.Name);

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 71 of 142

var facets = results.GetFacets();

foreach (var category in facets.Categories) {

Console.WriteLine(category .Name);

foreach (var facetValue in category.Values) {

Console.WriteLine("{0}: {1}", facetValue.Name, facetValue.Aggregate);

}

}

Pivot Faceting

var results = queryable.FacetPivotOn(p => p.FacetOn(d => d.Name).FacetOn(d => d.Year));

var facets = results.GetFacets();

foreach (var category in facets.Categories) {

Console.WriteLine(category .Name);

foreach (var facetValue in category.Values) {

Console.WriteLine("{0}: {1}", facetValue.Name, facetValue.Aggregate);

}

}

Boosting

results = queryable.Where(d => d.Id == 7.Boost(2f)).Where(d => d.Template.Contains("o"));

Other

Between

results = queryable.Where(item => item.Price.Between(50.0f, 400.0f, Inclusion.Both));

results = queryable.Where(item => item.Price.Between(2.0f, 12.0f, Inclusion.Both) ||

item.Price.Between(80.0f, 400.0f, Inclusion.Both));

results = queryable.Where(d => d.Date.Between(new DateTime(2004, 12, 31), DateTime.Now,

Inclusion.Both));

results = queryable.Where(d => d.Id.Between(1, 4, Inclusion.Both));

results = queryable.Where(d => d.Id.Between(1, 4, Inclusion.Lower));

results = queryable.Where(d => d.Id.Between(1, 4, Inclusion.Upper));

results = queryable.Where(d => d.Id.Between(1, 4, Inclusion.None));

string.Contains

results = queryable.Where(d => !d.Template.Contains("Hello:));

string.CompareTo

results = queryable.Where(d => !d.Name.CompareTo("Hello") == 1);

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 72 of 142

Equal

results = queryable.Where(d => d.Id.Equal(4));

Matches

results = queryable.Where(i => i.Template.Matches("^.*$"));

MatchWildcard

results = queryable.Where(i => i.Template.Where(i =>

i.Template.MatchWildcard("H?li*m")));

Like

results = queryable.Where(i => i.Template.Like("Citecoar"));

string.StartsWith

results = queryable.Where(d => !d.Name.StartsWith("Hello"));

string.EndsWith

results = queryable.Where(d => !d.Name.EndsWith("Hello"));

GetResults

results = queryable.GetResults().Hits.Where(i => i.Document.Name.Contains("o")).Where(hit

=> hit.Score > 0.6);

GetFacets

results = queryable.Where(d => d.Id > 0).FacetOn(d => d.Template, 0).GetFacets();

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 73 of 142

5.6 Searching

5.6.1 Searching in the Default Language

When you enter a search query, Sitecore searches every language by default. If you would only like to
search in one language, you can add a filter to your search query, for example, language:da. If you would
like the system to only return results in the context language of the UI, in the

Sitecore.Buckets.config file, set the

BucketConfiguration.ForceClientLanguageInSearch setting to true. This only enforces this

filter in the Sitecore UI, not in your code.

5.6.2 Searching and Facets

There are two ways to add a facet to your searches through the UI:

 Add facets for every possible value.

However, this will not scale for facets that have huge amounts of variants.

 Limit the facets to specific values.

To limit the facet values that search should use, open the facet item —

sitecore/system/Settings/Buckets/Facets/Author — and in the Facet Filter field, enter a

reference to the class that implements the ISimpleFacet interface. You have to create this class yourself.

For example, if you have a list of colors — Red, Black, Green, Blue, and Yellow.

If you add a facet for color and leave the Facet Filter field empty, when you search for cars, the search
results tell you how many of the cars are Red, Black, and so on.

If you create a facet filter you could tell the facet to only return results for Red, Black, and Green.

To do this, create a new class in your project and implement the ISimpleFacet interface. This interface

simply returns a string. Use the logic in the class to determine the list of values that the facet should
search for.

5.6.3 Using a Field as a Tag Repository

Sitecore comes with a tag repository — /sitecore/system/settings/buckets/tag repository.

This repository can contain any type of item. You use these tags to tag any content item. You can tag a
content item with one or more of these tags. This allows you to search for content items by their tags.

Sitecore searches the Semantics field of every item by default. If you add your own field and would like it
to also act with the inbuilt tag repository, you must add the new field to the appropriate template, and
open the index config files, for example,

Sitecore.ContentSearch.Lucene.Index.Master.config — and add your field to ensure that it

is aggregated into the _semantics field in the index.

<fields hint="raw:AddCustomField">

 <field luceneName="_tags" storageType="no"

indexType="tokenized">semantics</field>

 <field luceneName="_tags" storageType="no"

indexType="tokenized">mycustomtaggingfield</field>

</fields>

We recommend that you keep these items hidden in the content tree.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 74 of 142

5.6.4 Including and Excluding Search Filters

When you enter a search filter in a search box, you can specify whether or not it should be included in the
search query. If you enter a text filter to search for items that contain the key word blue — text:blue, a
magnifying glass icon appears to the left of the search filter by default.

Click on the filter icon to specify whether or not it should be included.

There are three options:

 Must include —

 Must not include —

 Should include —

5.6.5 Editing Search Filters

You can edit the search filter by clicking on the search term (“blue” in the example above):

5.6.6 In-Memory Index

You can use in-memory indexes to solve many different problems. If you need to store text somewhere
temporarily and then query it quickly, you could use an InMemoryLuceneIndex.

Of the search providers that Sitecore currently supports, Lucene is the only one that supports in-memory
indexes.

var index = new InMemoryLuceneIndex("products");

 index.Analyzer = new StandardAnalyzer(Lucene.Net.Util.Version.LUCENE_30);

 index.IndexDocumentMapper = new DefaultLuceneDocumentTypeMapper();

 var repository = new TestRepository();

 IEnumerable<TestDocument> information = repository.GetTestDocuments();

 using (var context = index.CreateUpdateContext())

 {

 foreach (TestDocument testDocument in information)

 {

 var document = new Document();

 document.Add(new Field("ID", testDocument.Id, Field.Store.YES,

Field.Index.NOT_ANALYZED));

 document.Add(new Field("Name", testDocument.Name, Field.Store.YES,

Field.Index.ANALYZED));

 document.Add(new Field("Template", testDocument.Template, Field.Store.YES,

Field.Index.ANALYZED));

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 75 of 142

 document.Add(new Field("TemplateSortable", testDocument.TemplateSortable,

Field.Store.YES, Field.Index.NOT_ANALYZED));

 document.Add(new Field("Body", testDocument.Body, Field.Store.YES,

Field.Index.ANALYZED));

 document.Add(new Field("Date", testDocument.Date, Field.Store.YES,

Field.Index.ANALYZED));

 context.AddDocument(document);

 }

 context.Optimize();

 context.Commit();

 }

5.6.7 Applying Quick Actions to Search Results

There are a number of quick actions that you can apply to a content item that are available when the item
appears in search results.

To add a quick action to a content item:

1. In the Content Editor, search for the item that you want to add the quick action to.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 76 of 142

2. In the search results, select the content item and it opens in another tab.

3. Expand the Item Buckets section and scroll down to the Quick Actions field.

4. Select the quick actions that you want to add to this content item.

5. Save your changes.

Important
You must click Save in the tab that you edited the content item in.

The next time that this item appears in some search results the quick actions are displayed with the item
in the search results.

Add New Quick Actions

You can also add extra quick actions to the list of available actions.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 77 of 142

To add a quick action:

1. In the content tree, navigate to /sitecore/System/Settings/Buckets/Settings/Quick

Actions.

2. Insert a new quick action and give it a suitable name.

3. On the Content tab, in the Command group, in the Command field, enter the command name,
for example: item:save.

Alternatively, in the configuration file, use the dynamic QuickActions pipeline to allow much more

complex and dynamic Quick Actions, for example Bring back all current workflow commands.

5.6.8 Showing Dynamic Fields in Search Results

If you want to create a dynamic field that you can display in search results, you must specify this in the
buckets.dynamicFields pipeline. For example, if you want to display Facebook likes for a specific item you
can use this pipeline to display this information in the search results.

The DynamicFields pipeline aggregates a dictionary of keys and values. To obtain the information you
want, you must refer to the relevant key and value in the dictionary. In the Facebook example, the key
should be Flikes and the value should be the number of likes specified by the Facebook API.

To display a dynamic field in a specific search view:

1. In the content tree, go to /sitecore/system/Settings/Buckets/Views and select the

search view.

2. On the Content tab, in the View Details section, select the Item Template field.

This field contains the HTML output for the search view.

3. Insert a placeholder that displays the number of Facebook likes in the search view.

4. To insert the placeholder, enter the key followed by DynamicPlaceholder.

For example if the key for Facebook likes is Flikes in the dictionary, the placeholder should be

called FlikesDynamicPlaceholder.

When Sitecore displays the search results, it looks at all the dynamic placeholders and replaces them
with the value of each specific key.

5.6.9 Adding New Filters and Setting up Alias Filters

To add a new filter to the search UI:

1. In the content tree, navigate to /sitecore/system/Settings/Buckets/Search Types.

It is best practice to add the new search filter in the User Defined folder.

2. Select the User Defined folder, and on the Home tab, in the Insert group click Field Search
Type.

3. Give the new search type an appropriate name.

This is the name that users are required to type into the search box to apply the filter.

For example if the search type is called Date the user must type in Date: in the search box when
they want to apply the filter. Remember that the name is case sensitive and you should ensure
that case is consistent across all names.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 78 of 142

In the new search type, in the Search Type section, in the Control Type field select the type of
control that is most appropriate for your search. Under the item’s field value, locate the relevant
field type and add it to the selected column.

You may need to create a new field type that matches your new search type. For example a
calendar would be best suited to a filter that uses dates.

4. In the Display Text field, enter some appropriate text and ensure that the wording is consistent
with all the other search filters.

This text is displayed in the drop-down menu when you browse the search filters in the search UI.

5. If you want to apply a custom syntax to the Control Type field to create specific outcomes, enter
this in the Web Method field.

For example, if the Control Type field is a calendar, the Web Method field can make a request
to a web service to tell Sitecore to display a calendar control that only allows you to select a date
from the last 2 calendar years.

Alias Filters

Sometimes, you have field names that are long and descriptive and therefore not very easy to type into a
search box when you want to search on them.

Alias Filters are a way of setting up an alias for another search field to solve this problem. For example, a
field called Product Price should probably be shortened to price when searching. You may also want to
add a slider control to be able to slide between prices or to a particular price. Aliases will help you do this.
These could be the control type parameters for this slider:

min:0&max:20000&value:40&range:true&start:0&end:2000

5.6.10 Creating a New Search Facet

You can use facets to drill down to more specific results in any list of search results. The default facets
are displayed in the facets menu on the right side of the search results.

To create a custom facet, navigate to the /sitecore/system/Settings/Buckets/Facets item of

the content tree. Right click on the Facets item and in the context menu, click Insert, Facet.

You now have to specify the name of the field in your index, in the parameters field in the content tab.
You can apply hierarchical faceting by listing many fields separated by commas. This is useful if you want
to facet on, for example, Clothes Type first, and then on Color so the facets display like this:

 Belts/Black (1)

 Belts/Green (9)

 Belts/Blue (12)

 Jumper/Black (33)

You can create folders your facets, It is easier to get an overview this way, and it also makes it clearer
which facets you have created and which facets Sitecore has provided.

5.6.11 Default Bucket Queries

Default bucket queries are run automatically when the search UI is accessed. It is possible for content
authors to remove the default query from the search field if they chose.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 79 of 142

5.6.12 A Persistent Bucket Filter

Default filters can be set on any item by accessing the content tab and entering a search string in the
Default Filter field. A notable difference between default queries and default filters is that default filters
cannot be removed from the search UI.

5.6.13 Default Queries and Filters

The supported filters are:

 tag

 template

 location

 sort

 custom

 tag

 start

 end

To implement multiple filters, you must insert a semicolon between each filter.

Note
Every filter is case sensitive.

For example, to search for the keyword pineapple between a start date of 03/03/2012 and an end date of
04/04/2012, the filter string is:

text:pineapple;start=03/03/2012;end=04/04/2012

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 80 of 142

5.7 Rule-based Boosting

Rule-Based Boosting relies on the set of out of the box conditions that Sitecore ships with. You can,
however, create custom conditions as described in the in the Rules Engine Cookbook, in the section How
to Implement a Condition.

You can also reuse the conditions from the Sitecore Stuff shared source module that is available on the
Sitecore Marketplace (http://marketplace.sitecore.net/.) This module will give you the following conditions:

 Item Name.

 Item ID.

 Item Level

 Parent Name.

 Parent Template.

 Item Path.

 Ancestor-or-Self.

 Item is Publishable.

 Item Language.

 Item Version.

 Item Version Count.

 Item Is Hidden.

 Item Is Protected.

 Item Has a Layout.

 Field is Empty.

 Can Read Item.

 Can Write Item.

 Can Delete Item.

 Can Rename Item.

 Can Create Subitems.

 Item Is In a Workflow.

 Item Is In a Workflow State.

 Item Is In a Final Workflow State.

 Item Is Locked.

 Item Is Locked by Me.

 Item Is Locked by User.

 True (actions execute always).

 Call Script.

http://marketplace.sitecore.net/

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 81 of 142

5.7.1 Creating a New Boosting Rule Condition

It is not necessary to create custom actions in general and for most implementations, since the action
related to this functionality, “Adjust Boost by Select”, is sufficient. However, you can implement a custom
boosting rule action if you need to.

Here is a basic description of how to implement a custom boosting rule action:

public class CustomBoostAction<T> : RuleAction<T> where T : Sitecore.ContentSearch.Boosting.

RuleBoostingContext

 {

 public float Boost { get; set; }

 public override void Apply([NotNull] T ruleContext)

 {

 Assert.ArgumentNotNull(ruleContext, "ruleContext");

 // the value of the Boost property will be set via the macro

 // if your action is not using the macro approach,

 // you will have to set this property based on some other logic

 // your code goes here:

 // you have to set the ruleContext.Boost before the method returns

 // here is how it is set in the out of the box action:

 // ruleContext.Boost += this.Boost;

 }

 }

From here, you can use the description in the How to Implement an Action section of the Rules Engine
Cookbook.

5.7.2 Implementing Rule-Based Boosting for Fields

You can implement rule-based boosting for fields.

1. Implement the indexing.resolveFieldBoost pipeline processor class:

 public class RuleBasedFieldBoostResolver : BaseResolveFieldBoostPipelineProcessor

 {

 public override void Process(ResolveFieldBoostArgs args)

 {

 Assert.ArgumentNotNull(args, "args");

 Assert.ArgumentNotNull(args.FieldDefinitionItem, "field definition item");

 var fieldItem = args.FieldDefinitionItem;

 var ruleContext = new RuleBoostingContext(fieldItem);

 var ruleItems = this.GetLocalBoostingRules(fieldItem);

 if (ruleItems == null || !ruleItems.Any())

 {

 CrawlingLog.Log.Debug(string.Format("No local rules were resolved for fie

ld {0}", fieldItem.Uri));

 return;

 }

 var rules = this.ConvertToBoostingRules<RuleBoostingContext>(ruleItems);

 try

 {

 if (rules != null)

 {

 rules.Run(ruleContext);

 }

 }

 catch (Exception exception)

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 82 of 142

 {

 CrawlingLog.Log.Error(string.Format("Cannot resolve boost for item {0}.",

 fieldItem.Uri), exception);

 }

 args.ResolvedBoost += ruleContext.Boost;

 }

 }

2. Insert the processor after StaticFieldBoostResolver:

 <processor

type="Sitecore.ContentSearch.Pipelines.ResolveBoost.ResolveFieldBoost.SystemFieldFilter,

Sitecore.ContentSearch"/>

 <processor

type="Sitecore.ContentSearch.Pipelines.ResolveBoost.ResolveFieldBoost.FieldDefinitionItemResolver

, Sitecore.ContentSearch"/>

 <processor

type="Sitecore.ContentSearch.Pipelines.ResolveBoost.ResolveFieldBoost.StaticFieldBoostResolver,

Sitecore.ContentSearch"/>

<processor

type="Sitecore.ContentSearch.Pipelines.ResolveBoost.ResolveFieldBoost.RuleBasedFieldBoostResolver

, Sitecore.ContentSearch"/>

This activates rule-based boosting for fields. You can now create the field boosting rule and associate it
with a field.

1. In the content tree, navigate to /sitecore/system/Settings/Indexing and

Search/Boosting Rules.

We recommended that you create a designated folder for the field rules like to the one for Item
Rules:

2. Locate the field that you want to attach this rule to.

3. Enable Standard Fields.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 83 of 142

4. In the Boosting Rules field, click Edit and associate the new rule with the field:

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 84 of 142

5.8 Multiple Index Support

The introduction of item buckets allows you to use multiple indexes to support the content tree. A practical
example would be that you may want to have a separate index for the content section, the system
section, and the media library. Having one index will satisfy most requirements but if you expect to have
millions of content items, millions of media items, and so on, using multiple indexes is the solution.

For more information about using and configuring multiple indexes, see the Sitecore Search Scaling
Guide.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 85 of 142

5.9 Adding a New View

The search results can be displayed in several different views. The default views are Grid, List, Gallery,
and Image.

Developers can add new views to the search results to cater for different situations, for example,
browsing an image gallery, and having a small image in the results.

To add a new view:

1. Navigate to the /sitecore/system/Settings/Buckets/Views item and create a new view

item.

2. Set the Header Template, Item Template, and Footer Template fields to the HTML tags that
you want to return in the search results.

You can use the following placeholder names to display the values of the items. These are considered
built-in Placeholders that will always be available to your views. For more fields you can use the

DynamicFields pipeline to achieve this.

Placeholder Description

MetaPlaceholder The CSS style that you want to use when the
results are displayed.

LaunchTypePlaceholder Whether it will launch the result in a new tab or
in a new Content Editor window.

ItemIdPlaceholder The item ID.

ImagePathPlaceholder The path to the image of the item.

NamePlaceholder The name of the item

TemplatePlaceholder The name of the template that the item is based
on.

BucketPlaceholder The bucket that this result comes from.

ContentPlaceholder The content of the result.

VersionPlaceholder The version of the content item.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 86 of 142

Placeholder Description

CreatedPlaceholder The date that the content item was created.

CreatedByPlaceholder The person who created this item.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 87 of 142

Chapter 6

Contact Search

This chapter describes a number of features that are useful for working with contacts in
the analytics database.

 Null and Empty String Support

 Joins

 QueryParserr

 LINQ vs DynamicExpressions

 Embedded/Collapsed Types

 NGram Support (Autocomplete)

 Observing Aggregation Data - Best Practice

 Building a custom UI with a rule style

 Rule to IQueryable

 Queries

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 88 of 142

6.1 Null and Empty String Support

The nature of the analytics data means that you sometimes want to run queries for null or empty string
values.

Sitecore has support for this in the LINQ layer and in the Indexing layer by storing physical values of
“EMPTYVALUE” and “NULLVALUE”. Sitecore translates it for you in the LINQ layer, so all you need to do
is to write LINQ queries as usual.

You also need to set up which fields you would like to have empty string and null support for in the
FieldMap. We recommend that you do not store empty strings and nulls in your index because they will,
take up space.

There are use cases where you want to do it anyway. One example is that you want to be able to search
for all customers that do not have a specified gender. You may want to use this query to email these
customers to ask them about their gender.

First, you need to set up the FieldMap to store empty strings in the “Gender” field.

In Lucene, you do this in the

Sitecore.ContentSearch.Lucene.DefaultIndexConfiguration.config file in the

<fieldNames hint="raw:AddFieldByFieldName"> section.

Here is an example:

<field fieldName="gender" storageType="NO" indexType="TOKENIZED" vectorType="NO"

boost="1f" type="System.String" nullValue="NULLVALUE" emptyString="EMPTYVALUE"

settingType="Sitecore.ContentSearch.LuceneProvider.LuceneSearchFieldConfiguration,

Sitecore.ContentSearch.LuceneProvider" />

For Solr, you do this in the Sitecore.ContentSearch.Solr.Indexes.config file in the

<fieldNames hint="raw:AddFieldByFieldName"> section.

Here is an example:

 <fieldType fieldName="title" returnType="text" nullValue="NULLVALUE"

emptyString="EMPTYVALUE"/>

 <fieldType fieldName="title_t" returnType="text" nullValue="NULLVALUE"

emptyString="EMPTYVALUE"/>

When you run the following query, it will map “” to “EMPTYVALUE” and null to “NULLVALUE”

return context.GetQueryable<Contact>().Where(i => i.Gender == “”).Take(10).ToList();

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 89 of 142

6.2 Joins

This section has various information about how and when you use joins, and what you have to consider
when you use them.

6.2.1 Joining Data

The LINQ layer supports Join, Self Join, Group Join and Select Many.

Lucene.Net does not support JOIN natively, and Solr only supports certain aspects. These four methods
use subqueries that are evaluated as you page through the data.

You have to consider certain things when you use this. You must try to avoid using these methods as
much as you can. Performance is expensive for both time, I/O and memory. This is true for both Lucene
and Solr.

An example:

If you join a Contact with the Engagement States they have been in, you will prepare a JOIN query with
Linq and then when you page through the data it will ONLY execute the join or subquery for that first
page.Tha is: given an ID, it will run a subquery to look up another document via that ID.

When you run a JOIN in Linq, it will effectively return a union set of one or many documents. If you have
experience with SQL JOINS (inner, outer, left, right), then you know that must write your LINQ queries
with regard to how they perform.

This also requires that you store or index your data properly. Sitecore do not support many-to-1 or many-
to-many queries in LINQ (for example, a Contact that stores multiple references to Engagement States
and then joins those on the Engagement States documents).

You can attach the “foreign-key” to the Engagement State so that you can join by something like the
ContactId instead:

public class Contact {

 public string Name { get; set; }

 public Guid ContactId { get; set; }

}

public class EngagementState {

 public string Name { get; set; }

 public Guid ContactId { get; set; }

 public Guid Id { get; set; }

}

Given the classes above, and even though it results in duplication of data, this allows you to join Contacts
to Engagement States via the ContactId. The LINQ layer supports this, for example:

 var repo = this.CreateVisitors();

 var repoPlans = this.GetStates();

 var result = from t in repo

 join x in repoPlans on t.ContactId equals x.ContactId

 where x.Id == new Guid("E1B604F1-EE0E-408E-A344-869CC45D25D9")

 select t;

6.2.2 Testing in the LINQScratchPad

If you want to test joining on large amounts of data, you can run your queries in LinqScratchPad.aspx.

The following query open a context:
using (var context =

ContentSearchManager.GetIndex("sitecore_master_index").CreateSearchContext())

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 90 of 142

 {

 using (var context2 =

ContentSearchManager.GetIndex("sitecore_web_index").CreateSearchContext())

 {

 return

context.GetQueryable<SearchResultItem>().Join(context2.GetQueryable<SearchResultItem>()

 .Where(i => i.Name.StartsWith("S")), i =>

i.ItemId, o => o.ItemId, (o, i) => o).Take(10).ToList();

 }

 }

This opens two separate search contexts and then runs a join on them, based off the item id. This query
check which items are in both the web and master index that start with S for the name field and then
returning the results of the web index (outer).

6.2.3 Extra Join Notes

If you are using the Solr provider, then the SelfJoin is the only join that will run a real Solr Join. The other
methods (such as. Join and GroupJoin) will use the enumeration technique that the Lucene.net provider
uses, that is: at enumeration time, subqueries will be executed to get the other documents.

6.2.4 When is it OK to Use a Join?

You need to use a join in the LINQ layer when you have a document that contains a reference to another
document. The reference is typically an ID reference.

Sitecore does not flatten the objects that are crawled. The crawler implementation has to tell Sitecore how

to store its data. The JOIN, SELFJOIN or GROUPJOIN run a subquery for the join to get another

document and evaluate it based on the ID/Key.

You must make sure that you store your data properly. You can prepare your data so that it is ready for
joining, or you can prepare it for a completely join-free retrieval. Both approached has advantages as well
as disadvantages.

Follow these rules to ensure that you solution scales well:

 Limit the amount of joins you require

 Instead of using a join, consider flattening data instead. This will result in multivalued fields and
potentially many columns.

 If you use a join, keep your paging of the data small –10 items or 20 items at a time. The reason
is that if you have a query that takes 100ms to run, it could take 1.1 seconds to return the sub-
queries and the initial query.

 Only store or index what is 100% necessary (unless this has performance implications.)

6.2.5 What is the Difference Between JOIN, SELFJOIN and GROUPJOIN

If you have two lists like this:

Id Value

1 A

2 B

3 C

Id ChildValue

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 91 of 142

1 a1

1 a2

1 a3

2 b1

2 b2

and you Join the two lists on the Id field, the result is this:

Value ChildValue

A a1

A a2

A a3

B b1

B b2

If you GroupJoin the two lists on the Id field the result is:

Value ChildValues

A [a1, a2, a3]

B [b1, b2]

C []

If you SelfJoin the two lists on the Id field the result is:

Value ChildValue

A a1

A a2

A a3

B b1

B b2

SelfJoin does not require you to provide a resultSelector. It is inferred that it returns the outer. This is

essentially the difference between an inner and outer join.

When you run JOIN queries, we recommend that your inner or outer has a filter that limits the results.
Otherwise, the JOIN will try to join on every single document in your index.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 92 of 142

6.3 QueryParser

The QueryParser takes a string and converts it into an IQueryable<T> representation that supports all
types of things like grouping, different value types e.g. (int, bool, float, DateTime).

The QueryParser is a static class that has a simple Parse<T> method. The overloads are a string and

optional object params. The object params can be used to fill the variables in for placeholders within the
string e.g.

“Product.Price = @0”, 123.4f

"Product.Weight > 115 OR (Product.StockCount > 3 AND Product.Weight > 50) OR

Product.StockCount != 3"

Notice the use of parentheses: this allows you to group the Boolean logic that occurs within the query
intelligently. You are not required to pass all values in with the params object[], it is, however,
recommended that you do because the QueryParser does its best to type the values, whereas the
object[] can infer it from the Type that you pass through in T.

If you want to talk through a UI, you have many options:

 LINQ – This becomes difficult as a lot of the time you will build up a string query in the UI and
then send it to the server to be resolved.

 OData – OData can talk directly to IQueryable stubs that you expose.

 LinqHelper – For simple search queries that do not contain parentheses logic for grouping parts
of the arch.

 QueryParser – For complex searches with the ability to also trigger LINQ based methods
through strings. Because it is strongly typed it is slightly more difficult to write queries for than the
LinqHelper.

Here is an example of a complex query that the QueryParser will be able to understand.
"(((()()()()()Person.Weight > 115) OR (Person.Age > 3 AND Person.Weight > 50)) OR

Person.Age != 3)"

The implementation does not use a parse generator tool for this (such as ANTLR or YACC). It parses the
expression tree to generate an IQueryable representative of a string query instead.

The QueryParser supports all primitive types as well as Enum and Indexers. Indexers are not used a lot
because you can specify the actual property name in the string. There are, however, certain situations
where you need to access a field from the index that is not a property available on your Type.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 93 of 142

6.3.1 Typical Use Case

This is a typical use case: you want to create a UI that allows users to search for content by field values
and then run the query, and have a strongly typed collection of results returned.

You use the form elements to build a string query, and expect to receive an IQueryable that you use to
page through the data and potentially run other filters/queries on the IQueryable.

You can do this with the QueryParser. Create a string const like this:

“Product.Type == @0 AND Product.StockCount > @1 AND Product.PurchaseDate == @2”,

productType.SelectetItemValue, productStockCount.Value, productCalendar.Value

The first part of the string is the query to run, and the following parameters are the values to inject when
the query is run.

This is the queries that are supported:

"Person.FavouriteDay >= DateTime(1999, 1, 1)";

"(((Person[\"Name\"] == \"Bob\") OR (Person.Age > 3 AND Person.Weight > 50)) OR

Person.Age != 3)"

"Person.Name[0] == 'B'"

"Person.Retired == true"

"iif(Person.Age > 4, Person.Name == \"Bob\", Person.Name == \"Tim\") || (Person.Age > 3

&& Person.Weight > 50) || Person.Age != 3"

@"Person.Weight > 115 || (Person.Age > 3 && Person.Weight > 50) || Person.Age != 3"

@"Person.Weight > 115 OR (Person.Age > 3 AND Person.Weight > 50) OR Person.Age != 3"

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 94 of 142

6.4 LINQ vs DynamicExpressions

You have many options choosing how to query the data available within the indexes. There are benefits
of each query language.

Comparing Queries ->

LINQ
var index = this.InitializeIndex();

 var queryable = index.CreateSearchContext().GetQueryable<Contact>();

 var query = queryable.Where(i => i.Region == "BRI");

 Assert.AreEqual(1, query.Count());

DynamicExpression
var index = this.InitializeIndex();

 var queryable = index.CreateSearchContext().GetQueryable<Contact>();

 var p1 = Expression.Parameter(typeof(IQueryable<Contact>), "queryable");

 var e = DynamicExpression.ParseLambda(new[] { p1 }, null,

"queryable.Where(Region == @0)", "BRI");

 var results = e.Compile().DynamicInvoke(queryable) as IQueryable<Contact>;

 Assert.AreEqual(results.Count(), 1);

The main difference is that with the DynamicExpression you build up an Expression Tree using a known
format very similar to LINQ queries, however in the form of a string.

Currently we do not support every single method on IQueryable/IEnumerable in the DynamicExpression
library. Therefore, you need to create code stubs to be able to detect if you need to run a certain method
and simply inject the values into the LINQ queries.

6.4.1 Example Dynamic Queries

When you create the Dynamic Queries, you must consider the following when you use them:

 TInner, TOuter and TResult

 Casting

 Supported IEnumerableSignatures

 Parameters

 DynamicInvoke

DynamicExpression is a static class that has a method called ParseLambda(). This is the main method
you use to resolve your string queries. ParseLambda takes an array of ParameterExpression, a return
Type, the string query and finally, optional parameters. To turn it into an IQueryable you need to compile
and invoke this and then cast it to the TOuter type.

var index = this.InitializeIndex();

 var queryable = index.CreateSearchContext().GetQueryable<Contact>();

 var p1 = Expression.Parameter(typeof(IQueryable<Contact>), "queryable");

 var e = DynamicExpression.ParseLambda(new[] { p1 }, null, "queryable.Where(Region ==

@0)", "KBH");

var blah = e.Compile().DynamicInvoke(queryable) as IQueryable<Contact>;

Explanation of this code

The first line builds up some dummy data to query on. In real-life, you will open a search context to an
already existent index.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 95 of 142

The second line tells the search context that you will be searching for the Contact model. Therefore it will
give you the Intellisense to work on that object.

The third line of code calls DynamicExpression.ParseLambda and tells the string that “queryable” is of
type IQueryable<Contact>. Therefore, when parsing it, it is assumed that Region is a property on the

Contact Model. Notice that you do not need to specify the full lambda i.e. p => p.Region == @0.

The last line compiles the expression tree and invokes the expression to run, given the queryable
parameter and then cast the result as an IQueryable<Contact>.

This is all it takes to turn your query of "queryable.Where(Region == \”KBH\”)" into an
IQueryable<Contact>.

6.4.2 Complex Examples of Dynamic Queries

This is an example of injecting a value that is not a string but an integer. When you do it this way, the
objects can guarantee the right type.

 var e = DynamicExpression.ParseLambda(new[] { p1 }, null,

"queryable.Where(EngagementValue <= @0)", 43);

This is an example of joining two queryable instances within a string.

 var e = Sitecore.ContentSearch.Utilities.DynamicExpression.ParseLambda(new[] { q1, q2

}, null, "queryable.Where(BusinessName.Contains(@0)).Join(\"X\", queryable1, \"Y\",

\"X.ContactId\", \"Y.ContactId\", \"X\")", "r");

The following methods are supported as methods in the DynamicExpression library

 void All(bool predicate);

 void Any();

 void Any(bool predicate);

 void Average(int selector);

 void Average(int? selector);

 void Average(long selector);

 void Average(long? selector);

 void Average(float selector);

 void Average(float? selector);

 void Average(double selector);

 void Average(double? selector);

 void Average(decimal selector);

 void Average(decimal? selector);

 void Contains(object selector);

 void Count();

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 96 of 142

 void Count(bool predicate);

 void DefaultIfEmpty();

 void Equal(object selector);

 void Filter(object predicate);

 void Filter(bool predicate);

 void First();

 void First(bool predicate);

 void Join(object predicate, object selector, object selector1, object selector2);

 void Join(object predicate, object selector, object selector1, object selector2, object selector3,
object selector4);

void GroupJoin(object predicate, object selector, object selector1, object selector2);

void GroupJoin(object predicate, object selector, object selector1, object selector2, object
selector3, object selector4);

void Max(object selector);

void Min(object selector);

void OrderBy(object selector);

void OrderByDescending(object selector);

void SelfJoin(object predicate, object selector, object selector1);

void SelfJoin(object predicate, object selector, object selector1, object selector2, object
selector3);

void Single();

void Single(bool predicate);

void Sum(int selector);

void Sum(int? selector);

void Sum(long selector);

void Sum(long? selector);

void Sum(float selector);

void Sum(float? selector);

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 97 of 142

void Sum(double selector);

void Sum(double? selector);

void Sum(decimal selector);

void Sum(decimal? selector);

void ThenBy(object selector);

void ThenByDescending(object selector);

void Where(bool predicate);

void Where(object predicate);

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 98 of 142

6.5 Embedded/Collapsed Types

If you query and use a type uses the collapsed fields OR embedded types, as for example:

public class Contact {

public string Name { get; set; }

public Guid ContactId { get; set; }

public EngagementState EState {get; set;}

}

public class EngagementState {

public string Name { get; set; }

public Guid ContactId { get; set; }

public Guid Id { get; set; }

}

then you must add a Constructor for the sub types so that the document mapper can set the properties
for them, in this way:

public class Contact {

public string Name { get; set; }

public Guid ContactId { get; set; }

public EngagementState EState {get; set;}

public Contact() {

EState = new EngagementState();

}

}

public class EngagementState {

public string Name { get; set; }

public Guid ContactId { get; set; }

public Guid Id { get; set; }

}

In this way, when you want to output the property values for something like i.EState.Name then the
property will be filled (if it exists with the index and is stored) and the EState will not be null.

This should be the same when you have many nested or nested within nested. Each level should
construct the subdocument objects so they can be filled.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 99 of 142

6.6 Other features

6.6.1 Showing Percentage of Audience

You can show the percentage of people in a segment compared to all other segments quite easily.

You have to use two queries to do this.

First, you need to find out how many of the documents in your index represent a contact. You can do this
by storing a field that keeps track of the document type or template. You can cache this because even if
your document size changes, it probably does not change drastically. The small amount that the resulting
percentage could be wrong is a minor inconvenience compared to the overhead of running an extra
query.

Secondly, you run another query that filters the list and then just run GetResults() at the end of the LINQ
statement. This will give you your hits and the hit counts. Just divide the hitCount by the total number and
this is your percentage.

6.6.2 Get Number of Results

You can avoid running two queries when you need both the results of a query as well as the count of the
results. The GetResults() method of IQueryable gives you the results and the count in one call.

6.6.3 Get All Fields from an Index

This can be used for Solr as well as for Lucene. The following call:

ContentSearchManager.GetIndex(“Index_Name”).Schema.AllFieldNames

returns a collection of Strings that you can show in a UI. It brings back all (hard-coded) fields with in the
index – not just for one document.

6.6.4 Get All Facets from an Index

This corresponds to Get All Fields from an Index. You can use all fields of an index for a facet, but you
have to selective. A field that can have many different field values is not a good candidate for a facet. You
may also want to store different fields for field queries and facet queries because the tokenization that
Sitecore does each field could differ.

6.6.5 Get All Autocomplete fields from an Index

This corresponds to Get All Fields.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 100 of 142

6.7 NGram Support (Autocomplete)

Sitecore ships with an N-Gram Analyzer for Lucene.Net:
Sitecore.ContentSearch.LuceneProvider.Analyzers

If you use Solr, you can set this up in the Solr Schema.xml file.

You typically use the Ngram Analyzer for autosuggest. It breaks up tokens into unigrams, bigrams,
trigrams, and so forth. Users can type a word, and the NGram Analyzer looks that word up in different
positions with the tokens that it generates.

You add support for autosuggest by adding a new field to the index and mapping this field to use the
NGram Analyzer instead of the default. When you run the LINQ query to query that field, use the following
code:

using (IProviderSearchContext context = Index.CreateSearchContext())

 {

 result = context.GetQueryable<SearchResultItem>().

 .Where(i => i.Name.StartsWith(“some”))

 .Take(20)

 .ToList();

 }

Sitecore ships with an implementation that uses Tri-Grams (3) and the English Stop Word set. If your
requirements are different, you can build a new Analyzer and change these settings.

There is an example of how to do this here:

https://www.youtube.com/watch?feature=player_detailpage&v=T-B3gAypUzo&t=3255

https://www.youtube.com/watch?feature=player_detailpage&v=T-B3gAypUzo&t=3255

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 101 of 142

6.8 IndexCrawler

The IndexCrawler is a crawler that takes an already existing index and runs a group of functions over it.
The IndexCrawler inherits from the FlatDataCrawler<T> so it can take a big list of IIndexables and can
iterate through them and run a function on that IIndexable and then commit it back to the index.

Here is an example of its use: Go through every document in the index and add “!!” to the name of every
document.

 var crawler = new IndexCrawler(this.sourceIndexName);

 crawler.CrawlFunctions += this.CallMe;

 this.DestinationIndex.AddCrawler(crawler);

 this.DestinationIndex.Rebuild();

 public IEnumerable<IIndexable> CallMe(IProviderSearchContext context)

 {

 var list = new List<IIndexable>();

 foreach (var item in context.GetQueryable<InsertDocument>())

 {

 item.Name = item.Name + "!!";

 list.Add(new ObjectIndexable(item, null));

 }

 return list.AsEnumerable();

 }

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 102 of 142

6.9 Observing Aggregation Data - Best Practice

This section contains some best practices for observing aggregation data.

6.9.1 Definitions

 ObservableAggregator<T> - An special instance of an AggregationProcessor which

implements the IObservable<T> interface.

 ObserverCrawler<T> - A special instance of a FlatDataCrawler<T> which implements the

IObserver<T> interface.

 T - For both of the above is a type of IIndexable that may be inserted into an index.

6.9.2 Overview

Aggregation data is accessible through the Aggregation pipeline. To listen to the data you add an

AnalyticsVisitAggregator to the pipeline processor collection. This processor implements

ObservableAggregator<T>: each time the aggregator observes data, it publishes the data to its

subscribers.

When an index is configured in Sitecore it has one or more crawlers associated with it. An

ObserverCrawler<T> can be associated with an index and will subscribe to an

ObservableAggregator<T>. In this way, items published by the aggregator will be received by the

observer and made available to the index when an index operation is called.

This allows the crawler to receive data in a near real-time fashion.

When an index is manually rebuilt or an index strategy is triggered, the data which the crawler has
observed will be made available to the index.

6.9.3 ObservableAggregator<T>

Implementation

The ObservableAggregator<T> inherits from the AggregationProcessor class. It is implemented

as an abstract so cannot be instantiated directly.

Properties

The following properties are exposed:

 Name - The name of the ObservableAggregator<T>. Used by instances of

ObserverCrawler<T> to identify the correct aggregator when subscribing.

 ObserverCount - The number of currently registered observers

Constructor

The constructor takes a single string parameter and it uses this to set the Name property.

http://msdn.microsoft.com/en-us/library/dd990377.aspx
http://msdn.microsoft.com/en-us/library/dd783449.aspx

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 103 of 142

Methods

Aside from the methods exposed by the AggregationProcessor class, you can override the following

methods:
IDisposable Subscribe(IObserver<T> observer)

void Abort

abstract T ResolveIndexable(AggregationPipelineArgs args)

Note

ResolveIndexable is an abstract method and you must implement it in a superclass.

Custom Class

To implement your own class, inherit from ObservableAggregator<T> providing the IIndexable

type and implement the ResolveIndexable abstract method.

The AnalyticsVisitAggregator used for xDB data is defined below:

public class AnalyticsVisitAggregator: ObservableAggregator<VisitIndexable>

{

 public AnalyticsVisitAggregator(string name) : base(name) {}

 protected override VisitIndexable ResolveIndexable(AggregationPipelineArgs args)

 {

 return new VisitIndexable(args.Context);

 }

}

In the ResolveIndexable method you create a new instance of the indexable type VisitIndexable.

This type takes the context from the given args parameter and returns the new VisitIndexable. If

you create your own aggregator, you probably want to resolve all data for your indexable here and pass
in to the indexable constructor.

Configuration

You configure aggregators configured in XML configuration include files by adding a reference to the

Aggregation pipeline.

The following adds an AnalyticsVisitAggregator to the collection of processors (this is in the file

Sitecore.ContentSearch.Analytics.Processing.Aggregation.config):

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">

 <sitecore>

 <pipelines>

 <aggregation>

 <processor type="Sitecore.ContentSearch.Analytics.Aggregators.AnalyticsVisitAggregator,

Sitecore.ContentSearch.Analytics">

 <param desc="name">VisitObservable</param>

 </processor>

 </aggregation>

 </pipelines>

 </sitecore>

</configuration>

6.9.4 ObserverCrawler<T>

Implementation

The ObserverCrawler<T> inherits from the FlatDataCrawler<T> class, implementing the base

class methods as required.

Properties

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 104 of 142

The ObserverCrawler<T> requires the following properties to be set before you call the Initialize

method:

 ObservableName - This is the name of the IObservable<T> that the crawler will subscribe to

 CrawlerName - This is the name of the ObserverCrawler<T> instance itself.

Methods

Aside from the FlatDataCrawler<T> methods, the ObserverCrawler<T> exposes the following

overridable methods:

void OnNext(T value)

void OnError(Exception error)

void OnCompleted()

void SubscribeTo(string name, object observable)

void Unsubscribe()

void ResolveObservable()

Custom Class

To implement a custom class, inherit the base ObserverCrawler<T> class, and provided the

IIndexable type you want processed.

The AnalyticsVisitCrawler used for xDB data aggregation is defined below.

namespace Sitecore.ContentSearch.Analytics

{

 public class AnalyticsVisitCrawler: ObserverCrawler<VisitIndexable>{}

}

Note
The base implementation of all methods is all that is required. In general, you will not need to change how
they function.

Configuration

You can configure crawlers at start-up ye providing details in the XML configuration include files.

The following adds an AnalyticsVisitCrawler to the Lucene configuration for the

sitecore_atlas_index (this is contained in the file Sitecore.ContentSearch.Lucene.Index.xAtlas.config)

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">

 <sitecore>

 <contentSearch>

 <configuration>

 <indexes hint="list:AddIndex">

 <index id="sitecore_atlas_index"

type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex, Sitecore.ContentSearch.LuceneProvider">

 <!-- ... other configuration ... -->

 <locations hint="list:AddCrawler">

 <crawler type="Sitecore.ContentSearch.Analytics.Crawlers.AnalyticsVisitCrawler,

Sitecore.ContentSearch.Analytics">

 <CrawlerName>Lucene Visit Crawler</CrawlerName>

 <ObservableName>VisitObservable</ObservableName>

 </crawler>

 </locations>

 </index>

 </indexes>

 </configuration>

 </contentSearch>

 </sitecore>

</configuration>

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 105 of 142

Note

The ObservableName parameter matches the value given to the name of the aggregator configured

earlier.

6.9.5 Filtering

Instances of ObservableAggregator<T> can be configured to filter out items that should not be sent

to observers. The global pipeline aggregation.filter.inbound is used by all observables.

Additional observable specific pipelines can be added too.

Configuration

You can implement the global aggregation filter in XML. The following adds two filters, one filters out by
contact id, the other by the path visited:

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">

 <sitecore>

 <pipelines>

 <!-- global aggregation inbound filters-->

 <aggregation.filter.inbound>

 <processor

type="Sitecore.ContentSearch.Analytics.Pipelines.AggregationFilters.InboundContactIdFilter,

Sitecore.ContentSearch.Analytics">

 <filters hint="list:AddFilter">

 <filter>ca82109f-30cd-4414-956e-caea41c7510c</filter>

 </filters>

 </processor>

 <processor

type="Sitecore.ContentSearch.Analytics.Pipelines.AggregationFilters.InboundVisitPathFilter,

Sitecore.ContentSearch.Analytics">

 <filters hint="list:AddFilter">

 <filter>/default.aspx</filter>

 </filters>

 </processor>

 </aggregation.filter.inbound>

 </pipelines>

 </sitecore>

</configuration>

Note
You can configure each processor above with multiple <filter> values.

Observable specific filter

In addition to the global filter pipeline, you can configure an observable specific pipeline. If you configure

an observable called DefaultObservable, you simply configure a pipeline called

defaultobservable.filter.inbound.

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">

 <sitecore>

 <pipelines>

 <!-- define the aggregator -->

 <aggregation>

 <processor patch:before="*[1]"

 type="Sitecore.ContentSearch.Analytics.AnalyticsObservableAggregator,

Sitecore.ContentSearch.Analytics">

 <!-- here we name the aggregator -->

 <param desc="name">DefaultObservable</param>

 </processor>

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 106 of 142

 </aggregation>

 <!-- specific inbound filter for an aggregator -->

 <!-- we use the aggregator name from above in the pipeline name -->

 <defaultobservable.filter.inbound>

 <processor

type="Sitecore.ContentSearch.Analytics.Pipelines.AggregationFilters.InboundVisitPathFilter,

Sitecore.ContentSearch.Analytics">

 <filters hint="list:AddFilter">

 <filter>/other.aspx</filter>

 </filters>

 </processor>

 </defaultobservable.filter.inbound>

 </pipelines>

 </sitecore>

</configuration>

The configuration uses exactly the same processor types used in the global pipeline. The processors

used in this pipeline are only applied when the DefaultObservable processor is filtering items.

6.9.6 IIndexable

Both the ObservableAggregator and the ObserverCrawler are generic and they require that you

provide that implements IIndexable when implementing.

The indexable provided encapsulates all the data required to be inserted into an index.

Custom Class

To implement a custom class, inherit the base IHashedIndexable class. You have to populate several

properties because they are required by all items that are indexed:

Id

UniqueId

DataSource

AbsolutePath

Culture

Taking the VisitIndexable as an example, the properties are set in the constructor as follows:

public VisitIndexable(IVisitAggregationContext context)

{

 Id = (IndexableId<Guid>) context.Visit.InteractionId;

 UniqueId = (IndexableUniqueId<Guid>) context.Visit.InteractionId;

 DataSource = "sitecore_aggregation";

 AbsolutePath = string.Empty;

 Culture = CultureInfo.CurrentCulture;

 LoadFields(context);

}

Note

We pass an instance of IVisitAggregationContext into the constructor as this is what the xDB

pipeline makes available to the Aggregator. It is the aggregator that creates an instance of the indexable.

Setting the fields to index

At the end of your VisitIndexable constructor, you call LoadFields. All fields are loaded into the

object here so that all subscribers receive a complete object with no additional data to populate. If the
object was published to five subscribers and then populated with additional data, five additonal calls per
object would be made. This has a negative impact on performance.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 107 of 142

Adding a property as an indexable field

Instances of IIndexable will have a property IEnumerable<IIndexableDataField> Fields. This

collection contains all the fields to be indexed for the item.

Because you are not working with a Sitecore item but an actual object that you want to populate, this
collection with the object properties. For convenience, you can use the

IndexableDataField.CreateFromProperties static method.

For example:

var visit = context.Visit;

var fields = IndexableDataField.CreateFromProperties(visit, string.Empty, "StartDateTime",

"EndDateTime");

Fields.AddRange(fields);

The above code takes the visit from the given context and passes it to our static method. It also passes
the names of two properties (StartDateTime and EndDateTime).

The result of the call will be a collection of IIndexableDataField that contains two entries. One for a

field called StartDateTime and one for a field called EndDateTime. These items are then added to the

IIndexable Field collection.

Adding a property as a collapsed field

If you want to use the CollapsedIndexFieldAttribute in your result objects, you can pass the

name of the collapsed field into the static method call:

var operatingSystem = ontext.Visit.OperatingSystem;

var fields = IndexableDataField.CreateFromProperties(operatingSystem, "os", "Name",

"MajorVersion", "MinorVersion");

Fields.AddRange(fields);

In the above call, the names of the fields created will be os.Name, os.MajorVersion,
os.MinorVersion

Note
You are not required to use collapsed fields: they are only an option.

6.9.7 Indexing

When using observable crawlers you need to consider the implications of an index operation.

Observable crawlers constantly listen for new items. As a crawler receives notice of a new item it will
cache the item in memory until an index operation is processed.

This has the following implications:

 Rebuilding: If you rebuild your index (clear all existing content and index new items) only the
items currently held by the crawler will be inserted.

 Index Frequency: As each crawler will cache each crawled item in memory, you should index at
a consistent frequency to ensure that items are flushed from memory before the memory usage
becomes too large.

 Update only: As your source of data is only a feed and you do not have access to all the data at
once, you should only call update methods on your index.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 108 of 142

6.9.8 TimedIndexRefreshStrategy

To resolve the issues discussed above you can use the TimedIndexRefreshStrategy on an index.

This strategy refreshes an index with data from the crawlers, but it does not cause the index to be reset.

Configuration

To configure the strategy, set in the xml configuration as follows:

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">

 <sitecore>

 <contentSearch>

 <configuration>

 <indexes hint="list:AddIndex">

 <index id="sitecore_atlas_index"

type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex, Sitecore.ContentSearch.LuceneProvider">

 <!-- ... other configuration ... -->

 <strategies hint="list:AddStrategy">

 <timed type="Sitecore.ContentSearch.Analytics.TimedIndexRefreshStrategy,

Sitecore.ContentSearch.Analytics">

 <param desc="interval">00:01:00</param>

 </timed>

 </strategies>

 <locations hint="list:AddCrawler">

 <crawler type="Sitecore.ContentSearch.Analytics.AnalyticsObserverCrawler,

Sitecore.ContentSearch.Analytics">

 <ObservableName>DefaultObservable</ObservableName>

 <CrawlerName>Lucene Crawler</CrawlerName>

 </crawler>

 </locations>

 </index>

 </indexes>

 </configuration>

 </contentSearch>

 </sitecore>

</configuration>

Note

You must provide the interval parameter. Here it is configured to run every minute.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 109 of 142

6.10 Building a custom UI with a rule style

To build a UI similar to the one shown above, you can use the existing rules engine that ships with
Sitecore, but it is a better solution to use the new DynamicExpressions that takes a string and turns it into
an IQueryable.

The UI developers have to build the string and send it to the server. Your server side code is responsible
for calling the DynamicExpressions with the string.

You can also implement functionality to fill drop-downs with the appropriate values. This involves server
calls so consider caching these queries. This works well because the field values probably do not change
very often. You cache for a specified time interval.

To populate the “Attribute” dropdown, please look earlier in this document for the information on “Get all
Fields from an Index”.

You can use the following code to populate the Value:

var index = ContentSearchManager.GetIndex(“index_name”);

 using (var context = index.CreateSearchContext())

 {

 return context.GetTermsByFieldName("fieldname", prefix).Select(x =>

x.Term).ToList();

 }

The prefix allows you to pass in some characters if the user has already started typing.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 110 of 142

6.11 Rule to IQueryable

Sitecore provides a rules implementation that allows you to convert certain rules into an IQueryable. The
idea is that you build up rules and that your UI triggers that RuleContext to run. The Context will contain
the IProviderSearchContext and the IQueryable, so before the rule context is run, the IQueryable is
empty. After it has run, it has the predicates that have been built up. The Rule Context is called the
QueryableRuleContext.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 111 of 142

6.12 Queries

6.12.1 Full Text Query

You create full text queries by using LINQ over the aggregated field called “content”. This field aggregates
other field values into this one field. This effectively gives you full text query over the index. When you
want to append your values to this field, you either do this with a computed field or simply do this in code:

return context.GetQueryable<SearchResultItem>().Where(i =>

i.Content.Contains(“Tim”)).Take(10).ToList();

return context.GetQueryable<SearchResultItem>().Where(i =>

i[“_content”].Contains(“Tim”)).Take(10).ToList();

6.12.2 Field Query

Field queries are run through the LINQ layer.

return context.GetQueryable<SearchResultItem>().Where(i =>

i.Name.StartsWith(“Tim”)).Take(10).ToList();

return context.GetQueryable<SearchResultItem>().Where(i =>

i[“_name”].StartsWith(“Tim”)).Take(10).ToList();

6.12.3 Performance Expectations

Some queries that you wrote with LINQ will be expensive to run. You have to test you LINQ queries under
load to see how they perform.

To test, you can use the LinqScratchPad or LINQPad to write and test the performance of your queries
without touching a line of code. You will have to plan your UI around this fact and for any query that is
long running, you have to make sure your server side calls are asynchronous.

Warnings
Currently, JOIN queries will result in the COUNT of hits being the count of the original query (outer) and
not the combination of the outer and the inner. This is simply because the performance implications of
doing this with the technology used is too great. Instead, we recommend that you give approximations of
results for JOIN and GROUPJOIN queries. All other types of queries are 100% supported for getting the
exact hit count.

Recommendation
When running the queries you wish to run on your UI, make sure that you also take a look at the process
being run and how much I/O, memory and CPU is being used. For expensive LINQ queries these values
will spike and you to ensure that your machines are robust enough to handle these types of queries.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 112 of 142

Chapter 7

Crawlers

This chapter discusses crawlers.

 Types of crawler

 Defining what is crawled

 The Cleanup Pipeline

 Configuration

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 113 of 142

7.1 Types of crawler

Atlas adds ObservableCrawlers to Sitecore indexing.

You use the ObservableCrawler to subscribe to a feed. It crawls the data that flows through until you
unsubscribe the feed from the ObservableCrawler.

You must configure the crawler to tell it where to crawl, how to crawl, and what to crawl.

An example:

<fieldNames hint="raw:AddFieldByFieldName">

 <field fieldName="businessname" storageType="YES" indexType="TOKENIZED"

vectorType="NO" boost="1f" type="System.String"

settingType="Sitecore.ContentSearch.LuceneProvider.LuceneSearchFieldConfiguration,

Sitecore.ContentSearch.LuceneProvider">

 <Analyzer

type="Sitecore.ContentSearch.LuceneProvider.Analyzers.LowerCaseKeywordAnalyzer,

Sitecore.ContentSearch.LuceneProvider" />

 </field>

 <field fieldName="location" storageType="YES" indexType="TOKENIZED" vectorType="NO"

boost="1f" type="System.String"

settingType="Sitecore.ContentSearch.LuceneProvider.LuceneSearchFieldConfiguration,

Sitecore.ContentSearch.LuceneProvider">

 <Analyzer

type="Sitecore.ContentSearch.LuceneProvider.Analyzers.LowerCaseKeywordAnalyzer,

Sitecore.ContentSearch.LuceneProvider" />

 </field>

</fieldNames>

This tells the crawler that to store and index using the LowerCaseKeywordAnalyzer when it crawls the

“businessname” and “location” fields.

If you do not specify any mappings then it will take the default based off the TYPE of the property. Telling
the index HOW to store the data is completely up to the client. How you store and index your data will
determine what is possible when you query the data.

The crawler can only index the data you give it. It does not look up data based on IDs: it simply takes an
object and stores it. Sitecore has pipelines that you can use to manipulate data, but these pipelines are
empty. They are entry points for you to use.

Therefore, if you want to store fields, your crawler must acquire this information. You should not store the
ID references and then lookup later. We do not recommend this for performance reasons.

There is a list field names here: Field Names.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 114 of 142

7.2 Defining what is crawled

Sitecore can crawl instances of IIndexable. IIndexable has many other interfaces that make it possible to
crawl fields, set a unique ID,and so forth. Your crawler needs to conform to this interface for us to
understand it.

For example, if you want to crawl a Contact in xDB, you need an IIndexable implementation similar to
this:

public class ContactIndexable: AbstractIndexable

 {

 public ContactIndexable(IVisitAggregationContext context)

 {

 Id = (IndexableId<Guid>)context.Contact.ContactId;

 UniqueId = (IndexableUniqueId<Guid>)context.Contact.ContactId;

 DataSource = "sitecore_aggregation";

 AbsolutePath = string.Empty;

 Culture = CultureInfo.CurrentCulture;

 LoadFields(context);

 }

 private void LoadFields(IVisitAggregationContext context)

 {

 var fields = new List<IIndexableDataField>

 {

 new IndexableDataField<string>("type", "contact")

 };

 var fieldNames = new[] {"IdentificationLevel", "Classification",

"VisitCount", "Value", "ContactId", "ExternalUser", "IntegrationLabel"};

 fields.AddRange(IndexableDataField.CreateFromProperties(context.Contact,

"contact", fieldNames));

 this.Fields = fields;

 }

 public override void LoadAllFields()

 {

 // do nothing

 }

 }

Atlas gives Sitecore implementations of crawlers, aggregators and indexables under the
Sitecore.ContentSearch.Analytics namespace.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 115 of 142

7.3 The Cleanup Pipeline

Sitecore executes the Cleanup pipeline every time an item is added to or updated in the index. This
pipeline will be passed the IIndexable and the IProviderUpdateContext. The UpdateContext is passed
through, and you can use it to update, merge, or deduplicate the row in question. It is up to you to open
an IProviderSearchContext if you need to look up an index. Because you are passed an IIndexable you
can use this to fetch the context index using ContentSearchManager.GetIndex(IIndexable). We have
added a Hash property to the IIndexable which allows you to look up a document in an index to see if the
hash is the same. You can use the Hash to quickly determine if a field in a document has changed or if
two documents are identical in all their fields.

Sitecore generates the Hash when it is indexing and the Hash changes when a document changes. If you
find a match on the Hash, you know that you have found an exact match and you can use this to skip the
update.

If you look up an item with the UniqueID and the Hash is different, then you know that the values of the
fields are different as well. You can use this logic to then lookup some field values and determine which
ones you should merge, update or skip in the update.

An example would be that you get a new row of data from the crawler, and you look up the index via the
UniqueID and the Hash. If you can find the UniqueID but the hash is different, you know that there is a
difference in the fields and that you go into “cleanup mode”. It is completely up to you as to how to
cleanup. For example, if the email fields are different, you will use the latest value. The logic would look
something like this pseudocode:

If Unique ID == uniqueid && Hash != indexable.Hash

Then you know that a field has changed

Lookup the First() result of the IQueryable and compare their email field.

If the value of the first field is hello@hell.com and the second is chris@ebay.com

Then update the row to be chris@ebay.com and commit that

The cleanup pipeline is open and can have as many processors as it needs. To create a new processor,
follow these steps:

1. Create a class called “ECMCleanupStrategy.cs”

Implement the CleanUpProcessor class

namespace Sitecore.ContentSearch.Pipelines.CleanUp

{

 public class SubscriberDeduplication : CleanUpProcessor

 {

 public override void Process(CleanUpArgs args)

 {

 //Place code in here that will determine if the args.Indexable is different

to one that already exists within the Index or another datasource, how it will merge the fields

so that the correct data goes into the index.

 }

 }

}

3. Place this into the config to run.

 <contentSearch.CleanUp>

 <processor

 type="Sitecore.ContentSearch.Pipelines.CleanUp.SubscriberDeduplication,

 Sitecore.Extensions"/>

</contentSearch.CleanUp>

mailto:hello@hell.com
mailto:chris@ebay.com
mailto:chris@ebay.com

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 116 of 142

2. Either start a rebuild or simply re-establish the subscribe on the observable crawler by calling the
Subscribe method through code.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 117 of 142

7.4 Configuration

You can configure crawlers at start-up in the XML configuration include files like this:

The following adds multiple ObservableCrawlers to the Lucene configuration for the sitecore_atlas_index:

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">
 <sitecore>
 <contentSearch>
 <configuration>
 <indexes hint="list:AddIndex">
 <index id="sitecore_atlas_index" type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex,
Sitecore.ContentSearch.LuceneProvider">
 <!-- ... other configuration ... -->

<locations hint="list:AddCrawler">
 <crawler type="Sitecore.ContentSearch.Analytics.Crawlers.AnalyticsVisitCrawler,

Sitecore.ContentSearch.Analytics">
 <CrawlerName>Lucene Visit Crawler</CrawlerName>
 <ObservableName>VisitObservable</ObservableName>
 </crawler>
 <crawler type="Sitecore.ContentSearch.Analytics.Crawlers.AnalyticsVisitPageCrawler,

Sitecore.ContentSearch.Analytics">
 <CrawlerName>Lucene Visit Page Crawler</CrawlerName>
 <ObservableName>VisitPageObservable</ObservableName>
 </crawler>
 <crawler

type="Sitecore.ContentSearch.Analytics.Crawlers.AnalyticsVisitPageEventCrawler,
Sitecore.ContentSearch.Analytics">

 <CrawlerName>Lucene Visit Page Event Crawler</CrawlerName>
 <ObservableName>VisitPageEventObservable</ObservableName>
 </crawler>
 <crawler type="Sitecore.ContentSearch.Analytics.Crawlers.AnalyticsContactCrawler,

Sitecore.ContentSearch.Analytics">
 <CrawlerName>Lucene Contact Crawler</CrawlerName>
 <ObservableName>ContactObservable</ObservableName>
 </crawler>
 <crawler type="Sitecore.ContentSearch.Analytics.Crawlers.AnalyticsContactTagCrawler,

Sitecore.ContentSearch.Analytics">
 <CrawlerName>Lucene Contact Tag Crawler</CrawlerName>
 <ObservableName>ContactTagObservable</ObservableName>
 </crawler>
 </locations>

 </index>
 </indexes>
 </configuration>
 </contentSearch>
 </sitecore>
</configuration>

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 118 of 142

Chapter 8

Configuration and Tuning

This chapter describes some of the configuration files that are used for item buckets, as
well as some tools that can help tune performance.

 Configuration Files

 Scaling Test Tool

 Index Analyzer

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 119 of 142

8.1 Configuration Files

Item Buckets has a Sitecore.Buckets.config file that contains configuration settings. This file is

mainly documented by the comments inside the file itself.

Custom Index

This configuration declares a new index called buckets. It then uses a custom crawler to tokenize and list
the field types. This enables you to search within list items.

<search>

 <configuration>

 <indexes>

 <index id="buckets" type="Sitecore.Search.Index, Sitecore.Kernel">

 <param desc="name">$(id)</param>

 <param desc="folder">buckets</param>

 <Analyzer ref="search/analyzer" />

 <locations hint="list:AddCrawler">

 <ItemSearch

type="Sitecore.ItemBucket.Kernel.Crawlers.CustomCrawler,Sitecore.ItemBucket.Kernel">

 <Database>master</Database>

 <Root>/sitecore/content</Root>

 <IndexAllFields>true</IndexAllFields>

 <fieldTypes hint="raw:AddFieldTypes">

 <fieldType name="multilist" storageType="NO" indexType="TOKENIZED"

vectorType="NO" boost="1f" />

 <fieldType name="treelist" storageType="NO" indexType="TOKENIZED"

vectorType="NO" boost="1f" />

 <fieldType name="treelistex" storageType="NO" indexType="TOKENIZED"

vectorType="NO" boost="1f" />

 <fieldType name="checklist" storageType="NO" indexType="TOKENIZED"

vectorType="NO" boost="1f" />

 <fieldType name="tree list" storageType="NO" indexType="TOKENIZED"

vectorType="NO" boost="1f" />

 </fieldTypes>

 <include hint="list:ExcludeTemplate">

 <layout>{ADB6CA4F-03EF-4F47-B9AC-9CE2BA53FF97}</layout>

 </include>

 </ItemSearch>

 </locations>

 </index>

 </indexes>

 </configuration>

 </search>

Custom Cache

Some preliminary work has been done to preconfigure the cache levels for a site that contains 100,000
items or more. You may need to tweak these numbers depending upon the number of items in your
content tree. For more information, see the Sitecore Search Scaling Guide.

<database id="master" singleInstance="true" type="Sitecore.Data.Database, Sitecore.Kernel">

 <cacheSizes hint="setting">

 <data>100MB</data>

 <items>100MB</items>

 <paths>4MB</paths>

 <standardValues>4MB</standardValues>

 </cacheSizes>

 </database>

 <!-- web -->

 <database id="web" singleInstance="true" type="Sitecore.Data.Database, Sitecore.Kernel">

 <cacheSizes hint="setting">

 <data>20MB</data>

 <items>20MB</items>

 <paths>4MB</paths>

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 120 of 142

 <standardValues>4MB</standardValues>

 </cacheSizes>

 </database>

Custom Settings

The Sitecore.Buckets.config file contains some custom settings. They are inside the <settings>

...</settings> and they are documented in the file itself.

The Sitecore web.config file contains the following setting:

 <setting name="Indexing.UpdateInterval" value="00:00:30"/>

//This is the index update interval that is set when unstructured items are created, deleted,

modified etc. in the Web database. If you have item creation, deletion or modification on your

Web database, the items won´t automatically be included in your index. This interval determines

how often the index is updated on the Web database. This is necessary once you start working with

over 100,000 unstructured items in your index.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 121 of 142

8.2 Scaling Test Tool

Sitecore comes with a tool that allows you to test the scalability of your new search providers or the way
the way the indexes have been set up. You can also use this tool to test facets, new search types, new
query types, and the way your indexes are cached in large content environments.

To enable this tool:

1. Go to the Sitecore rev. xxx\Website\sitecore\admin\sqlscripts folder.

2. Run the ItemGenerator.sql script on the databases in your test environment.

3. Create a folder in your data directory called “words” and then place some .txt files in here for
dummy data.

For example, use some of the freely available books on the net in .txt format.

In a browser, open http://<sitename>/sitecore/admin/FillDB.aspx and fill in the form and then run. After
the process has finished, reset IIS and your newly items will appear in the content tree. The tool will
create approximately 120,000 items in 10 seconds.

We recommend that you disable the FillDB.aspx page in a production environment. You do this in the
config file:

 <setting name="EnableFillDB" value="false" />

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 122 of 142

8.3 Index Analyzer

Every index uses the default analyzer — StandardAnalyzer. An analyzer is a software component that is
used for writing and querying the index as well. The analyzer determines how things are stored and how
things are queried.

The StandardAnalyzer:

 Ensures that all the search queries and values in the index are in lowercase.

 Splits up bodies of text into small chunks.

 Removes any unnecessary stop words, such as, the, is and any other words that typically don’t
add any value to a search query.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 123 of 142

8.4 Scaling with Placeholders

Because that you could potentially have many items in an item bucket, you need to make sure that you
set placeholder settings for all the placeholders within your site, or you will get a performance decrease in
the Page Editor. This will prevent Sitecore from having to search for components that can be added –
they are already known.

To do this, assign a placeholder settings item for each placeholder on the page like this:

1. Click the Presentation tab, and then click Details in the Layout Group.

2. Click Edit for the layout, and then add the placeholder settings you need:

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 124 of 142

8.5 Indexing

You need to consider the implications of an index operation when you use observable crawlers.
Observable crawlers listen for new items constantly. As a crawler receives notice of a new item, it will
cache it in memory until an index operation is processed.

This has the following implications:

1. If you rebuild your index (clear all existing content and index new items) only the items currently
held by the crawler will be inserted.

2. As each crawler will cache each crawled item in memory, you should index at a consistent
frequency to ensure the items are flushed from memory before the memory usage grows too
large.

3. As your source of data is a feed and you do not have access to all the data at once, you should
only call update methods on your index.

8.5.1 TimedIndexRefreshStrategy

You can use the TimedIndexRefreshStrategy on an index to resolve the issues discussed in the

introduction of this chapter. This strategy refreshes an index with data from the crawlers but it does not
cause the index to be reset.

8.5.2 Configuration

Add this to the configuration to configure the strategy:

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">

 <sitecore>

 <contentSearch>

 <configuration>

 <indexes hint="list:AddIndex">

 <index id="sitecore_atlas_index"

type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex, Sitecore.ContentSearch.LuceneProvider">

 <!-- ... other configuration ... -->

 <strategies hint="list:AddStrategy">

 <timed type="Sitecore.ContentSearch.Analytics.TimedIndexRefreshStrategy,

Sitecore.ContentSearch.Analytics">

 <param desc="interval">00:01:00</param>

 </timed>

 </strategies>

 <locations hint="list:AddCrawler">

 <crawler type="Sitecore.ContentSearch.Analytics.AnalyticsObserverCrawler,

Sitecore.ContentSearch.Analytics">

 <ObservableName>DefaultObservable</ObservableName>

 <CrawlerName>Lucene Crawler</CrawlerName>

 </crawler>

 </locations>

 </index>

 </indexes>

 </configuration>

 </contentSearch>

 </sitecore>

</configuration>

You must provide the interval parameter. It is configured to run every minute in this example.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 125 of 142

8.6 Sharding

Index sharding splits the documents an index contains over smaller partitions or shards. This means that
instead of one large index, the documents are distributed between shards. The sharding strategy has
logic that decides which shard to allocate each document to.

Basic sharding process:

SHARD 1 SHARD 2 SHARD 3 SHARD 4 SHARD ...

Calculate shard using Sharding Strategy

Document to index

Assign to shard

8.6.1 When to use sharding

Before you decide to use sharding you have to evaluate whether splitting an index into shards and
subsequently searching each shard is more efficient than searching the index as a whole.

Sharding is an advantage when an index is extremely large and searching becomes slower because of
the number of documents. Searching two (or more) smaller shards will be better.

Do not shard unnecessarily. You will not always get an increase in performance. An alternative is to filter
certain documents into certain indexes. Use the include/exclude templates features of the index
configuration to do this.

8.6.2 How to configure sharding for an index

Sharding is an optional behavior for a Lucene index. >You must update the definition of the index that you
want to use sharding on in order to enable sharding. By default, Sitecore uses a single index to store
documents. You could think of this as an index with only one shard.

Locate the index you wish to enable sharding on and add a ‘shardingStrategy’ section:

<index id="[indexNameHere]">

…

<shardingStrategy

type="Sitecore.ContentSearch.LuceneProvider.Sharding.LucenePartitionShardingStrategy,

Sitecore.ContentSearch.LuceneProvider">

 <param desc="shardDistribution">2</param>

 <shardFolders hint="list:AddShardFolderPath">

 <shard shardName="shard1" shardFolderPath="C:\Shard_1" />

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 126 of 142

 <shard shardName="shard2" shardFolderPath="D:\Shard_2" />

 </shardFolders>-->

</shardingStrategy>

…

</index>

8.6.3 Default Strategy

Sitecore provides a default sharding strategy called the ‘LucenePartitionShardingStrategy’. This strategy
takes a document and calculates a hash of the ID to determine which shard to put it into. This hashing is
very fast and does not rely on any shared state or ID generation. This removes many of the usual
bottlenecks. Because of this, this approach does not give a 100% even distribution (for example, 100
documents will not be split 50/50). The distribution will be slightly more uneven but it guarantees that all
documents are indexed and distributed as evenly as possible.

This strategy only has one option: the ‘shardDistribution’ parameter. You must set it to be a factor of 2 (2,
4, 8,16, …) and denotes how many shards the index will be split into.

You can see the shards in the ‘indexes’ directory of your data folder.

We recommend that you rebuild your index after applying a strategy. It is not essential, but it will give the
index a more even distribution of documents.

8.6.4 Sharding Strategies

Sitecore has a new type of index that allows you to specify multiple shards of one index. The default
strategy is a FileSize (index size) based strategy. This means that if you change the FileSize then
Sitecore does not need to rebalance the indexes. Rebalancing is required if you are sharding by an
alphabetical character or a date range.

You define a shard in configuration files.

When you search for a shard, you simply put in the name of the shard instead of the index you want to
search. Therefore, there is no need for a new signature for searching multiple indexes at the one time.

var index = ContentSearchManager.GetIndex(“shard_name”);

 using (var context = index.CreateSearchContext())

 {

 return context.GetTermsByFieldName("fieldname", prefix).Select(x =>

x.Term).ToList();

 }

You typically use Sharding for performance and scalability reasons. It is most relevant to use sharding
when you use Lucene.Net as your provider.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 127 of 142

8.6.5 How to Create Your Own Sharding Strategy

If the default strategy is not what you need, you can implement your own strategy. You do this by using
the ‘Sitecore.ContentSearch.Sharding.IShardingStrategy’ interface and passing the implementation into
the index as specified above.

8.6.6 Sharding and Solr

When you use Solr instead of Lucene, Sitecore does not handle the sharding. Instead, the SolrCloud
feature of the Solr application handles the sharding.

Solr can therefore automatically assign documents to shards (in a similar way to how Sitecore does it for
Lucene) and make extra features like replicated shards available. Replicated shards are useful for
handling failure and fail-over scenarios.

We recommend that you configure the Solr application to handle the sharding of documents. The Sitecore
implementation of Solr will handle a sharded endpoint in the same way it handles an unsharded endpoint.
You do not need any extra configuration to work with Solr sharded indexes.

You can find more information about the configuration of SolrCloud here:

http://wiki.apache.org/solr/SolrCloud /

https://cwiki.apache.org/confluence/display/solr/SolrCloud

You can use SolrShardingFactory to explore custom sharding in Solr but we recommend that you leave
the sharding to SolrCloud.

http://wiki.apache.org/solr/SolrCloud%20/
https://cwiki.apache.org/confluence/display/solr/SolrCloud

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 128 of 142

8.7 Filtering

You can configure instances of ObservableAggregator<T> to filter out items that you do want to be

not be sent to observers. All observables used the global pipeline aggregation.filter.inbound.

You can add additional observable specific pipelines.

8.7.1 Configuration

You can implement the global aggregation filter in XML. The following adds two filters, one filters by
contact id, the other by the path visited:

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">

 <sitecore>

 <pipelines>

 <!-- global aggregation inbound filters-->

 <aggregation.filter.inbound>

 <processor

type="Sitecore.ContentSearch.Analytics.Pipelines.AggregationFilters.InboundContactIdFilter,

Sitecore.ContentSearch.Analytics">

 <filters hint="list:AddFilter">

 <filter>ca82109f-30cd-4414-956e-caea41c7510c</filter>

 </filters>

 </processor>

 <processor

type="Sitecore.ContentSearch.Analytics.Pipelines.AggregationFilters.InboundVisitPathFilter,

Sitecore.ContentSearch.Analytics">

 <filters hint="list:AddFilter">

 <filter>/default.aspx</filter>

 </filters>

 </processor>

 </aggregation.filter.inbound>

 </pipelines>

 </sitecore>

</configuration>

You can configure each processor above with additional <filter> values.

8.7.2 Observable specific filter

You can configure an observable specific pipeline in addition to the global filter pipeline. If you configure

an observable called DefaultObservable, you simply configure a pipeline called

defaultobservable.filter.inbound.

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/">

 <sitecore>

 <pipelines>

 <!-- define the aggregator -->

 <aggregation>

 <processor patch:before="*[1]"

 type="Sitecore.ContentSearch.Analytics.AnalyticsObservableAggregator,

Sitecore.ContentSearch.Analytics">

 <!-- here we name the aggregator -->

 <param desc="name">DefaultObservable</param>

 </processor>

 </aggregation>

 <!-- specific inbound filter for an aggregator -->

 <!-- we use the aggregator name from above in the pipeline name -->

 <defaultobservable.filter.inbound>

 <processor

type="Sitecore.ContentSearch.Analytics.Pipelines.AggregationFilters.InboundVisitPathFilter,

Sitecore.ContentSearch.Analytics">

 <filters hint="list:AddFilter">

 <filter>/other.aspx</filter>

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 129 of 142

 </filters>

 </processor>

 </defaultobservable.filter.inbound>

 </pipelines>

 </sitecore>

</configuration>

This configuration uses exactly the same processor types as the global pipeline. Sitecore only applies

the processors in the pipeline when the DefaultObservable processor is filtering items.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 130 of 142

Chapter 9

Backup and Maintenance of Contact Search Indexes

This chapter tells you how to contact search indexes. These indexes are used long-term,
and you cannot just loose them and rebuild them.

 When you use Lucene

 When you use Solr

 What happens when you change the schema for the Observable index?

 Moving between search providers

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 131 of 142

9.1 When you use Lucene

You cannot use the built-in Windows Snapshots.

We have tested the following method, and it does work:

9.1.1 Hobocopy

You can use the open source product called Hobocopy. You can download it here:

http://candera.github.io/hobocopy/

Hobocopy can run Shadow Copies of files that still are being written to. Essentially this is capturing a
snapshot in time of committed indexes.

9.1.2 Using Hobocopy

You can learn more about using Hobocopy here:

http://www.howtogeek.com/howto/windows-vista/backupcopy-files-that-are-in-use-or-locked-in-windows/

The simplest backup you can do, you do like this:

Open Powershell and type the following command in:

PS C:\> .\HoboCopy.exe

C:\Development\Update2\testground\Data\indexes\sitecore_master_index

c:\Backup\sitecore_master_index /y

HoboCopy (c) 2006 Wangdera Corporation. hobocopy@wangdera.com

Starting a full copy from

C:\Development\Update2\testground\Data\indexes\sitecore_master_index to

c:\Backup\sitecore_master_index

Copied directory

Backup successfully completed.

Backup started at 2013-07-17 12:44:22, completed at 2013-07-17 12:44:56.

8 files (8.59 MB, 1 directories) copied, 0 files skipped

This will take a snapshot of what the index has committed, but not what is still in memory.

The default commit policy is time-based. It commits data to disk every 5 minutes. Therefore, we only
recommend this for the ObservableCrawler. This crawler has data committed to disk at any time, but
constant flows are coming in.

For backing up of the Flat and Hierarchical Crawlers, we suggest that you stop writing to the index, wait
10 minutes to be sure that the commit policy has run, and then run the Hobocopy command. Your
documents are all committed to disk. If you have implemented your own commit policy, you need to make
sure that it also commits.

You can also run an incremental backup using a lastupdate.dat file that you can use to run schedulev
backups with Hobocopy.

http://candera.github.io/hobocopy/
http://www.howtogeek.com/howto/windows-vista/backupcopy-files-that-are-in-use-or-locked-in-windows/

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 132 of 142

9.2 When you use Solr

9.2.1 Backup

You can find information about backing up Solr here:
https://cwiki.apache.org/confluence/display/solr/Backing+Up

For example: http://localhost:8983/solr/replication?command=backup.

9.2.2 Restore

Stop the Solr Core via the container that is hosting it (Jetty, for example). Copy the restored index back
into the data directory within Solr and start Solr up again.

9.2.3 Alternative

Sitecore 7 Update 1 supports a SwitchOnRebuildIndex in Solr. Instead restoring the index by shutting
down the Solr instance, you can copy the index into the secondary index folder and then issue the SWAP
command through a direct URL request. For example:

http://localhost:8983/solr/admin/cores?action=SWAP&core=core1&other=core0

https://cwiki.apache.org/confluence/display/solr/Backing+Up

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 133 of 142

9.3 What happens when you change the schema for the
Observable index?

It is problematic to change the schema for an Observable index. The problem is that you cannot be
certain that you get the same data back when you rebuild the index. This is because all the crawls that
you have ever run have to be run again, and some of the data may no longer be available. We
recommend that you push all data you want to be re-crawled through the DMS XDB. This way, Sitecore
can crawl all the data again.

Schema changes can be adding fields, changing field properties, changing analyzers, adding computed
fields, changing storage or index properties, and many more.

The first and most obvious option is to agree on a schema before you put it into production. This way, you
will never have to rebuild your index under normal circumstance. Corruption of indexes is very rare, but
you should look at the section about backup so that you can learn how to always take live snapshots of
your indexes.

Here are a list of all the schema changes and responsive actions:

Add a new property that will be added to the index:

 If you are not interested in making sure that all your records contain this new property then you
don't need to do anything. This can happen without having to stop production.

Changing field properties:

 Changing Tokenized or Storage Properties: This requires a full rebuild of the index.

 Changing Analyzer for a field: This requires a full rebuild.

 Adding Computed Fields: If the computed fields are only required for all the data that as added
from that point on then a rebuild is not necessary.

Any Schema changes within Solr will require a restart of the Solr Service. Changing Schemas for Lucene
will hit the application pool and will take a few seconds to come back up.

A common question is: Can I use the switch on rebuild index to have one index with one schema and one
with another schema?

The answer is no.

What you can do if you believe that your schema will change a lot is to store two indexes, with different
schemas that are both in play at the one time. Then, you can take one offline, change the schema,
update it on another machine, and then bring it back in.

If you need to rebuild a full index after a schema change then we recommend that you rebuild this in a
separate environment and bring the indexes back when they have finished updating. The rebuild process
is processor, memory, and IO intensive. You should not run it on the same machine that, for example,
runs the xDB aggregation pipeline.

Sitecore does not ship with an auto-migration or auto-update tool.

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 134 of 142

9.4 Moving between search providers

This is a manual task and requires a full rebuild of the indexes. Because the index does not contain all the
necessary information about types, document type, and so forth, Sitecore cannot assume how to transfer
data when moving between search providers.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 135 of 142

Chapter 10

Appendix

This chapter describes how various internal processes work and contains information that
will help you to extend or modify the module.

This chapter contains the following sections:

 Tips and Tricks

 Default Fields in Lucene

 Contact Search Field Names

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 136 of 142

10.1 Tips and Tricks

Publishing

 How does Sitecore publish of millions of items?

The simple answer is: nothing special is done. The rationale is in the answer to this question:
“Why would you need to publish 1 million items all the time?” The first time you publish from
authoring to delivery and if you were to use the Full Publish option, then the answer is: “Yes, this
would take some time.” But after that, you only need to run publish added content incrementally.

 If I publish a single item in a bucket, but its bucket folders are not published, what happens?

Sitecore has added an extra pipeline step to the publishing process to detect if an item requires
its bucket folders to be published and will add them to the publishing queue as well automatically.
This also applies to items that are in workflow. There is no need to add in an extra workflow
action for this.

 What publishing should I be doing for Item Buckets?

The answer to this question does not change because of Item Buckets.

Standard Web.Config Tweaks

 You should periodically tweak the cache depending on how many items are in the content tree
and how many similar searches have been processed.

Setup Tweaks

 When you import a lot of content programmatically, you must truncate the PublishingQueue,
History, and Event Queue tables in the Master and Web databases and rebuild the indexes on
the database tables. If you don’t do this, the PublishingQueue, History, and EventQueue tables
will get very large, slow down processing, and your Sitecore installation may not start.

After clearing the tables, you must rebuild the index and run a smart publish instead of an
incremental publish.

Environment Tweaks

 If possible, disable the inbuilt Windows Search Index as well as any other indexer that is running
on the computer that runs the index or on the web server itself. This index uses essential Disk I/O
resources that Lucene.net needs.

 Don’t run processes on the index to create a backup. The index should not be part of regular
backup procedures. Chances are that the backup will be outdated if it is ever needed, so it is a
waste of resources.

 It is very important that you set up a SQL Maintenance plan that rebuilds your indexes. When you
create a lot of content, index fragmentation will increase, especially with the bulk importation of
content.

The hotspots will be the Items, Versioned, Unversioned, Shared, Blobs, and Links tables. To be
on the safe side, you should set rebuilds for every table. If you don’t do this, performance of the
CMS will degrade.

Here is a script for rebuilding all the indexes in your databases.

-- Show fragmentation for all tables

EXEC sp_MSforeachtable @command1="print '?' DBCC SHOWCONTIG('?')"

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 137 of 142

--Rebuild all indexes (this method locks the tables while the indexes are rebuilt)

USE [Sitecore_Master] --Change this to your database name

DECLARE @TableName varchar(255)

DECLARE TableCursor CURSOR FOR

SELECT table_name FROM information_schema.tables

WHERE table_type = 'base table'

OPEN TableCursor

FETCH NEXT FROM TableCursor INTO @TableName

WHILE @@FETCH_STATUS = 0

BEGIN

DBCC DBREINDEX(@TableName,' ',90)

FETCH NEXT FROM TableCursor INTO @TableName

END

CLOSE TableCursor

DEALLOCATE TableCursor

Importing Data Tweaks

 When you import a lot of content into Sitecore, it is best to use the BulkUpdateContext class.

When you have imported the content, rebuild the Lucene index.

 If you import a lot of content, do it in batches of, for example, one thousand, and then bucket or
re-sync the bucket to avoid overloading the process with items.

Uploading Files to the Media Library

 The media library now supports the indexing of all files that support IFilter. For more information
about IFilter, see http://en.wikipedia.org/wiki/IFilter.

Note
Sitecore does not by default provide search in PDF documents on MSSQL databases, and in
neither PDF nor Word documents on Oracle databases.

In short, IFIlter is a generic interface for indexing documents. Sitecore 7 ships configured to use
IFilters to index text in the binary content of media items. To use this feature, you must install
IFilters for the types of media items that you want your solution to index. You can use software
such as the free IFilter Explorer from Citeknet to investigate the IFilters installed on your system.

If the system hosting a Sitecore solution does not have an IFilter for a given media type, Sitecore
can only index the metadata stored in that media item, not its binary content. Additionally,
whether search results include media items can depend on the encoding of the format of data
contained in those media. For example, IFilters may not be able to convert images of text in
media items to structured text to parse.

Finally, you must install IFilters on the relevant hosts in your production environments (both
content management and delivery); having an IFilter installed in a development environment will
not allow indexing of that data type in your production environments.

Bucket Config Tweaks

 You can tweak your index so that it doesn’t index certain things that you don’t want in the index.
This will decrease rebuild time and improve search time.

 Consider rebuilding your indexes on a computer that has a solid state disk. Incremental updates
do not have to be performed on SSD but they will benefit from this as well. If you have one
dedicated server that rebuilds indexes and deploys them to an environment, ensure that this
server has an SSD. Indexes will not be so big, so a small SSD will suffice — for example 64GB.

http://en.wikipedia.org/wiki/IFilter

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 138 of 142

 Don’t shard too many indexes. Sitecore must context switch between these shards and this slows
down search time.

 If you have very large caches, you can see large memory spikes when you run a search. This is
normal as a search is filling the ItemCache for the results. Be careful of under-optimized caches
— they keep as much of the search results in cache as possible and this may not be optimal.

 If you see a lag in searches or results that are taking a long time to facet, enable Debug mode in

the Sitecore.Buckets.config file. All queries are logged in debug mode, as well as how

long the queries take to run and how many clauses they contain. This can help identify the issue.
Wildcard and range queries are probably the main culprits.

 Optimize the out-of-the-box indexes.

Optimization speeds up index rebuilding time and to some small degree, query time as well.

 Disable all the dropdowns that you are not using in the /sitecore/system/Modules/Item

Buckets/Settings/Search Box Dropdown item. The most expensive lookups are recently

modified and recently created.

 Add all the items in /Sitecore/System/Modules/Buckets to your prefetch cache.

 If you have disabled Debug mode but would like to debug a single query, in the search field enter
debug:1, press tab and then enter the search term. Sitecore only adds that search query to your
log file.

 Sitecore 7.0 ships with a slower version of the bucketing process in order to be backwards-
compabile. If you do not need this, you should uncomment this from the configuration file:

<setting name="FastQueryDescendantsDisabled" value="true" />

This will improve unbucketing performance.

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 139 of 142

10.2 Default Fields in Lucene

The following is a list of the required fields in Lucene:

ID = "_id";

Sites = "site";

Database = "_database";

Path = "_path";

Name = "_name";

DisplayName = "_displayname";

Language = "_language";

Creator = "_creator";

UpdatedBy = "parsedupdatedby";

CreatedBy = "parsedcreatedby";

Editor = "_editor";

Created = "_created";

Updated = "_updated";

Hidden = "_hidden";

Template = "_template";

AllTemplates = "_templates";

TemplateName = "_templatename";

Icon = "_icon";

Links = "_links";

Tags = "_tags";

Group = "_group";

LatestVersion = "_latestversion";

Lock = "lock";

Version = "_version";

IsClone = "_isclone";

FullPath = "_fullpath";

IndexName = "_indexname";

UniqueId = "_uniqueid";

DataSource = "_datasource";

Parent = "_parent";

Bucket = "_bucket";

SmallCreatedDate = "__smallcreateddate";

SmallUpdatedDate = "__smallupdateddate";

Url = "urllink";

Semantics = "__semantics";

IndexTimestamp = "_indextimestamp";

HasChildren = "haschildren";

"__bucketable"

"__workflow_state"

"__known_hit

"__is_bucket”

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 140 of 142

10.3 Contact Search Field Names

This is a list of the field names used in contact search.

Contact

Contact.IdentificationLevel

Contact.Classification

Contact.VisitCount

contact.Value

contact.ContactId

Contact.ExternalUser

Contact.IntegrationLabel

Contact.PreferredEmail

Contact.Emails

Contact.PreferredAddress

Contact.FirstName

Contact.MiddleName

Contact.Surname

Contact.Title

Contact.Suffix

Contact.Nickname

Contact.BirthDate

Contact.Gender

Contact.JobTitle

ContactTag

Contact.ContactId

ContactTag.Name

ContactTag.Value

ContactTag.DateTime

contactTag.AcquaintanceId

Visit

Visit.StartDateTime

Visit.EndDateTime

Visit.TrafficType

Visit.UserAgent

Developer's Guide to Item Buckets and Search

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 141 of 142

Visit.CampaignId

Visit.InteractionId

Visit.Referrer

Visit.ReferringSite

Visit.SiteName

Visit.Value

Visit.LocationId

Visit.VisitPageCount

Contact.ContactId

WhoIs.AreaCode

WhoIs.BuisinessName

WhoIs.City

WhoIs.Country

whoIs.IspName

WhoIs.MetroCode

WhoIs.Postalcode

WhoIs.Region

WhoIs.Ip

Browser.BrowserMajorName

Browser.BrowserMinorName

Browser.BrowserVersion

Os.Name

Os.MajorVersion

Os.MinorVersion

Visit.ProfilePatternIds

VisitPage

Visit.InteractionId

VisitPage.DateTime

VisitPage.Duration

VisitPage.Url

VisitPage.VisitPageIndex

VisitPageEvent

Visit.InteractionId

VisitPage.Url

Sitecore® Experience Platform™ 7.5 or later

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of
this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.

Page 142 of 142

VisitPageEvent.Name

VisitPageEvent.ItemId

VisitPageEvent.DateTime

VisitPageEvent.TimeStamp

VisitPageEvent.PageEventDefinitionId

Address

Contact.ContactId

Address.Key

Address.Country

Address.StateProvince

Address.city

Address.PostalCode

Address.StreetLine1

Address.StreetLine2

Address.StreetLine3

Address.streetLine4

