

Sitecore Commerce Developer’s Guide Rev: January 29, 2019

Rev: January 29, 2019

Sitecore Commerce
Developer’s Guide
Sitecore Commerce 8.2.1

A guide for extending the Sitecore Commerce solution

Sitecore Commerce 8.2.1

2

Table of Contents

Chapter 1 Getting Started with Sitecore Commerce .. 5
1.1 Guided Tours ... 5

Chapter 2 Sitecore Commerce Engine ... 6
2.1 Sitecore Commerce Engine Concepts .. 6
2.2 Getting the Customer.Sample.Solution Up and Running ... 6
2.3 Functional Testing of the Solution ... 6
2.4 Adding a Plugin ... 8
2.5 Deploying Your Solution ... 8
2.6 Commerce Engine Roles ... 8

Chapter 3 Sitecore Commerce Core .. 10
3.1 Commerce Core Concepts ... 10
3.2 Sitecore Deployment Environments .. 12
3.3 Commerce Entity .. 13
3.4 EntityStore .. 13
3.5 Compositional Extensibility ... 14
3.6 Commerce List .. 14
3.7 Entity Journaling ... 15
3.8 Sitecore Commerce Service API .. 16
3.9 Localization ... 17

Chapter 4 Commerce Views Service .. 19
4.1 Authoring API ... 19
4.2 EntityViews ... 19
4.3 Composite EntityViews ... 19
4.4 EntityView Properties ... 20
4.5 EntityView Actions, Commands, Pipelines .. 21
4.6 EntityView Samples .. 21
4.7 EntityActions .. 25

Chapter 5 Rules ... 26
5.1 Rules Commands and Pipelines ... 26
5.2 Rules Models ... 26

Chapter 6 Orders Service... 27
6.1 Orders Concepts ... 27
6.2 Orders Views ... 28
6.3 Orders Actions, Commands and Pipelines ... 29
6.4 Orders Models ... 30
6.5 Orders Policies .. 30

Chapter 7 Orders Service – Shopping Cart ... 31
7.1 Cart Actions, Commands and Pipelines ... 31
7.2 Cart Models ... 32
7.3 Cart Policies .. 32

Chapter 8 Orders Service – Returns ... 33
8.1 Returns Views ... 33
8.2 Returns Actions, Commands and Pipelines .. 33
8.3 Returns Models ... 34
8.4 Returns Policies ... 34

Chapter 9 Pricing Service .. 35
9.1 Pricing Concepts ... 35
9.2 Pricing Views ... 36
9.3 Pricing Actions, Commands, Pipelines ... 37
9.4 Pricing Models .. 39
9.5 Pricing Policies .. 39
9.6 Pricing Transparency ... 41

Developer’s Guide

3

 3

Chapter 10 Promotions Service ... 46
10.1 Promotions Concepts .. 46
10.2 Promotions – Qualifications .. 47
10.3 Promotions – Benefits ... 48
10.4 Promotions Samples ... 48
10.5 Calculating Promotions ... 49
10.6 Promotions Views ... 51
10.7 Promotions Actions, Commands, Pipelines ... 51
10.8 Promotions Models ... 54
10.9 Promotions Policies ... 54

Chapter 11 Promotion Service – Coupons ... 55
11.1 Coupons Concepts .. 55
11.2 Coupons Views .. 56
11.3 Coupons Actions, Commands, Pipelines .. 56
11.4 Coupons Models .. 57
11.5 Coupons Policies ... 57

Chapter 12 Entitlements Service ... 59
12.1 Entitlement Concepts ... 59
12.2 Entitlement Views ... 59
12.3 Entitlements Actions, Commands, Pipelines ... 60
12.4 Entitlements Policies ... 60

Chapter 13 Customer Service .. 61
13.1 Customer Views .. 61
13.2 Customer Actions, Commands, Pipelines .. 62
13.3 Customer Models .. 62
13.4 Customer Policies .. 62

Chapter 14 Catalog Service ... 65
14.1 Catalog Actions, Commands, Pipelines ... 65
14.2 Catalog Models ... 66

Chapter 15 Availability Service .. 67
15.1 Availability Commands and Pipelines .. 67
15.2 Availability Policies ... 67

Chapter 16 Inventory Service .. 69
16.1 Inventory Commands and Pipelines .. 69
16.2 Inventory Policies .. 69

Chapter 17 Payment Service ... 70
17.1 Payment Concepts .. 70
17.2 Payment Views ... 71
17.3 Payment Actions, Commands, Pipelines ... 71
17.4 Payment Policies ... 72

Chapter 18 Fulfillment Service .. 73
18.1 Fulfillment Concepts ... 73
18.2 Fulfillment Views ... 76
18.3 Fulfillment Actions, Commands, Pipelines... 76
18.4 Fulfillment Models .. 78
18.5 Fulfillment Policies .. 78

Chapter 19 Shops Service ... 79
19.1 Shops Concepts .. 79
19.2 Accessing a Shop from Rules or from Pipeline Blocks .. 80
19.3 Shops Components ... 80
19.4 Shops Models .. 80

Chapter 20 Guided Tours .. 81
20.1 Get the Customer.Sample.Solution Up and Running ... 81
20.2 Creating Your First Plugin .. 83
20.3 Mapping Additional Properties from a Commerce Server Catalog ... 86
20.4 Extending a Cart Line .. 91
20.5 Extending a Commerce View to Show Additional Information in the Business Tools 93

Sitecore Commerce 8.2.1

4

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The contents of this
document are the property of Sitecore. Copyright © 2001-2019 Sitecore. All rights reserved.

Developer’s Guide

5

 5

Chapter 1 Getting Started with Sitecore Commerce

Sitecore Commerce provides multiple layers of extensibility, depending on the needs of the solution. These
layers are described in the following sections.

Sitecore Commerce Engine

The Sitecore Commerce Engine is an extensible commerce core framework, hosting commerce services such
as: Cart, Order, and Pricing and Promotion. It includes a pluggable framework for extending the engine to
modify or add to existing functionality.

In general, this is the layer that should be extended when modifying existing functionality or designing new
commerce functionality. This layer provides the greatest ability to extend the product, while retaining
upgradeability. This layer is also structured to ensure individual extensions can be logically separated from
each other.

This guide focusses on the developer experience of extending the Sitecore Commerce Engine using its plugin
technology.

Sitecore Commerce Business Tools

The Sitecore Commerce Business Tools are a set of rich business tools for merchandisers and customer
service representatives. The business tools are built on the Sitecore Process Enablement & Accelerator Kit
(SPEAK) framework for developing Sitecore applications.

The business tools can be extended using the pluggable framework, where the same separation of concerns
approach as the Sitecore Commerce Engine layer applies, and upgradeability can be retained. The delivered
business tools are not modified directly; instead they are extended using plugins. This approach allows the
delivered business tools to be updated to newer technologies in future releases without affecting or requiring
refactoring of any existing plugin extensions.

When extending the business tools, the Commerce Views service can be leveraged; this provide a set of data-
driven services that feed data to the business tools in a structured way. Developers can choose to modify,
add, or remove functionality from the existing business tools. Additionally, plugins provided by Sitecore’s
partners or those downloaded from a NuGet feed can automatically wire-in and extend the business tools.
This allows a rich extensibility framework comprising multiple sources, while minimizing the risk of limiting
future upgrades.

Sitecore Commerce Reference Storefront

The Sitecore Commerce Reference Storefront is a sample storefront website that is integrated with the
Sitecore Commerce Engine. It can be used as a starting point to building a customized storefront. The
Reference Storefront source code and supporting documentation can be download from GitHub.

Sitecore Commerce Connect

Sitecore Commerce Connect is an integration layer between the Sitecore Experience Platform and Commerce
specific functionality, and between the Reference Storefront and the Commerce back-end functionality.
Documentation for extending the Sitecore Commerce Connect layer is located on doc.sitecore.net.

1.1 Guided Tours

To help illustrate extensibility concepts, a series of guided tours are provided at the end of this document.
These represent an end-to-end sample extension for adding Customer Loyalty functionality. They illustrate
various extensibility patterns. These Guided Tours are in the back of this document and different sections of
the document may reference specific sections of the Guided Tour to illustrate extensibility in their area.

https://doc.sitecore.net/speak
https://doc.sitecore.net/speak
https://github.com/Sitecore/Reference-Storefront/releases
https://doc.sitecore.net/sitecore_commerce

Sitecore Commerce 8.2.1

6

Chapter 2 Sitecore Commerce Engine

2.1 Sitecore Commerce Engine Concepts

The Sitecore Commerce Engine is a thin ASP.NET Core application that serves as a host for a group of
microservices that enable commerce functionality. These services are loosely coupled with each other.
Together they provide a robust, extensible set of commerce enabling services. Services exposed from the
engine are exposed as OData/REST based APIs. This enables either direct REST calls to the services, or calls
through a generated smart proxy, which examines OData metadata and generates a strongly typed
experience for accessing the service.

The initial out-of-the-box Sitecore Commerce Engine is provided as part of the Sitecore Commerce SDK. It
enables a developer to extend their solution by choosing which plugins are enabled in their solution. Plugins
can be retrieved from:

 The set of plugins provided with the product.

 Plugins provided by Sitecore partners.

 Public plugins downloaded from a NuGet feed.

The Sitecore Commerce Engine provided in the SDK is called the Customer.Sample.Solution, where customer
in this case means a Sitecore customer (also referred to in this guide as a solution developer). You can open the
Sitecore Commerce solution in Visual Studio 2015. It contains the Sitecore Commerce Engine project itself
and some sample plugins that demonstrate a typical solution developer’s extension of the solution.

A typical pattern for extending the solution is:
1. Open the Customer.Sample.Solution.
2. Rename the solution to something more appropriate to the solution developer.
3. F5 to refresh the solution to ensure that the initial solution runs.
4. Exercise the solution through the postman samples or using the sample Console app.
5. Extend the solution by creating additional plugins as separate projects within the solution using a

strong separation of concerns.
6. Test your plugin using a combination of unit tests and functional tests
7. When the solution meets requirements, create a new deployment for the solution
8. Send the new deployment through any QA or DevOps process to get the deployment deployed to

production.

2.2 Getting the Customer.Sample.Solution Up and Running

The basic steps for getting the solution up and running are documented in the guided tour in this document:
Get the Customer.Sample.Solution Up and Running.

2.3 Functional Testing of the Solution

Sitecore Commerce improves the development lifecycle by providing examples of various pieces of
functionality, as exercised through the exposed service APIs. These are intended to represent functional
samples. They exercise a running solution but are not intended to represent a full set of tests that an actual
quality assurance test would implement, only a representative sample of functionality to illustrate patterns
and provide a simple mechanism for validating functionality for the developer.

The following sections describe the tools that are available for basic functional testing.

Developer’s Guide

7

 7

Postman Samples

Postman samples are a set of sample calls to the Sitecore Commerce Engine services using the Postman REST
Client to illustrate REST based calls to execute functionality. These are simple examples of calling the engine
and demonstrating the call pattern and its expected result. Postman is a simple, free tool for managing HTTP
level calls and responses for creating a simple test surface. The developer can use this tool to perform simple
tests of existing functionality and to review patterns for use in creating their own tests. Postman is not
required to develop a solution using Sitecore Commerce. Any HTTP testing tool will work; however, use
Postman for the delivered working samples, which you can then transfer to your HTTP testing tool of choice.

Sample Console Application

Sitecore Commerce Services are exposed as OData services. An OData service provides typical REST-based
functionality, allowing the service to respond to traditional REST Queries. It also provides rich metadata for
the generation of a strongly typed proxy, which gives a client the ability to develop connectivity with the
service using a strongly typed client proxy. This helps improve maintainability by allowing strongly typed
client development, which quickly identifies breaking changes.

To demonstrate this programming style, the SDK provides a fully functional set of examples in the
Sitecore.Commerce.Sample.Console solution. This tool can be opened in Visual Studio 2015 and is intended to
run end-to-end to exercise the complete solution. This includes exercising Pricing, Promotion, and Order
solutions with samples of typical order scenarios.

When extending the solution, it is advised that you also tie into these console samples. Modify a sample to
remove any functionality that you are not interested in. Retrofit the existing samples to your own scenarios.
This allows you to generate orders, for example, supporting multiple scenarios from day one. You can use the
sample data provided and rapidly iterate to modify the solution to demonstrate your own scenarios.

https://www.getpostman.com/
https://www.getpostman.com/

Sitecore Commerce 8.2.1

8

Unit Testing the Solution

Sitecore Commerce plugins support the ability to be unit tested. This provides the ability to have a high
quality plugin that has unit tests exercising the extensions within the plugin.

The Sitecore product department uses the NUnit testing framework internally. NUnit is an open source unit
testing framework for Microsoft .NET. It is lightweight, integrates with Visual Studio, and supports
Dependency Injection.

A Sitecore customer or partner solution developer can choose their own unit testing framework, or they may
want to consider NUnit.

2.4 Adding a Plugin

The Sitecore Commerce Engine offers a pluggable extensibility model that enables extensive customization
of engine functionality. It uses a model that promotes upgradability and a clear separation of concerns
between individual extensions. Plugins can be obtained via a NuGet service, or could be provided by a
Sitecore partner as part of custom development.

All Sitecore Commerce plugins are published using a Sitecore private NuGet feed. This enables publishing
new versions of the Sitecore Commerce plugins without the overhead of a major release. A walkthrough of
the basic steps is described in this document, in the guided tour: Creating Your First Plugin

2.5 Deploying Your Solution

The Customer.Sample.Solution is the core Visual Studio solution in which all extensions can be developed, in
the form of plugins. You can run this solution directly in Visual Studio for testing, which allows a quick
develop/test/develop/test cycle.

When the testing is complete and you are ready to make the extensions available to QA and eventually into a
production environment, you must create a deployment. The Sitecore Commerce Engine leverages the dotnet
framework. You can publish a solution from the dotnet framework in one of the following ways:

 Directly in Visual Studio using the Publish option.

 Through a Command line, using the dotnet publish command.

 Inside a Build environment, as part of a Continuous Integration environment.

Publishing can directly update a running deployment, such as publishing directly to IIS from Visual Studio or
publishing directly to an Azure Web App. Or, it can create a Web Deploy package that can then be taken
through a QA process and deployed by dedicated DevOps personas.

2.6 Commerce Engine Roles

In a development environment, there is usually only one instance of the Commerce Engine running. It services
all traffic, both from the storefront layer and from the business tools layer.

https://www.nunit.org/

Developer’s Guide

9

 9

In a production environment, this traffic is usually split up among multiple installed instances of the
Commerce Engine, which are usually physically located close to their traffic sources. These instances are
referred to as Engine Roles. This distinction is purely logical; there is no real difference in the deployed bits
between different installed roles. These roles are defined by where the traffic is originating from.

The following engine roles are considered during solution implementation. You must apply these in any
production environment, even though implementation details can vary.

Authoring Role

The Authoring role is the instance of the Commerce Engine that serves traffic from the business tools,
including the Merchandising Manager and the Customer & Order Manager. It is generally installed close to
where the business activity takes place. This role serves light traffic so that scale requirements are normally
relatively low. This is because these solutions generally have relatively few business users, compared to the
number of shoppers.

Shops Role

The Shops role is the instance of the Commerce Engine that serves traffic from one or more storefronts. This
role is intended to scale to support demand. It is usually installed in close proximity to the Sitecore Experience
Platform instances that are generating the traffic. To scale the solution, the Sitecore XP instances and/or the
Commerce Engine instances can be scaled depending on traffic mix and where bottlenecks are identified.

Minions Role

The Minions role is an instance of the Commerce Engine that runs independently and supports asynchronous
processing. This includes any post-order capture processing as well as any cleanup or pruning tasks that might
be desired.

DevOps Role

The DevOps role is an instance of the Commerce Engine that is internal and only available to DevOps
personas. This role can have an identity with higher privileges allowing DevOps members to perform
maintenance tasks that must not be allowed in other roles, for example, bootstrapping and environment
initialization functions.

Each deployed role can have different policies and behaviors, which can be specified using a specific
Commerce Environment for that role. When a call is made to the Commerce Engine, an environment is
specified in a Header. This environment is used by the engine to control policies and behavior for that call. This
allows explicit independent control per role of functions, such as caching, data storage, integration
connections, and so on.

Using environment policies, engine roles can either share a common persistent store, or each use a separate
dedicated storage. All roles share the same storage in the out-of-box implementation. This allows artifacts to
be visible to each role without a publishing process. For example, this makes orders immediately available to
the Authoring role, and makes approved promotions and pricing changes immediately available to the Shops
role.

Each role can have independent caching policies. For example, reduced caching can be configured on the
Authoring role so that changes are seen right away, and heavier caching can be configured on the Shops role
to increase performance.

Sitecore Commerce 8.2.1

10

Chapter 3 Sitecore Commerce Core

Sitecore Commerce Core is a lightweight framework that provides core application capabilities in an
encapsulated package. The Core does not itself offer any commerce capabilities; commerce-related
functionality is enabled through plugins that take a dependence on the Core functionality.

The following diagram depicts the lower logical layers of the Commerce Engine. The Content Foundation is a
Sitecore XP construct that provides the basic infrastructure. The Commerce Core provides the structure and
capabilities to implement the functional plugins.

3.1 Commerce Core Concepts

The following table describes the concepts of Sitecore Commerce Core:

Concept Description

Activity An internal construct that wraps a specific set of work for activity tracking, for example,
for reporting and performance. The solution implements this as a CommandActivity;
all commands are wrapped to enable performance reporting on the command.
A TrackActivityPipeline is executed when the activity is complete, which enables a
plugin to take action. An example of an action is to monitor performance of an action
against an SLA and report actions outside the SLA, or to generate an alert.

Approval Basic approval commands and pipelines to facilitate a basic approval process. Approvals
are used by pricing and promotions to seek the approval of changes before
implementing.

Authentication The ability to authenticate a call to the service API using certificates.

Bootstrap Commands and pipelines to support bootstrapping the solution. The
BootstrapPipeline loads environment configurations from the
wwwroot/data/environments folder into the SitecoreCommerce_Global
database. After bootstrapping, those environment configurations do not need to be
present. Any subsequent environment configuration is retrieved from the database
during normal runtime operations.

Caching Commands and pipelines to support in-memory caching. This provides the ability to
have environment-specific caching, to specify cache priorities, and to clear the cache.
Caching functionality, in turn, leverages the Sitecore.Framework.Caching

functionality for the actual caching.

Command Basic structure for supporting the concept of commands. A command acts like the API in
a task-driven API.

Developer’s Guide

11

 11

Concept Description

Component Basic structure for supporting compositional extensibility, including the component
class and various base components.

Context A call-level context called CommerceContext, which is initialized when a call enters the
service and is carried throughout the service call. The CommerceContext provides an
object cache, messaging, headers, and other core call-level concepts.

Controller Basic controllers that make core functionality available through the Service API.

Converter Custom JSON converters for the Service API.

Entity Commands, policies, and pipelines to support reading and writing commerce entities. A
CommerceEntity is a core artifact designed to directly represent a business concept,
which is stored as a single unit in a persistent storage. Entities have identifiers and can
be retrieved through the Service API.

Environment Sitecore Commerce environments provide the ability to have separately configurable
pools of data and service functionality that runs together in a single-service instance.
Environments can share the same persistent store as other environments or be
separated into their own exclusive persistent store.

Event Basic infrastructure to support events and event-driven actions.

Exception Basic CommerceException base class.

Globalization Commands and their pipelines to support globalization, including support for
multicurrency and localization.

List Commands and pipelines to support basic list functionality, including basic list
management. Use ManagedLists to track lists of entities either based on their state or
based on activities that need to be performed on them. Lists are used to provide
organizational structure and to support business processes.

Location Commands and pipelines to support locations, for example, retrieving supported
countries and country information.

Logging Support for core logging using SeriLog and to specify logging using Microsoft
Application Insights.

Media Core classes to support media types and policies, including a GlobalImagePolicy and
an image class.

Minion Commands and pipelines to support minions including the MinionBoss and RunMinion

pipelines, and the policies to support configuring minions in the environment
configuration.

Model Basic core models, which are POCO classes that are reusable inside entities and
components. Models can be used to present data as part of a command response, in the
models collection.
Models are listed in the Sitecore.Commerce.Documentation.chm on the Model Class
page.

Node Core pipelines, blocks, and policies that enable basic node functionality. A node is a
running instance of the Service API.

Performance Commands and policies to support tracking and integrating with performance counters
for commands.

Pipeline Core commands and models to support pipeline functionality. Pipelines, in turn,
leverage the Sitecore.Framework.Pipelines infrastructure.

Plugin Core support for the Sitecore Commerce pluggable extensibility.

Policy A named, versionable and variable set of data that can be used as facts within behaviors
to influence behavioral outcomes. This provides an auditable mechanism for viewing,
simulating, and changing core decision criteria that might be used by business processes
or other policy-driven behavior. Various plugins have specialized policies to add
additional facts to existing policies and/or new policies, or to implement new concepts,
such as dynamic pricing. Policy characteristics include:

 Centralized policy store using abstract entity storage.

 Worker processes only need a link to the policy store to bootstrap.

 Single point of truth for policies.

 Publish workflow without moving data.

 Policies are heavily cached and rarely change.

https://serilog.net/

Sitecore Commerce 8.2.1

12

Concept Description

 Policies can have attached rules to deliver personalized policies.
Policies are listed in the Sitecore.Commerce.Documentation.chm on the Policy Class
page.

Provider Core interfaces for an EntityProvider and an IndexProvider. The concept of a
provider is avoided because any plugin could potentially be a provider. This is only used
by the FileSystemProvider,which enables reading a CommerceEntity from the file
system.

Search Provides a SearchOption class that enables specifying search parameters when
traversing a list. Currently direct searching is not supported; this can only be used to
specify skip/take properties to enable batch traversing a list. In the future, this may be
extended to enable more powerful search capabilities.

ServiceApi Core models and policies to enable the basic Service API.

Transaction Core functionality to support transactionality in the solution.

3.2 Sitecore Deployment Environments

As defined previously, Sitecore Commerce environments provide the ability to have separately configurable
pools of data and service functionality that runs together in a single-service instance. An environment has
another application at the overall solution level. This is illustrated in the following figure:

The diagram shows four Sitecore deployment environments in a production deployment, including where the
Commerce Engine roles are deployed:

 Sitecore Content Management – internal environment for authoring content before publishing for
public consumption. Content authors and marketers create and edit content. They build and
publish the web experiences from here.

 Sitecore Content Delivery – external environment for delivering content to the public; for
example, the Storefront is hosted here. It serves requested pages and media assets to site visitors
and collects analytics data in session, for delivering dynamic personalized experiences to
shoppers.

 Sitecore Commerce – the Commerce Engine and Commerce databases. This environment
provides the commerce services, for example, orders, carts, pricing, and promotions.

 Commerce Server – the legacy Commerce Server component is shown separately in this diagram.
In this release, Commerce Server provides Catalog and Profile functions for the overall Commerce
solution. In a future release, the Sitecore Commerce environment will host new, replaced Catalog
and Profile services.

Developer’s Guide

13

 13

3.3 Commerce Entity

A commerce entity represents a core unit of persistence in the form of a POCO class that inherits from
commerce entity and can extend it along with behavior defined based on lifecycle events of the entity or
defined commands.

Commerce entities are designed to be serialized rapidly into JSON and stored in a variety of persistent stores.
This provides the ability to support rich, deep extensible business entities with a simplistic API enabling a wide
variety of persistence options.

Leveraging a document-oriented philosophy unlocks key capabilities seen and valued in CMS systems like
Sitecore, such as versioning, drafting, and so on.

Commerce entities are:

 Simple inheritable base classes.

 Usually represent a real business concept.

 Persist as documents using serialization.

 Extended by composition.

 Extended by policy.

 Independently addressable using persistence.

The following table describes the properties of a commerce entity:

Property Description
Namespace The first part of its unique identifier (string).
Id Its unique identifier (string).
Name Name of the entity (string).
FriendlyId Human readable instance of the unique identifier (string).
DisplayName Displayable name of the entity (Localized<String>).
DateCreated Date and time the entity was created, automatically updated (DateTime).
Description Description of entity (Localized<String>).
DateUpdated Date and time the entity was updated, automatically updated (DateTime).
Policies List of policies applicable to this entity (List<Policy).
Components List of components applicable to this entity (List<Component>).
ListMemberships Delimited list of lists names (string).
SortOrder The order this item is sorted (string).
IsDeleted Flag to signify that the item is deleted (Bool).
IsPersisted Flag to signify that the item is persisted (Bool).
DateDeleted Date and time that the entity was deleted (DateTime).

3.4 EntityStore

A Sitecore Commerce EntityStore is an abstract mechanism for specifying the persistence and retrieval of
Sitecore Commerce Entities. This provides a customization point that allows the solution developer to
customize where and how entities are persisted. Sitecore Commerce uses an SQL-based EntityStore.

Characteristics of an EntityStore include:

 Simple extensible entity storage.

 Policy driven.

 Leverages plugins for persistence.

 Distributed caching.

 Pluggable encryption.

 Uniform transactional model.

Sitecore Commerce 8.2.1

14

3.5 Compositional Extensibility

Compositional Extensibility is a simple class supplied by plugins as a way of extending a commerce entity.
Components can be added or removed by a plugin into a commerce entity by adding to the components
property. This is usually performed in a PipelineBlock or a RuleAction.

Only one of a specific type of component is allowed in a commerce entity. This should be enforced on the
persistence of an entity. Other plugins do not need to have knowledge of components supplied by other
plugins, unless they want to.

The existence of a component in an entity may trigger business actions. For example, if a delivery component
is on a LineItem of a shopping cart upon order creation, then business processes are invoked by the delivery
pipeline.

Compositional extensibility is exemplified in the following figure:

3.6 Commerce List

A managed commerce list represents a core mechanism for organizing and relating commerce entities.
Support is provided for simplistic named lists as well as more tightly managed lists. Lists can be curated by
picking individual members of the list or implemented as expressions against the search provider for dynamic
listing.

Lists can be iterated using common paging metaphors or treated like a queue with push and pop semantics.
Lists can also be used as work queues for commerce minions to traverse and perform work against. Lists can
have policies that govern what kind of entities can access the list, how many entities, caching, and so on.

For example, a policy must define whether an entire list is retained in memory once loaded, or whether to
iterate as a search list.

The following table describes commerce list actions, commands, and pipelines:

Action/Command/Pipeline Description
AddRelatedManagedList

AddRelatedManagedListCommand

AddRelatedManagedListPipeline

Creates a relationship between two managed lists. The
parameters are:

 listName – name of the parent lists (string).

 childListName – the new child list name (string).
CreateManagedList

CreateManagedListCommand

CreateManagedListPipeline

Creates a new managed list. The parameters are:

 name – the name of the list (string).

 displayName – a displayable name of the list (string).

Developer’s Guide

15

 15

Action/Command/Pipeline Description

 relatedListNames – a list of related lists by name
(list<string>).

 policies – a list of policies appling to the managed list
(list<policy>).

 components – a list of components to add to the new
managed list (list<component>).

GetManagedList

GetManagedListCommand

GetManagedListPipeline

Retrieves a new managed list. The parameter is:

 listName – name of the list (string).

LogListMetadata

LogListMetadataCommand

(no pipeline)

Logs the count of a list to the logging system. The parameter is:

 listName – name of the list (string).

Sitecore Commerce Plugins

A plugin is an independently publishable extension to the Sitecore Commerce Engine. They are published as a
lightweight NuGet package, either to a public repository or a secure private one. Solution developers can
acquire plugins or create their own to support their own specific scenarios. Similarly, Sitecore partners create
Plugins to use as value-added IP in commerce engagements.

Plugins can contribute the following:

 Entity

 Component

 Command

 Pipeline

 Model

 Policy

 Event

 List

A plugin can take a dependency on another plugin in order to extend its functionality.

The following figure presents some of the key plugins provided with the Sitecore Commerce solution,
including a simplified view of some of the relationships between them:

3.7 Entity Journaling

Entity journaling is provided by the Sitecore.Commerce.Plugin.Journaling plugin.

Sitecore Commerce 8.2.1

16

Entity journaling enables an entity to be flagged to have a journal updated whenever it changes. This saves a
complete previous copy of the entity, enabling a complete log of changes to be tracked.

Journaling is defined by the EntityJournalingPolicy policy.

The EntityJournalingPolicy has the following properties:

Property Description
EntityFullName The full name of the entity (string).
Journal The logical journal to associate this entry (string).

The following is an example of a new EntityJournalingPolicy:

 {

 EntityFullName = "Sitecore.Commerce.Plugin.Orders.Order",

 Journal = "OrdersJournal"

 }

The EntityPersistenceJournalingBlock checks the EntityJournalingPolicy for rules on how to
journalize the entity. An entity can easily have journaling added or removed by changing the policy. If
journaling is disabled for an entity where it was previously enabled, the journal entries are not removed; it will
simply no longer create new ones.

3.8 Sitecore Commerce Service API

Sitecore Commerce has been designed to interact with other external entities as part of ongoing operations.
It achieves this through the Service API. The primary focus of the Service API is to provide the ability to
execute Sitecore Commerce commands through the service endpoint.

Commands can be short running or long running. Long running commands return a token that can be used to
check the status of a command. Commands can be added through a Sitecore Commerce plugin. Commands
are request/response oriented.

The Sitecore Commerce ServiceAPI is further segregated into role-oriented APIs to allow targeting of specific
entities, actions, and responses to meet specific business role needs.

The following table describes role-oriented APIs within the Service API:

Service API Description

CommerceAuthoring API Surfaces artifacts and methods targeted toward business user experiences, for
creating and updating content to be published.

CommerceShops API Surfaces artifacts and methods targeted toward supporting an online shopping
experience, such as a web storefront.

CommerceOps API Surfaces artifacts and methods targeted toward a DevOps role in managing a
Sitecore Commerce implementation. This includes methods to create and
manage environments and global policies.

Odata Compliance

The Service API is Odata compliant. Odata provides metadata that allows external systems to discover
capabilities and data structures of Sitecore Commerce. Odata also supports annotations on metadata, which
provides basic validation requirements and enumerations so that smarter clients can pre-validate and provide
drop-down support for enumerable properties.

Odata provides the option to generate a strongly typed client proxy to facilitate access to the capabilities in
Sitecore Commerce.

Developer’s Guide

17

 17

Most Microsoft products can natively consume Odata. For example, Excel can connect to an Odata source
allowing the use of Power Pivot or other Excel-based analytic tools to be easily integrated. Other Microsoft
products, including Microsoft Dynamics AX, support Odata in their service layers.

Service Metadata

The Sitecore Commerce API is based on Odata and therefore provides all the built-in benefits that Odata
includes, such as metadata discovery.

The following is a sample call to retrieve the Sitecore Commerce metadata:

 http://{{ServiceHost}}/{{ShopsApi}}/$metadata

Service API Headers

Sitecore Commerce uses headers passed in through the service APIs to establish context for the call. These
headers are available from within the CommerceContext, which is passed around on all calls.

There are standard known headers that are supported out-of-box and this is an extensibility point where
additional headers can be established for specific plugins. Plugins can reference these headers when taking
actions.

Some headers are only relevant in certain actions; however, it is not harmful to include a header even if it is
not used or needed for the particular call.

The following headers are available:

Header Name Description
ShopName The name of the current shop being accessed (string).
ShopperId A unique identifier for a shopper (normally a GUID represented as a string).
CustomerId If the shopper is registered, then an additional identifier is passed in, representing the

unique identifier of a registered customer (normally a GUID represented as a string).
Currency The currency that is desired in the response (string).
Language The language desired in the response (string).
EffectiveDate The effective date to use during any date-based calculations. This allows scenarios

where you want to see results as if the interactions occurred at dates and times not in
the present. If an EffectivateDate is not passed in, then DateTime.UtcNow is used.

Latitude The current latitude of the shopper (string).
Longitude The current longitude of the shopper (string).
IpAddress The IP address of the shopper (string).
Roles A "|" delimited list of roles for the caller. This can influence what actions are allowed

and what information is returned in queries, or whether the query can be performed at
all (string).

IsRegistered An indicator whether the current caller is registered or not (boolean represented as a
string).

Security

General security is enforced at the service endpoint to determine whether a remote party can connect at all.
Security is based on certificates or on specific authenticated identity(ies).

Security is enforced at the command level. Individuals are able to either execute specific commands or not.
This is managed within the Sitecore Experience Platform’s management tooling. The service API resolves and
passes in claims that Sitecore Commerce uses to enforce this security.

3.9 Localization

Messages returned from the Sitecore Commerce Engine are keyed and stored in the Sitecore Experience
Platform to prepare them for localization.

Sitecore Commerce 8.2.1

18

Localization is goverened by the following policy:

Policy Description
LocalizedMessagesPolicy Defines localization settings:

 AllowCaching - the default is true

 AllowCaching - the default is true

 MaxMessageSize - the default is 1024

Developer’s Guide

19

 19

Chapter 4 Commerce Views Service

The Commerce Views service is provided by the Sitecore.Commerce.Plugin.Views plugin.

The Sitecore Commerce Views plugin provides a data-driven mechanism for servicing a dynamic business
experience. The views provide a mechanism for narrowing or translating data from core entity storage into a
dynamic API that can be directly leveraged by the business experience.

Typical model-view-controller architectures have a view layer that translates potentially complex internal
storage artifacts into a simpler form meant to be consumed by a user experience. In many cases, each
individual client type (web, mobile, and so on) has its own view layer in which they transform data into a
viewable form.

In the Sitecore Commerce architecture, this view layer is provided on the server side, instead of the client side.
This allows standard Sitecore Commerce plugins to extend existing views and add new views.

Sitecore Commerce views are also dynamic, which means they are progressively built up by plugins in a
pipeline, which means the solution developer can develop plugins that extend views without breaking the API.

Sitecore Commerce views are also designed to directly feed a dynamics data-driven business tool experience.
Functionality in the business tools can be lit up, extended, or removed by custom-developed plugins, without
having to modify the out-of-box plugins or modify the source code of the business tools themselves. This
approach dramatically improves upgradability.

4.1 Authoring API

Sitecore Commerce views are surfaced via the Authoring API. This API is based on Odata; however, it is
significantly simplified and much more dynamically structured to support a data-driven user experience.

The Authoring API is targeted at authoring/management experiences, whereas the Shops API is targeted at
runtime experiences for a shop or storefront. The Authoring API is logically separated from the Shops API to
allow more direct control over the availability of functionality in different engine roles.

For example, a solution developer may not want the Authoring API to be callable in the engine that is serving
storefronts, but only on an internal instance of the engine.

4.2 EntityViews

The core artifact in Sitecore supporting views is the EntityView. An EntityView represents a flattened,
dynamic service response focused on supporting a dynamic user experience.

The EntityView provides a business user experience that is completely customizable and extensible and can
dynamically represent and allow the business user to take actions, without requiring significant intelligence or
customization of the user experience itself.

The EntityView is a simple POCO class that provides a property bag. It can have child EntityViews. Using
these simple concepts, more complex views can be progressively built up as needed.

4.3 Composite EntityViews

To understand a Composite EntityView, consider a page in the user interface, for example, the page where
the business user views an order. The order page is further broken up into sections (details, shipments,
payments, entitlements, and so on). The Composite EntityView represents how that page is organized and

Sitecore Commerce 8.2.1

20

what actions are available so that the user interface can simply render the view to form a usable, extensible
page without having any custom logic. A Composite EntityView includes a master view and child views.

The master view represents the overall page itself. It normally does not contain properties, but could. The
master view contains a list of child views that each represent a section of the user interface. It also contains a
list of actions that can be executed against the entity. An example of a child view is the details section of a
user interface. For example, on an order page, the child view is the section that presents the order
confirmation identifier, the date, and so on.

The view represents what should be displayed in the section, so it could be extended by plugins to display
additional information. Or, properties could vary based on some aspect of the entity, such as the type of
order. It is also possible to display some properties to some users and not others; this is a form of security
trimming.

If an order does not need to have a section, it simply does not return one. For example, a digital product order
would not have a shipments child view returned.

The view also provides an extensibility point, so the solution developer can deploy a plugin that ties into the
pipelines and return additional child views, or augment existing views with new properties.

Using the master view allows the entire web page to be returned in one call, promoting efficiency. It is also
possible to call an individual child view separately. This might be required, for example, when the user wants
to refresh a single section without rebuilding the entire page.

4.4 EntityView Properties

The following table describes the EntityView properties:

Property Description
Name Logical name of the view (string).
DisplayName Localized name of the view (string).
EntityId Most views are centered on a particular underlying CommerceEntity. This EntityId

represents the ID of that Commerce Entity (string).
Action Represents an action to be performed. In some cases, EntityViews are retrieved,

modified, and then submitted back as an action. This provides a task-based API for the
Business User tooling (string).

ItemId In some cases, an EntityView represents a single row among many in a list view. In the
case where another level of ID is needed to further target a particular row, ItemId is used
for this (string).

Properties A list of ViewProperty objects. This represents individual properties that will display in the
view. The Business Tool has generic functionality to create a display based on the
properties of the View (list<ViewProperty>).
See the following section for a further description of the EntityView Property property.

ChildViews Views are progressively built up as a main view and a set of child views. This can be used
to build more complex displays.

DisplayRank In some cases, you might want to fine-tune the order of display. You can use DisplayRank
to influence the order of display. All EntityViews default to a rank of 500.

UiHint A UiHint is intended to be a design-agnostic hint to the UX on how to display the view.
The view can be displayed as a flat list of properties, or it can designate that underlying
child views represent a list to be displayed using a listing metaphor.

Property

The EntityView Property property is a list that facilitates the display of properties in a dynamic user
interface. Each property has a set of values that defines what to display, as well as hints for the user interface
to allow it to choose the proper control for the display of the property.

Developer’s Guide

21

 21

Any plugin can influence what is returned by adding, removing, or modifying properties before the view is
returned. This enables easy customization of the dynamic business user experience without modifying the
client itself. It provides an opt-in complexity philosophy by enabling properties to be present only when they
are valid for the scenario.

The following table describes Property collection properties:

Property Description
Name The common name of the property. This can be shared among views and is used to

localize the DisplayName (string).
DisplayName The localized name of the property. This is currently not localized so it is the same as the

Name field until localization is in place (string).
RawValue This is the direct value from the mapping with no formatting. It is the value formatted

using policy-based formatting (string).
Policies This contains any constraints, closed vocabularies, and so on, as policies for actions

(string).
Policy<T> Retrieves or creates the policy instance that you are looking for (string).

4.5 EntityView Actions, Commands, Pipelines

The following tables describes the EntityView actions, commands, and pipelines:

Action/Command/Pipeline Description
GetEntityView

GetEntityViewCommand

GetEntityViewPipeline

Retrieves an EntityView.
The parameters are:

 entityId – the fully qualified identifier of the entity (string).

 viewName – the name of the view (Summary, Preview, and so on)
(string).

 forAction – indicates whether a view can be edited and returned.
This returns additional metadata, such as constraints, closed
vocabularies, and so on (string).

 itemId – the identifier of the item (string).

4.6 EntityView Samples

This following sections list some sample EntityViews.

4.6.1 EntityView Sample – Order Preview

Properties added:

Provided by the Orders plugin:

OrderConfirmationId<=order.OrderConfirmationId

OrderPlacedDate<=order.OrderPlacedDate

Status<=order.Status

PaymentStatus<=order.PaymentStatus

ShopName<=order.ShopName

CustomerEmail<=order.GetComponent<ContactComponent>().Email

OrderTotal<=order.Totals.GrandTotal

Sample call to retrieve EntityView:

http://{{ServiceHost}}/{{ShopsApi}}/GetEntityView()

Body:

{

 "entityId":"{006fa25e-d3ca-4e05-97fb-55afd8568e2e}",

 "viewName":"Preview",

 "forAction":""

}

Sitecore Commerce 8.2.1

22

Sample results from the call:

{

 "@odata.context":

"http://localhost:5000/Api/$metadata#Sitecore.Commerce.EntityViews.EntityView",

 "@odata.type": "#Sitecore.Commerce.EntityViews.EntityView",

 "Name": "Preview",

 "Policies": [],

 "DisplayName": "Preview",

 "EntityId": "{006fa25e-d3ca-4e05-97fb-55afd8568e2e}",

 "Action": "",

 "ItemId": "",

 "Properties": [

 {

 "Name": "OrderConfirmationId",

 "Policies": [],

 "DisplayName": "Order Confirmation Id",

 "Value": "{006fa25e-d3ca-4e05-97fb-55afd8568e2e}",

 "IsHidden": false,

 "OriginalType": "String",

 "IsReadOnly": false,

 "UiType": ""

 },

 {

 "Name": "OrderPlacedDate",

 "Policies": [],

 "DisplayName": "Placed Date",

 "Value": "8/19/2016 9:52:02 PM",

 "IsHidden": false,

 "OriginalType": "DateTime",

 "IsReadOnly": false,

 "UiType": ""

 },

 {

 "Name": "Status",

 "Policies": [],

 "DisplayName": "Status",

 "Value": "Completed",

 "IsHidden": false,

 "OriginalType": "String",

 "IsReadOnly": false,

 "UiType": ""

 },

 {

 "Name": "PaymentStatus",

 "Policies": [],

 "DisplayName": "Payment Status",

 "Value": "Paid",

 "IsHidden": false,

 "OriginalType": "String",

 "IsReadOnly": false,

 "UiType": ""

 },

 {

 "Name": "ShopName",

 "Policies": [],

 "DisplayName": "Shop Name",

 "Value": "Storefront",

 "IsHidden": false,

 "OriginalType": "String",

 "IsReadOnly": false,

 "UiType": ""

 },

 {

 "Name": "OrderTotal",

 "Policies": [],

 "DisplayName": "Order Total",

 "Value": "USD1,034.00",

 "IsHidden": false,

 "OriginalType": "Money",

 "IsReadOnly": false,

 "UiType": ""

 },

 {

Developer’s Guide

23

 23

 "Name": "CustomerEmail",

 "Policies": [],

 "DisplayName": "Customer Email",

 "Value": "email@domain.com",

 "IsHidden": false,

 "OriginalType": "String",

 "IsReadOnly": false,

 "UiType": ""

 }

],

 "ChildViews": [],

 "DisplayRank": 500,

 "UiHint": "Flat"

}

4.6.2 EntityView Sample – Order Summary

Properties added:
Provided by the Orders plugin:

OrderConfirmationId<=order.OrderConfirmationId

OrderPlacedDate<=order.OrderPlacedDate

DateUpdated<=order.DateUpdated

Status<=order.Status

PaymentStatus<=order.PaymentStatus

ShopName<=order.ShopName

CustomerEmail<=order.GetComponent<ContactComponent>().Email

OrderSubTotal<=order.Totals.SubTotal

OrderAdjustmentsTotal<=order.Totals.AdjustmentsTotal

OrderGrandTotal<=order.Totals.GrandTotal

OrderPaymentsTotal<=order.Totals.PaymentsTotal

Provided by the GiftCards plugin, for example, if the order is purchasing a gift card:

GiftCardPurchased<=line.GetComponent<GiftCardComponent>().GiftCardCode

GiftCardAmount<=line.GetComponent<GiftCardComponent>().GiftCardAmount

Provided by the AdventureWorks plugin. This is a sample customization where the order uses a
coupon:

CouponUsed<=line.GetComponent<CartCouponsComponent>().Name

Sample call to retrieve EntityView:

http://{{ServiceHost}}/{{ShopsApi}}/GetEntityView()

Body:

{

 "entityId":"{006fa25e-d3ca-4e05-97fb-55afd8568e2e}",

 "viewName":"Summary",

 "forAction":""

}

Sample results from the call:

{

 "@odata.context":

"http://localhost:5000/Api/$metadata#Sitecore.Commerce.EntityViews.EntityView",

 "@odata.type": "#Sitecore.Commerce.EntityViews.EntityView",

 "Name": "Summary",

 "Policies": [],

 "DisplayName": "Summary",

 "EntityId": "{006fa25e-d3ca-4e05-97fb-55afd8568e2e}",

 "Action": "",

 "ItemId": "",

 "Properties": [

 {

 "Name": "OrderConfirmationId",

 "Policies": [],

 "DisplayName": "Order Confirmation Id",

 "Value": "{006fa25e-d3ca-4e05-97fb-55afd8568e2e}",

 "IsHidden": false,

 "OriginalType": "String",

 "IsReadOnly": true,

 "UiType": ""

Sitecore Commerce 8.2.1

24

 },

 {

 "Name": "OrderPlacedDate",

 "Policies": [],

 "DisplayName": "Placed Date",

 "Value": "8/19/2016 9:52:02 PM",

 "IsHidden": false,

 "OriginalType": "DateTime",

 "IsReadOnly": true,

 "UiType": ""

 },

 {

 "Name": "DateUpdated",

 "Policies": [],

 "DisplayName": "Date Updated",

 "Value": "8/19/2016 9:52:09 PM",

 "IsHidden": false,

 "OriginalType": "DateTime",

 "IsReadOnly": true,

 "UiType": ""

 },

 {

 "Name": "Status",

 "Policies": [],

 "DisplayName": "Status",

 "Value": "Completed",

 "IsHidden": false,

 "OriginalType": "String",

 "IsReadOnly": true,

 "UiType": ""

 },

 {

 "Name": "PaymentStatus",

 "Policies": [],

 "DisplayName": "Payment Status",

 "Value": "Paid",

 "IsHidden": false,

 "OriginalType": "String",

 "IsReadOnly": true,

 "UiType": ""

 },

 {

 "Name": "ShopName",

 "Policies": [],

 "DisplayName": "Shop Name",

 "Value": "Storefront",

 "IsHidden": false,

 "OriginalType": "String",

 "IsReadOnly": true,

 "UiType": ""

 },

 {

 "Name": "CustomerEmail",

 "Policies": [],

 "DisplayName": "Customer Email",

 "Value": "email@domain.com",

 "IsHidden": false,

 "OriginalType": "String",

 "IsReadOnly": true,

 "UiType": ""

 },

 {

 "Name": "OrderSubTotal",

 "Policies": [],

 "DisplayName": "Order Sub Total",

 "Value": "USD940.00",

 "IsHidden": false,

 "OriginalType": "Money",

 "IsReadOnly": true,

 "UiType": ""

 },

 {

 "Name": "OrderAdjustmentsTotal",

 "Policies": [],

Developer’s Guide

25

 25

 "DisplayName": "Order Adjustments Total",

 "Value": "USD94.00",

 "IsHidden": false,

 "OriginalType": "Money",

 "IsReadOnly": true,

 "UiType": ""

 },

 {

 "Name": "OrderGrandTotal",

 "Policies": [],

 "DisplayName": "Order Grand Total",

 "Value": "USD1,034.00",

 "IsHidden": false,

 "OriginalType": "Money",

 "IsReadOnly": true,

 "UiType": ""

 },

 {

 "Name": "OrderPaymentsTotal",

 "Policies": [],

 "DisplayName": "Order Payments Total",

 "Value": "USD413.60",

 "IsHidden": false,

 "OriginalType": "Money",

 "IsReadOnly": true,

 "UiType": ""

 }

],

 "ChildViews": [],

 "DisplayRank": 500,

 "UiHint": "Flat"

}

4.7 EntityActions

An EntityAction provides a simple mechanism to extend an EntityView. It allows a user to edit the values in an
EntityView, then resubmit it for implementation. EntityActions can apply globally on the EntityView, and also
at the ChildView level.

An example action is one that requires the user to select an entry in a list in order to focus an action, for
example, selecting a particular line in a list of order lines, in order to take action on that particular line.

Action Process

When the user clicks on a button indicating they want to take an action, the button supplies the name of the
view and the action name. The view the button provides represents a set of properties that must be populated
in order for the action to occur.

The user interface then calls for the view, which provides the ForAction property. The ForAction property
indicates that the user intends to edit the view, so additional policies are returned to support editing (for
example, constraints, closed vocabulary list, and so on).

Viewless Actions

It is possible that there is no view required for an action, for example, when deleting an entity. It already has
everything it needs, so there is no additional information to be collected from the user to take the action.

The RequiresConfirmation property indicates the user interface should supply a dialog box to confirm if the
user is sure of the action before allowing it, or if the action should just happen after the user clicks the button.

If there is a view, then the a dialog box opens and displays properties from the view in an editable display.
When the user clicks OK, the view is sent back to the Commerce Engine. The engine now has the properties
that are populated and the desired action, so the action can be processed to return a normal command result.

Multistep Actions

Some action executions require multiple steps. For example, when entering an address the user first selects
the country, then the county-specific properties and close vocabulary lists are presented. For example, the
StateProvince property provides the list of states or provinces depending on what applies to the selected
country.

Sitecore Commerce 8.2.1

26

Chapter 5 Rules

The Rules service is provided by the Sitecore.Commerce.Plugin.Rules plugin.

The Sitecore Commerce Rules service is a generic infrastructure for applying rules in a Sitecore Commerce
service. In the current Sitecore Commerce release, the Rules service is used with the Promotions service to
assist in evaluating the qualifications for a promotion.

The Rules service could be applied in other scenarios, for example to customize or extend other services, or in
future Sitecore Commerce releases.

The following Rules entity is provided:

Entity

RuleSet

5.1 Rules Commands and Pipelines

The following table describes the rules commands and pipelines:

Command/Pipeline Description
BuildRuleSetCommand

BuildRuleSetPipeline
Builds a rule set based on a set of rule models.

GetActionsCommand

GetActionsPipeline
Retrieves the Actions of a specified type, or if no type is specified it
retrieves all Actions.

GetConditionsCommand

GetConditionsPipeline
Retrieves the Conditions of a specified type, or if no type is specified it
retrieves all Conditions.

GetOperatorsCommand

GetOperatorsPipeline
Retrieves the Operators of a specified type, or if no type is specified it
retrieves all Operators.

RunRuleSetCommand

RunRuleSetPipeline
Runs a rule set. Returns true if all the rules are evaluated to true,
otherwise returns false.

5.2 Rules Models

The following table describes the rules models:

Model Description
ActionModel Defines an action within a rule
ConditionModel Defines a condition within a rule
OperatorModel Defines an operator within an action or condition
PropertyModel Defines a property within an action or condition
RuleModel Defines a rule

Developer’s Guide

27

 27

Chapter 6 Orders Service

The Orders service is provided by the Sitecore.Commerce.Plugin.Orders plugin.

The Orders service manages all aspects of the order lifecycle and ensures seamless control of customer
orders, from order receipt to financial settlement. A key component of the orders service is the Shopping Cart
service, which forms the initial step in the order workflow. The Shopping Cart service is described in the
following chapter.

Orders capabilities include:

 Shopping Cart - manage interactions with a Shopping Cart

 Checkout - accept additional information during checkout

 Order Capture - capture an Order from a Shopping Cart after Checkout

 Post Order Capture Processing – support for capturing data after the order

 Shops Service – an interactive service to support shopping/Integration experiences

 Authoring Service – an interactive service to support Order Management by CSRs

 Refund & RMA Processing - manage customer merchandise returns

 Pluggable Tax Integration - enable integration with a third-party tax provider; basic tax calculation
functionality is provided out-of-box for testing. You will need to customize the tax calculation
code logic to reflect your own business and tax regulation requirements.

 Pluggable Payments Integration - enable integration with a third-party payment provider

 Pluggable Fulfillment Integration – enable integration with a third-party fulfillment provider, basic
fulfillment functionality is provided out-of-box for testing

 Pluggable Inventory Integration – enable integration with a third-party inventory system;
currently shipped with out-of-box integration with the Commerce Server inventory system.

 Pluggable Integration with External Systems - enable pluggable integration with other external
systems such as ERP and fraud check

6.1 Orders Concepts
An order is created when a customer completes purchase of a product or service from the storefront web site.
The order contains all the information necessary to process the order, such as customer information, date
purchased, currency used, tax information, and more.

Sitecore Commerce 8.2.1

28

The following figure summarizes the Order flow:

The following table lists the orders entities and component:

Entity Components

Order

Sales Activity

OnHoldOrder

6.2 Orders Views

The following figure displays the hierarchy of order views:

Developer’s Guide

29

 29

6.3 Orders Actions, Commands and Pipelines

The following table describes the orders actions, commands and pipelines pertaining to the Order entity:

Action/Command/Pipeline Description
Orders

GetOrderCommand

GetOrderPipeline

Retrieves an order.
Parameter:

 orderId – the identifier of the order.
CreateOrder

CreateOrderCommand

CreateOrderPipeline

And the following dependent
pipelines:
 ItemOrderedPipeline

 OrderPlacedPipeline

Creates an order. This action is performed by a shopper from a
storefront web site.
Parameter:

 id – identifier of a Cart is passed into the order.

HoldOrder

HoldOrderCommand

HoldOrderPipeline

Places an order into on hold status so that no

further processing can occur, for example temporarily

while changes are being made to the order. This

action is performed by a customer service rep. using

the business tools.

Parameter:

orderId – the identifier of the order.

UndoOnHoldOrder

UndoOnHoldOrderCommand

UndoOnHoldOrderPipeline

Undoes the changes made to an order while the order is on hold.
Parameter:

 orderId – the identifier of the order.
CancelOnHoldOrder

CancelOnHoldOrderCommand

CancelOnHoldOrderPipeline

Cancels the order that is on hold. This is performed by a customer
service rep., for example after having placed the order on hold, then
decides to cancel it.
Parameter:

 orderId – the identifier of the order.
CancelOrder

CancelOrderCommand

CancelOrderPipeline

Cancels an order. This action is performed by a shopper from a
storefront web site, or by a customer sevice rep. using business tools.
The order must be in pending state, after which the order has been
processed and needs to be canceled by an order return.
Parameter:

 orderId – the identifier of the order.
ReleaseOrder

ReleaseOnHoldOrderCommand

ReleaseOnHoldOrderPipeline

Releases an order that is on hold.
Parameter:

 orderId – the identifier of the order.
SetOrderStatus

SetOrderStatusCommand

SetOrderStatusPipeline

Sets the status of an order.
Parameters:

 orderId – the identifier of the order.
status – the status to be set.

Sitecore Commerce 8.2.1

30

The following table describes the orders actions, commands and pipelines pertaining to the Sales Activity
entity:

Action/Command/Pipeline Description
SalesActivities Retrieves one or all sales activities. If no parameter is passed, all

available sales activities are returned.
Parameter:

 SalesActivityId – the identifier of the sales activity
GetOrderSalesActivities

GetOrderSalesActivityCommand
Retrieves sales order activities pertaining to an order.
Parameter:

 orderId – the identifier of the order.

SettleSalesActivityPipeline

6.4 Orders Models

The following orders models are provided:

Model
CreatedOrder

TemporaryCartCreated

6.5 Orders Policies

The following orders policies are provided:

Policy Description
CancelOrdersPolicy Defines whether orders are allowed to be

cancelled.
GlobalCheckoutPolicy Defines overall checkout settings including:

 Enable quick checkout

 Enable guest checkout

 Terms and conditions

 Minimum order quantity
GlobalOrderPolicy Defined overall order settings including:

 Invoice prefix

 Invoice suffix

 Allow order cancel

 Submitted order list

 Completed order list

 Created order status
KnownOrderActionsPolicy Provides the ability to change the default

order action names.
KnownOrderListsPolicy Provides the ability to change the default

order lists names.
KnownOrderStatusPolicy Provides the ability to change the default

order status names.
KnownOrderViewsPolicy Provides the ability to change the default

order views names.
KnownSalesActivityStatusesPolicy Provides the ability to change the default

sales activity status names.
OnHoldOrdersPolicy Defines whether orders are allowed to be

placed on hold.

Developer’s Guide

31

 31

Chapter 7 Orders Service – Shopping Cart

The Shopping Cart service is provided by the Sitecore.Commerce.Plugin.Carts plugin.

The Shopping Cart (or Cart) is a virtual container on a web site that holds the products and services that a
customer wants to purchase. It forms the initial step of the Order service.

A Cart has one or more line items that each present a SellableItem, a Quantity and a SellPrice.

The Cart is accessed from the Service API, and is not directly exposed to the user applications. Therefore,
there are not Cart views or actions.

The following Cart entities are provided:

Entity

Cart

Cart Line

7.1 Cart Actions, Commands and Pipelines

The following table describes the cart commands and pipelines pertaining to the Cart entity:

Command/Pipeline Description
GetCartCommand

GetCartPipeline
Retrieves the cart record. If the cart does not exist it returns an empty
cart.
Parameter:

 cartId – the cart identifier (string)
MergeCartsCommand

MergedCartsPipeline
Merges two cart records; for example a customer initially created a cart
as an anonymous user, then authenticates and creates another cart. This
action merges the previous anonymous cart into the authenticated cart.
Recalculates the cart.
Parameters:

 fromCartId – cart record that data is merged from (string)

 toCartId – cart record that data is merged to (string)

The following table describes the cart commands and pipelines pertaining to the Cart Line entity:

Command/Pipeline Description
AddCartLineCommand

AddCartLinePipeline
Creates a new cart line in the cart. Recalculates the cart.
Parameters:

 cartId – the cart identifier (string)

 itemId – the cart line identifier

 quantity – the quantity of cart line items to add (decimal)
UpdateCartLineCommand

UpdateCartLinePipeline
Updates a cart line within a Cart, for example updates its identifier or
quantity. Recalculates the cart.
Parameters:

 cartId – the cart identifier (string)

 cartLineId – the cart line identifier (string)

 quantity – the quantity of cart line items to add (decimal)
RemoveCartLineCommand

RemoveCartLinePipeline
Removes a single cart line item from a Cart. Recalculates the cart.
Parameters:

Sitecore Commerce 8.2.1

32

Command/Pipeline Description

 cartId – the cart identifier (string)

 cartLineId – the cart line identifier (string)

The following table describes actions that are performed on a cart in the special case when an order is put on
hold. When an order is put on hold and modified, the Commerce Engine in fact modifies the cart that created
the order.

Action Description
AddLineItem Adds a cart line item to an order that is on hold.

Parameters:

 orderId – the identifier of the order.

 itemId – the identifier of the cart line item to add to the order.

 Quantity – quantity of the line item to add.
EditLineItem Edits a cart line item of an order that is on hold.

Parameters:

 orderId – the identifier of the order.

 itemId – the identifier of the cart line item to edit.
Quantity – quantity of the line item to edit.

DeleteLineItem Deletes a cart line item of an order that is on hold.
Parameters:

 orderId – the identifier of the order.
itemId – the identifier of the cart line item to delete.

The following are general pipelines that extend other cart pipelines:

Action
CalculateCartPipeline

CalculateCartLinesPipeline

GetCartListPipeline

PopulateLineItemPipeline

7.2 Cart Models

The following cart models are provided:

Model
CartTotals

LineAdded

LineUpdated

Totals

7.3 Cart Policies

The following cart policies are provided:

Policy
GlobalCartPolicy

KnownCartAdjustmentTypesPolicy

LineQuantityPolicy

RollupCartLinesPolicy

Developer’s Guide

33

 33

Chapter 8 Orders Service – Returns

The Returns service is provided by the Sitecore.Commerce.Plugin.Returns plugin.

The Returns service provides the ability to initiate a product return by requesting a Return Merchandise
Authorization (RMA) and process the returned product.

8.1 Returns Views

The following figure displays the returns views:

8.2 Returns Actions, Commands and Pipelines

The following table describes the returns actions, commands and pipelines:

Action/Command/Pipeline Description
RequestRma

RequestRmaCommand

RequestRmaPipeline

Initiates a request for a return merchandise authorization (RMA).
Parameters:

 orderId – the identifier of the order that contains the
returned item.

 LineId – the identifier of the order line item being returned.

 Reason – the reason the shopper has entered, for the return.

 Quanity – quantity of the line items being returned.
ValidateRmaRequestCommand

ValidateRmaRequestPipeline
Validates the return request.

ReturnedItemReceived

ReturnedItemReceivedCommand

ReturnedItemReceivedPipeline

Initiates the acknowledgement that the returned items have been
received, and that the processing of the refund can proceed.
Parameters:

 rmaId – the identifier of the RMA record for the returned
item(s).

 refundPaymentId – the identifier of the refund payment
record.

Note
StartOrderReturn is not used.

ms-its:C:/Users/mhe/Box%20Sync/1_SyncLocal/Documentation/Sitecore.Commerce.Documentation.chm::/html/3906d96b-2c99-87bd-2479-1aed5bcf78a5.htm

Sitecore Commerce 8.2.1

34

8.3 Returns Models

The following returns models are provided:

Model
RmaAdded

RmaReason

RmaRequestValid

8.4 Returns Policies

The following returns policies are provided:

Policy Description
KnownReturnsActionsPolicy Provides the ability to change the default returns

actions names.
KnownReturnsListsPolicy Provides the ability to change the default returns

lists names.
KnownReturnsStatusPolicy Provides the ability to change the default returns

status names.
KnownReturnsViewsPolicy Provides the ability to change the default returns

views names.
RequestRmaReasonsPolicy Provides the ability to allow only specific reasons

for the RMA, for example if the user interface
presented a drop list where the shopper would be
required to select one.

Developer’s Guide

35

 35

Chapter 9 Pricing Service

The Pricing service is provided by the Sitecore.Commerce.Plugin.Pricing plugin.

The Sitecore Commerce Pricing Service enables flexible, extensible, and dynamic pricing scenarios based on
date, tiers, or aspects of the customer’s environment. For example, the service actively calculates prices as the
customer views products or services during an order.

Pricing capabilities include:

 Dynamic pricing – actively calculates prices in real time based on input from customers, for
example, based on actions on the storefront. Actively calculates the List Price and Sell Price
available for the customer, based on a set of conditions and policies.

 Is/Was pricing – calculates and displays to customers both the List Price (for example, MSRP) and a
Sell Price (for example, a special discounted price) based on a set of conditions. A List Price could
be displayed to the customer in struck-out font, to emphasize that the customer is getting a good
price. Some regions or countries have laws regulating the display of regular versus sale prices, for
example, preventing the elevation of the regular price; Sitecore Commerce software does not
enforce such laws.

9.1 Pricing Concepts

In the current release, the catalog in Commerce Server is related to the Commerce Engine as follows:

Commerce Server Commerce Engine

Catalog Price Book
Price Card

The following table presents the hierarchy of Commerce Engine pricing entities and components:

Entity Components

Price Book

Price Card

Snapshot

Tier
Tag

The following table describes general pricing terminology:

Pricing Term Description

Catalog An organization of products and services to sell. The Catalog is defined in groups of
categories and products. The Catalog contains products and description data.

Price Book A container for one or more Price Cards. Can be related to one or more Catalogs.

Price Card An optional mechanism to define a Sell Price, which is normally a discounted price as
compared to the List Price. Price Cards also make it possible to apply common pricing
across multiple SellableItems without repeating the same pricing definition in each one. A
Price Card can be a single application (for example, a reduced item price) or can contain
multiple applications (for example, multiple promotions impacting a price at a particular
time).

Snapshot A calculated price that is defined to apply at a specified date/time (for example, at a
snapshot in time). Snapshots are used to vary prices by date/time.

Sitecore Commerce 8.2.1

36

Pricing Term Description

Tier A categorization that can be used to present tier-based pricing, for example, by pricing by
number of units bought, or by currency.

Tag An indicator used to efficiently relate prices to particular SellableItems. By adding tags to a
snapshot, you link a Price Card (at a particular date/time) to items that have the same tags
applied.

9.2 Pricing Views

The following figure displays the hierarchy of pricing views:

The following table describes pricing views terminology, grouped by pricing entities and components:

Price Book Views Description
PriceBooks A list of all the price books.
Master Displays the price book information.
Details Displays the price book details.
PriceBookCards A list of price book cards within the price book.
PriceBookCatalogs A list of catalogs indicating whether they are associated or not with the price

book.

Price Card Views Description
Master Displays the Price Card information.
Details Displays the Price Card details.
Summary Displays a subset of the Price Card’s Details view.

Snapshot Views Description
PriceCardSnapshots A list of the Price Card's Snapshots.
PriceSnapshotDetails Displays a Price Card's Snapshot details.

Tier Views Description
Pricing A list of the Snapshot's tiers.
PriceRow Displays a Snapshot's Tier details.

Tag Views Description
PriceSnapshotTags A list of the Snapshot's Tags.
PriceTagDetails Displays a Snapshot Tag’s details.

Note
PriceSnapshotTiers and PriceTierDetails are not used.

Developer’s Guide

37

 37

9.3 Pricing Actions, Commands, Pipelines

The following table describes the pricing actions, commands, and pipelines pertaining to the Price Book
entity:

Action/Command/Pipeline Description
AddPriceBook

AddPriceBookCommand

AddPriceBookPipeline

Adds a price book. The price book name must be unique in
the system.

EditPriceBook

EditPriceBookCommand

EditPriceBookPipeline

Edits a price book.

AssociateCatalog

AssociateCatalogToBookCommand

AssociateCatalogToBookPipeline

Associates a price book to a specific catalog.

DisassociateCatalog

DisassociateCatalogFromBookCommand

DisassociateCatalogFromBookPipeline

Disassociates a price book from a specific catalog.

The following table describes the pricing actions, commands, and pipelines pertaining to the Price Card
entity:

Action/Command/Pipeline Description
AddPriceCard

AddPriceCardCommand

AddPriceCardPipeline

Adds a price card to a price book. Requires a name and the
parent’s price book name. The price card name must be unique
within the price book parameters.

EditPriceCard

EditPriceCardCommand

EditPriceCardPipeline

Edits a price card.

DeletePriceCard

DeletePriceCardCommand

DeletePriceCardPipeline

Deletes a price card. A price card can only be deleted if it does
not contain approved snapshots.

DuplicatePriceCard

DuplicatePriceCardCommand

DuplicatePriceCardPipeline

Duplicates a price card and its snapshots.

The following table describes the pricing actions, commands, and pipelines pertaining to the Snapshot
component:

Action/Command/Pipeline Description
AddPriceSnapshot

AddPriceSnapshotCommand

AddPriceSnaphostPipeline

Adds a snapshot to a price card. Requires the
snapshot's start date, which must be equal to or
earlier than the latest approved snapshot date
within the price card.

EditPriceSnapshot

EditPriceSnapshotCommand

EditPriceSnapshotPipeline

Edits a snapshot. The snapshot’s approval status
must be Draft.

RequestSnapshotApproval

SetPriceSnapshotApprovalStatusCommand
Changes a snapshot’s approval status from Draft to
ReadyForApproval.

ApproveSnapshot

SetPriceSnapshotApprovalStatusCommand
Changes a snapshot's approval status from
ReadyForApproval to Approve.

RejectSnapshot

SetPriceSnapshotApprovalStatusCommand
Changes a snapshot’s approval status from
ReadyForApproval to Draft.

RetractSnapshot

SetPriceSnapshotApprovalStatusCommand
Changes a snapshot’s approval status from
Approved back to Draft. Applicable only before the
snapshot is made fully active.

RemovePriceSnapshot

RemovePriceSnapshotCommand

RemovePriceSnapshotPipeline

Removes a price snapshot from a price card. The
Snapshot’s approval status must be Draft.

(internal - no action or command)
ResolveActivePriceSnapshotByCardPipeline

Resolves the active snapshot within a price card.
The active snapshot is an approved snapshot that

Sitecore Commerce 8.2.1

38

Action/Command/Pipeline Description

has a start date closest to the request's
EffectiveDate.

(internal - no action or command)
ResolveActivePriceSnapshotByTagsPipeline

Resolves the active snapshot within a price book by
tags. The active snapshot is the approved snapshot
that has start date closest to the request's
EffectiveDate and matches the highest number of
tags.

The following table describes the pricing actions, commands, and pipelines pertaining to the Tier component:

Action/Command/Pipeline Description
AddCurrency

AddPriceTierCommand

AddPriceTierPipeline

Adds a price tier for a specific currency to a snapshot. The
combination of a tier's quantity and currency must be
unique within a snapshot. The snapshot’s approval status
must be set to Draft to add a tier.

EditCurrency

EditPriceTierCommand

EditPriceTierPipeline

Edits a snapshot’s price tier for a specific currency. The
snapshot’s approval status must be set to Draft to edit a
tier.

RemoveCurrency

RemovePriceTierCommand

RemovePriceTierPipeline

Removes a price tier from a snapshot for a specific currency.
The snapshot’s approval status must be set to Draft to
remove a tier.

AddPriceTag

AddPriceSnapshotTagCommand

AddPriceSnapshotTagPipeline

Adds a tag to a snapshot. A tag must be unique within a
snapshot. The snapshot’s approval status must be set to
draft to add a tag.

RemovePriceTag

RemovePriceSnapshotTagCommand

RemovePriceSnapshotTagCommand

Removes a tag from a snapshot. The snapshot’s approval
status must be set to Draft to remove a tag.

Developer’s Guide

39

 39

Pricing Approval Process

The following figure illustrates the pricing approval process:

9.4 Pricing Models

The following pricing models are provided:

Model
AssociatedCatalogModel

ItemPricing

PriceBookAdded

PriceCardAdded

PriceSnapshotAdded

PriceTier

PriceTierAdded

9.5 Pricing Policies

GlobalPricingPolicy

The GlobalPricingPolicy policy provides the ability to specify standard price policies. It applies in the
Commerce Shops service. The following sample shows the GlobalPricingPolicy returned on an
environment policies collection. It can be overwritten for a particular shop by being added to the policies
collection of that shop.

{

 "@odata.type": "#Sitecore.Commerce.Plugin.Pricing.GlobalPricingPolicy",

 "PolicyId": "54a2e0ab01574526a4d0adc9abf4b90e",

 "Models": [],

 "RuleSet": null,

 "ShouldRoundPriceCalc": true,

 "RoundDigits": 2,

 "MidPointRoundUp": true,

 "MaxPriceCardNameLength": 30,

 "MaxPriceBookNameLength": 30,

 "MinimumPrice": 0,

 "MinimumPricingQuantity": 0

}

Sitecore Commerce 8.2.1

40

KnownPricingActionsPolicy

The KnownPricingActionsPolicy policy provides the ability to change the default pricing action names.

KnownPricingListsPolicy

The KnownPricingListsPolicy policy provides the ability to change the default Pricing List names:

List Name Default Value

PriceBookCards PriceBooks-{0}-PriceCards

KnownPricingViewsPolicy

The KnownPricingViewsPolicy policy provides the ability to change the default Pricing View names.

ListPricingPolicy

The ListPricingPolicy policy provides the ability to specify a List Price in multiple currencies. The
following sample shows the ListPricingPolicy returned on a SellableItem policies collection or one of its
variants:

{

 "@odata.type": "#Sitecore.Commerce.Plugin.Pricing.ListPricingPolicy",

 "PolicyId": "db13def722dc488f86a0673b83eb85e8",

 "Models": [],

 "RuleSet": null,

 "Prices": [

 {

 "CurrencyCode": "USD",

 "Amount": 44.75

 },

 {

 "CurrencyCode": "CAD",

 "Amount": 45.75

 }

]

}

OnSalePolicy

The OnSalePolicy policy provides the ability to specify that a SellableItem is on sale. The following sample
shows the OnSalePolicy returned on a SellableItem policies collection or in the policies collection of one of
its variants:

{

 "@odata.type": "#Sitecore.Commerce.Plugin.Pricing.OnSalePolicy",

 "PolicyId": "b70814f6f15b4a0aaeea74e83af63c20",

 "Models": [],

 "RuleSet": null,

 "OnSale": true,

 "ShowInCart": false,

 "CartDisplay": "text"

 }

PriceCardPolicy

The PriceCardPolicy policy provides the ability to specify a Price Card for the SellableItem. This allows the
SellableItem to share a pricing definition with multiple other SellableItems. The same logical PriceCard name
can be represented in multiple Price Books, providing a flexible method for specifying pricing. The following
sample shows the PriceCardPolicy returned on a SellableItem policies collection or in the policies
collection of one of its variants. It indicates that a common price definition is being referenced:

Developer’s Guide

41

 41

{

 "@odata.type": "#Sitecore.Commerce.Plugin.Pricing.PriceCardPolicy",

 "PolicyId": "2f770e056b9149088c8f57a84d9343ed",

 "Models": [],

 "RuleSet": null,

 "PriceCardName": "HabitatPriceCard"

 }

PurchaseOptionMoneyPolicy

The PurchaseOptionMoneyPolicy policy provides the ability to specify a calculated Sell Price in multiple
currencies. The following sample shows the PurchaseOptionMoneyPolicy returned on a SellableItem
policies collection or in the policies collection of one of its variants. It represents what you would actually sell
an item for based on the context of the call. This could be a dynamically calculated price based on
environment factors, for example, the Date/Time or the quantity the customer intends to purchase based on
what they have in the cart.

{

 "@odata.type": "#Sitecore.Commerce.Plugin.Pricing.PurchaseOptionMoneyPolicy",

 "PolicyId": "b70814f6f15b4a0aaeea74e83af63c20",

 "Models": [],

 "RuleSet": null,

 "SellPrice": {

 "CurrencyCode": "USD",

 "Amount": 10

 }

 }

9.6 Pricing Transparency

Price transparency ensures that the mechanism for calculating pricing is testable, auditable, and reproducible.
Price transparency is for internal use, and is not presented to shoppers. Transparency is achieved during price
calculation, by adding pricing messages into the artifacts receiving the pricing. Messages convey information
on pricing strategy in a succinct and traceable way, for example, how a particular price was calculated.

Pricing messages can be added to a MessagesComponent during price calculation. A MessageModel uses the
Name property to designate the type of message. These messages are named Pricing, which allows
subsequent processing to filter on them. The MessagesComponent has an AddMessage method that allows a
message to easily be added by passing in the message type and text for the message. In some cases, multiple
messages are written as pricing rules successively cause an overwrite of a previous calculated price.

During calculation, pricing messages are added to a:

 SellableItem – messaging is inserted into to a MessagesComponent in the SellableItem. This is
first calculated at the item level and then calculated at each variant level for price overrides.

 Price Cart – messaging inserted into a CartLineComponent as part of calculating the price cart.

At the end of the pricing calculation a reconciliation step occurs, which ensures that there is both a ListPrice
and a SellPrice for each item and its variation.

Calculating Sellable Item List Price

The sellable item list price is calculated in the Plugin.Catalog.Cs.CalculateSellableItemListPriceBlock
plugin.

The list price is written into the SellableItem property ListPrice, which is of the type Money.

The following messages are generated when calculating the list price:

Message Circumstance
ListPrice<=PricingPolicy:

Price={listPrice.AsCurrency()}
Item has a ListPricingPolicy and that policy
has an entry for the desired currency.
Sample Item AW051-14 (no variation)
Sample Item AW055-01,33 (with variation)

Sitecore Commerce 8.2.1

42

Message Circumstance
ListPrice<FirstVariation.PricingPolicy:

Price={listPrice.AsCurrency()}|FirstVaria

tion={variation.Id}

No matching item level ListPricingPolicy

but item has variations. The system uses the first
ListPricingPolicy that it finds with a
matching currency.

ListPrice<=Template.PricingPolicy:

Template={_itemTemplateByDefinition.Id}
There is no ListPrice in the item but the item has
a template and is using the ListPricePolicy

from the template.
ListPrice<=SellPrice: Price={SellPrice} There is no ListPrice but there is a SellPrice, so

the SellPrice is copied to the ListPrice.

Calculating Sellable Item Variation List Price

The sellable item variation list price is calculated in the
Plugin.Catalog.Cs.CalculateSellableItemListPriceBlock plugin (CalculateVariationsListPrice).

Normally a variation inherits the parent item's ListPrice and only needs to specify its own pricing if it is
different than the parent. These messages are added into the SellableItem variation level.

The following messages are generated when calculating variation list price:

Message Circumstance
Variation.ListPrice<=Variation.PricePolic

y:

Variation={variation.Id}|Price={listPrice

.AsCurrency()}

The variation has a ListPricingPolicy and
that policy has an entry for the desired currency.

Variation.ListPrice<=Item.PricingPolicy:

Variation={variation.Id}|Price={listPrice

.AsCurrency()}

No variation-specific ListPricingPolicy; the
ListPricingPolicy is retrieved from the parent item.

Variation.ListPrice<=Template.PricingPoli

cy:

Variation={variation.Id}|Price={listPrice

.AsCurrency()}

There is no ListPrice at variation or item level; the
ListPrice is retrieved from the item template.

Variation.ListPrice<=Variation.SellPrice:

Price={Variation.SellPrice}|Variation={va

riationid}

The variation does not have a ListPrice but has a
SellPrice, so the SellPrice is copied to the
ListPrice.

Calculating Sellable Item Sell Price

The sellable item sell price is calculated in the Plugin.Catalog.Cs.CalculateSellableItemSellPriceBlock
plugin.

To calculate the sell price:
1. Find the PriceCardPolicy (new Policy) in the SellableItem policies list.

The PriceCardPolicy must contain the logical name of a PriceCard (note that the same logically

named price card can exist in multiple price books).

2. If there is no PriceCardPolicy, then look for a PriceCard using the tagging.

3. Resolve the PriceBook to use by loading the catalog from Commerce Server. The identifier for the

catalog is passed in to the call (new Pipeline - GetCatalog).

4. Check that there is a new attribute on the catalog (PriceBook - string with Id fragment to PriceBook).

5. Load the PriceCard instance using the PriceBook and the logical PriceCard name.

6. Resolve the proper PriceSnapshot to use by filtering out those with dates that are superseded by

other PriceSnapshots to find the single PriceSnapshot that should apply.

7. In the PriceSnapshot, resolve the available PriceTiers by filtering on the currency passed into the call.

8. Calculate the SellPrice (purchaseOption.SellPrice) using an assumed quantity of 1.

9. Copy the filtered PriceSnapshot and PriceTiers into the SellableItem so it can be used in later

calculations.

Developer’s Guide

43

 43

The following messages are generated when calculating the sell price:

Message Circumstance
SellPrice<=PriceCard.Snapshot:

Price={sellPrice.AsCurrency()}|Qty={tier.

Quantity}|PriceCard={priceCardPolicy.Pric

eCardName}

The SellableItem has a PriceCardPolicy and a
valid PriceSnapshot and PriceTier can be
determined.
Sample Item AW051-14 (no variation)
Sample Item AW055-01,33 (with variation)

SellPrice<=Tags.Snapshot:

Price={sellPrice.AsCurrency()}|Qty={tier.

Quantity}|Tags='{string.Join(", ",

snapshot.Tags.Select(c => c.Name))}'

The SellableItem does not have a
PriceCardPolicy but it has tags.

SellPrice<=Catalog.Product.ListPrice:

Price={sellPrice.AsCurrency()}|Product={p

roduct.ProductId}|Catalog={product.Catalo

gName}

The SellableItem has no PriceCardPolicy and
matches Commerce Server Catalog currency,
therefore it uses the Commerce Server List Price
as the SellPrice.

SellPrice<=ListPrice: Price={ListPrice} The SellableItem has no SellPrice but has a valid
ListPrice, so the ListPrice is copied to the
SellPrice.

Sitecore Commerce 8.2.1

44

Calculating Sellable Item Variation Sell Price

The sellable item variation sell price is calculated in the
Plugin.Catalog.Cs.CalculateSellableItemSellPriceBlock plugin (CalculateVariationsSellPrice).

Variation sell price messages appear in a MessageComponent at the variation level. The SellPrice is created in
the variation as a PurchaseOptionMoneyPolicy at the variant level. There must be no
PurchaseOptionMoneyPolicy at the variant level if the variant has the same sell pricing as the parent
SellableItem.

The following messages are generated when calculating the variation sell price:

Message Circumstance
Variation.SellPrice<=Variation.PriceCard.

Snapshot:

Price={variationSellPrice.AsCurrency()}|Q

ty={tier.Quantity}|Variation={variation.I

d}|PriceCard={variationPriceCardPolicy.Pr

iceCardName}

The variation has a PriceCardPolicy, or if not
present, uses the parent calculated
PriceCardPolicy.

Variation.SellPrice<=Variation.Tags.Snaps

hot:

Price={variationSellPrice.AsCurrency()}|V

ariation={variation.Id}|Qty={tier.Quantit

y}|Tags='{string.Join(", ",

snapshot.Tags.Select(c => c.Name))}'

The variation has no PriceCardPolicy but has
tags, or the parent SellableItem has tags.

Variation.SellPrice<=

Catalog.Product.Variation.ListPrice:

Price={variationSellPrice.AsCurrency()}|V

ariation={variation.Id}

If there is no PriceCardPolicy and no parent
SellableItem PriceCardPolicy and there are
matches for the Commerce Server catalog
currency, use the list price from the Commerce
Server (using the ProductFamily lookup).

Variation.SellPrice<=Variation.ListPrice:

Price={ListPrice}|Variation={variationid}
The variation does not have a SellPrice but has a
ListPrice, so the ListPrice is copied to the
SellPrice.

Calculating Cart Line List Price

The cart line list price is calculated in the Plugin.Catalog.Cs.CalculateCartLinesPriceBlock plugin.

The following messages are generated when calculating the cart line list price:

Message Circumstance
All from SellableItem All pricing messages are copied from the

SellableItem.
CartItem.ListPrice<=SellableItem.ListPric

e:

Price={line.UnitListPrice.AsCurrency()}

The list price is retrieved from the SellableItem.

CartItem.ListPrice<=SellableItem.Variatio

n.ListPrice:

Price={line.UnitListPrice.AsCurrency()}

The SellableItem has a variation and the list
pricing is retrieved from the variation.

All Price messaging from Variation All pricing messages from the SellableItem
variation are copied into the line
MessageComponent.

Calculating Cart Line Sell Price

The cart line sell price is calculated in the Plugin.Catalog.Cs.CalculateCartLinesPriceBlock plugin.

The following messages are generated when calculating the cart line sell price:

Message Circumstance
All from SellableItem All pricing messages are copied from the

SellableItem.

Developer’s Guide

45

 45

Message Circumstance
CartItem.SellPrice<=SellableItem.SellPric

e:

Price={purchaseOptionPolicy.SellPrice.AsC

urrency()}

The SellableItem has a
PurchaseOptionMoneyPolicy (indicating it can
be sold in the currency desired).

CartItem.SellPrice<=SellableItem.Variatio

n.SellPrice:

Price={purchaseOptionPolicy.SellPrice.AsC

urrency()}

The item has a variation and the variation has a
PurchaseOptionMoneyPolicy.

CartItem.SellPrice<=PriceCard.ActiveSnaps

hot:

Price={purchaseOptionPolicy.SellPrice.AsC

urrency

()}|Qty={tier.Quantity}

The SellableItem has a calculated
PriceSnapshotComponent and line.Quantity
<= tier.quantity (takes first in descending
order).

Sitecore Commerce 8.2.1

46

Chapter 10 Promotions Service

The Promotions service is provided by the Sitecore.Commerce.Plugin.Promotions plugin.

The Sitecore Commerce Promotion Service provides the underlying infrastructure and functionality for
defining, evaluating, and applying promotions to products, at defined levels of granularity.

A promotion is an artifact that defines a set of qualifications for awarding a benefit, or a collection of benefits.
Promotions can be configured to apply in a number of forms. For example: percent off, amount off depending
on the currency, free shipping, and access to a service. Promotions can be applied to a product, or at the cart
level. When a promotion is applied to the cart, the promotion can be calculated in real-time as part of the cart
calculation.

Promotions are organized into promotion books. A promotion book is an entity that acts as a collection of
individual promotions, which enables promotions to be stacked. A promotion book can apply to products in
one or more catalogs, which enables promotions to be expressed for particular customer segments.

Promotions capabilities include:

 Flexible application – tie a promotion to a product, or a collection of products using tags.

 Promotion Books – flexible application of promotions using promotion books.

 Qualifications infrastructure – qualify for a promotion by rules-based expressions (for example,
channel, date/time, catalog, shop, customer order history); apply multiple qualifications to a
promotion.

 Flexible application of benefits awarded by a promotion – award a benefit to the item or to
another item, award via a shopping cart level adjustment, award an entitlement or action on
entitlement, award a fee adjustment, or award a gift into a shopping cart.

 Coupon management – promotions qualified using coupons, applied using public coupons (for
example, multiuse, named coupons) or privately (for example, single use, single customer);
allocate to specific uses in batches (for example, campaign mailings), and export to CSV for
external marketing.

 Real-time promotion calculation – calculate and present awards in a shopping cart.

 Real-time bulk promotion calculation – retrieve possible promotions for an item to display in a
Product Detail page.

 Promotion authoring – manage promotions from a business tool, through an Odata service.

 Centralized promotions storage – stored in a centralized repository, so that changes can be
implemented without the need to synchronize data with other systems.

 Transparent – the process for how a promotion is derived can be tracked and audited.

10.1 Promotions Concepts

The following table describes the hierarchy of promotions entities and components:

Entity Components

Promotion Book

Promotion

Qualification
Benefit
Item

Developer’s Guide

47

 47

The following table describes general promotion terminology:

Promotion Term Description

Promotion Book A container for one or more promotions. May be related to one or more catalogs.

Promotion A singled defined instance of a set of qualifications that result in one or a set of
benefits.

Qualification A set of rules to be satisfied in order to trigger the award of a benefit(s).

Benefit A financial advantage awarded to a customer who’s buying activities meet the
qualification(s).

Item A product or its variant, defined in the catalog.

10.2 Promotions – Qualifications

The following promotion qualifications are supported, and available in the Pricing and Promotions Manager
Tool.

Product qualifications – related to the product inventory:

 Inventory Item Stock Count in [specific] Location [compares] to [specific value]?

 Is Item in Stock?

 Is Item in Stock in [specific] Location?

 Is Item Out of Stock?

 Is Item Out of Stock in [specific] Location?

 Is Item Pre-orderable?

 Is Item Pre-orderable in [specific] Location?

 Is Item Back-orderable?

 Is Item Back-orderable in [specific] Location?

Cart qualifications – applied at the cart level:

 Is Cart Item Available?

 Is Cart Item [specific] Quantity Available?

 Cart Has Items?

 Cart Any Item Has Template [compares] to [specific] Product Template?

 Cart Any Item Subtotal [compares] to [specific value]?

 Cart Subtotal [compares] to [specific value]?

 Cart Has Fulfillment?

Cart line qualifications – applied at the cart line level:

 Cart Item has [specific] tag?

 Cart Item Quantity [compares] to [specific value]?

 Cart Item Quantity is in [min] [max] Range?

 Cart Item Subtotal [compares] to [specific value]?

Shopper qualifications – related to an existing registered shopper:

 Is Cart Contact Registered?

 Is Cart Contact Currency [specific value]?

 Is Cart Contact Customer Id [specific value]?

 Is Cart Contact Language [specific value]?

Shopper history qualifications – related to the transaction history of the current shopper:

 Current Customer Has Purchased [specific] Item?

 Current Customer Has Purchased Item with [specific] Tag?

 Current Customer Orders Count [compares] to [specific value]?

 Current Customer Orders Total [compares] to [specific value]?

Environment qualifications – related to the current date:

 Current Date Has Passed?

Sitecore Commerce 8.2.1

48

 Is Current Day?

 Is Current Month?

Shop context qualifications – related to a particular shop:

 Is Shop Currency [specific value]?

 Is Shop Language [specific value]?

 Is Shop Name [specific value]?

10.3 Promotions – Benefits

The following promotion benefits are supported, and available in the Pricing and Promotions Manager Tool.

Cart adjustments:

 Get Cart Any Item Subtotal [specific] Amount Off

 Get Cart Any Item Subtotal [specific] Percent Off

 Get Cart Subtotal [specific] Amount Off

 Get Cart Subtotal [specific] Percent Off

Cart line adjustments:

 Get Cart Item Subtotal [specific] Amount Off

 Get Cart Item Subtotal [specific] Percent Off

Fulfillment adjustment:

 Get Free Shipping

Note
The Commerce Engine does not support promotions that rely on a cart subtotal to apply a benefit on a line
item.

The Commerce Engine calculates the subtotals, taxes and fulfilment costs (including promotions) on line
items before it performs those calculations at the cart level. A promotion that benefits a line item is evaluated
first, but if its qualification depends on a cart subtotal, the condition cannot be met because cart totals are
calculated by the next pipeline. In such cases, the promotion is not applied.

10.4 Promotions Samples

Sitecore Commerce is shipped with the following configured sample promotions, applicable to the Habitat
and Adventure Works sample catalogs:

The following table describes the Habitat sample catalog:

Promotion Name Promotion Description Promo Type
CartFreeShippingPromotion Free shipping when Cart subtotal of $100 or more automatic

Cart5OffExclusiveCouponPromotion $5 off Cart with subtotal of $10 or more exclusive coupon

Cart5PctOffExclusiveCouponPromotion 5% off Cart with subtotal of $10 or more exclusive coupon

Cart10OffCouponPromotion $10 off Cart with subtotal of $50 or more coupon

Cart10PctOffCouponPromotion 10% off Cart with subtotal of $50 or more coupon

Cart15PctOffCouponPromotion 15% off Cart with subtotal of $50 or more coupon

CartOptixCameraExclusivePromotion 50% off Cart when buying Optix Camera exclusive auto.

Line5OffCouponPromotion $5 off any item with subtotal of $10 or more coupon

Line5PctOffCouponPromotion 5% off any item with subtotal of 10$ or more coupon

Line20OffExclusiveCouponPromotion $20 off any item with subtotal of $50 or more exclusive coupon

Line20PctOffExclusiveCouponPromotion 20% off any item with subtotal of $50 or more exclusive coupon

LineHabitat34withTouchScreen5OffPromo
tion

$5 off the Habitat 34.0 Cubic Refrigerator with
Touchscreen item

automatic

LineHabitat34withTouchScreenPromotion 50% off the Habitat 34.0 Cubic Refrigerator with
Touchscreen item

automatic

Developer’s Guide

49

 49

Promotion Name Promotion Description Promo Type
LineMiraLaptopExclusivePromotion 50% off the Mira Laptop exclusive auto.

The following table describes the AdventureWorks sample catalog:

Promotion Name Promotion Description Promo Type
CartFreeShippingPromotion Free shipping when Cart subtotal of $100 or more automatic

Cart5OffExclusiveCouponPromotion $5 off Cart with subtotal of $10 or more exclusive coupon

Cart5PctOffExclusiveCouponPromotion 5% off Cart with subtotal of $10 or more exclusive coupon

Cart10OffCouponPromotion $10 off Cart with subtotal of $50 or more coupon

Cart10PctOffCouponPromotion 10% off Cart with subtotal of $50 or more coupon

Cart15PctOffCouponPromotion 15% off Cart with subtotal of $50 or more coupon

CartGalaxyTentExclusivePromotion 50% off Cart when buying Galaxy Tent exclusive auto.

Line5OffCouponPromotion $5 off any item with subtotal of $10 or more coupon

Line5PctOffCouponPromotion 5% off any item with subtotal of 10$ or more coupon

Line20OffExclusiveCouponPromotion $20 off any item with subtotal of $50 or more exclusive coupon

Line20PctOffExclusiveCouponPromotion 20% off any item with subtotal of $50 or more exclusive coupon

LineSaharaJacket5OffPromotion $5 off the Sahara Jacket item automatic

LineSaharaJacketPromotion 50% off the Sahara Jacket item automatic

LineAlpineParkaExclusivePromotion 50% off the Alpine Parka item exclusive auto.

10.5 Calculating Promotions

The following filters are used to prequalify promotions before they are evaluated, to reduce the evaluation
workload:

 Approval status – the promotion approval status is equal to Approved, and has not been Disabled.

 Date range – the promotion's from and to date range is valid.

 Catalog – the promotion book is associated with the same catalog as items in the user's cart.

 Benefits type – the promotion's benefits are of the same type, cart, or cart line. For example, when
calculating cart line promotions, no cart promotions are evaluated.

 Items – the promotion's included items match items in the user's cart. The promotion's excluded
items exclude the promotion from evaluation if matching any items in the user's cart.

 Cart exclusivity – an exclusive cart promotion excludes all other promotions in the cart.

 Cart line exclusivity - an exclusive cart line promotion excludes all other promotions in all of the
cart lines within the cart.

The filters apply in a particular order. The following describes the order in which promotions are calculated:

 Promotions at the cart line level are applied before promotions at the cart level. Promotions
(including automatic, coupon, exclusive) are calculated for each cart line, then promotions
(including automatic, coupon, exclusive) are calculated for the cart.

 Automatic promotions are applied before coupon promotions, for example within each cart line,
or within the cart.

 Multiple automatic promotions are applied in order by valid-from date (oldest first).

 Multiple coupons are applied in the order they were added to the cart.

 If multiple exclusive promotions apply to a particular cart line or cart, then the first one found is
applied (found in order by valid-from date).

Calculation examples:

Example 1: Applicable promotions, listed in the order they are calculated:
1) Cart Line 1 automatic 10% off list price, valid from 2017-01-23
2) Cart Line 1 automatic 5% off list price, valid from 2017-01-27
3) Cart Line 2 automatic 15% off list price
4) Cart automatic free shipping for cart prices over $100 promotion.

Results: 15% off Cart Line 1 list price
15% off Cart Line 2 list price
Shipping is free (if the cart’s calculated sell price exceeds $100)

Example 2: Applicable promotions, listed in the order they are calculated:
1) Cart Line 1 automatic 10% off list price, valid from 2017-01-23

Sitecore Commerce 8.2.1

50

2) Cart Line 1 automatic 5% off list price, valid from 2017-01-27
3) Cart Line 2 automatic 15% off list price
4) Customer entered exclusive Cart Line 2 coupon for 20% off list price
5) Cart automatic free shipping for cart prices over $100 promotion.

Results: 20% off Cart Line 2 list price
Shipping is free (if the cart’s calculated sell price exceeds $100)

Developer’s Guide

51

 51

10.6 Promotions Views

The following figure displays the hierarchy of promotions views:

The following table describes promotions views terminology, grouped by promotions entities and
components:

Promotion Book Views Description
PromotionBooks A list of all the promotion books.
Master Displays the promotion book information.
Details Displays the promotion book details.
PromotionBookPromotions A list of the promotions within the promotion book.
PromotionBookCatalogs A list of the catalogs indicating if they are or are not associated with the

promotion book.

Promotion Views Description
Master Displays the promotion information.
Details Displays the promotion details.
Preview Displays a subset of the promotion’s details view.

Qualification Views Description
Qualifications A list of the promotion's qualifications.
QualificationDetails Displays the promotion's qualification details.

Benefit Views Description
Benefits A list of the promotion's benefits.
BenefitDetails Displays the promotion's benefit details.

Item Views Description
Items A list of items (for example, products or variants) the promotion applies

to.
ItemDetails Displays the promotion item’s details.

10.7 Promotions Actions, Commands, Pipelines

The following table describes the promotions actions, commands, and pipelines pertaining to the Promotion
Book entity:

Action/Command/Pipeline Description
AddPromotionBook

AddPromotionBookCommand

AddPromotionBookPipeline

Adds a promotion book. Requires a unique promotion
book name.

EditPromotionBook

EditPromotionBookCommand

EditPromotionBookPipeline

Edits a promotion book.

AssociateCatalog

AssociateCatalogToBookCommand

AssociateCatalogToBookPipeline

Associates a promotion book to a specific catalog.

Sitecore Commerce 8.2.1

52

Action/Command/Pipeline Description
DisassociateCatalog

DisassociateCatalogFromBookCommand

DisassociateCatalogFromBookPipeline

Disassociates a promotion book from a specific catalog.

GetPromotionBookAssociatedCatalogs

GetBookAssociatedCatalogsCommand

GetBookAssociatedCatalogsPipeline

Retrieves all catalogs associated with a promotion book.

The following table describes the promotions actions, commands, and pipelines pertaining to the Promotion
entity:

Action/Command/Pipeline Description
AddPromotion

AddPromotionCommand

AddPromotionPipeline

Adds a promotion. Requires the parent promotion
book name and a unique promotion name.

EditPromotion

EditPromotionCommand

EditPromotionPipeline

Edits a promotion. The promotion’s approval status
must not be Approved.

DuplicatePromotion

DuplicatePromotionCommand

DuplicatePromotionPipeline

Duplicates a promotion.

RequestPromotionApproval

SetApprovalStatusCommand
Changes a promotion’s approval status from Draft
to ReadyForApproval.

ApprovePromotion

SetApprovalStatusCommand
Changes a promotion's approval status from
ReadyForApproval to Approve.

RejectPromotion

SetApprovalStatusCommand
Changes a promotion’s approval status from
ReadyForApproval to Draft.

RetractPromotion

SetApprovalStatusCommand
Changes a promotion’s approval status from
Approved back to Draft. Applicable only before the
promotion is made fully active.

DisablePromotion

DisablePromotionCommand

DisablePromotionPipeline

Disables an approved promotion. Applicable when
the promotion is approved and active.

DeletePromotion

DeletePromotionCommand

DeletePromotionPipeline

Deletes a promotion. The promotion’s approval
status must not be Approved.

EvaluatePromotionsQualificationsCommand

EvaluatePromotionsQualificationsPipeline
These are used as part during the runtime of the
promotions service.

DiscoverPromotionsPipeline This is used as part during the runtime of the
promotions service.

FilterQualifyingPromotionsPipeline Searches for promotions in the system.

Note
ApplyPromotionsBenefitsCommand and corresponding pipeline are not used:

The following table describes the promotions actions, commands, and pipelines pertaining to the
Qualification component:

Action/Command/Pipeline Description
SelectQualification

GetOperatorsCommand and

GetConditionsCommand

Selects a qualification from all the qualifications available in the
system. This action is implemented together with the
AddQualification.

AddQualification

AddQualificationCommand

AddQualificationPipeline

Adds the selected qualification to a promotion. The promotion’s
approval status must be Draft.

EditQualification

EditQualificationCommand

EditQualificationPipeline

Edits a promotion’s qualification. The promotion’s approval status
must be Draft.

Developer’s Guide

53

 53

Action/Command/Pipeline Description
DeleteQualification

DeleteQualificationCommand

DeleteQualificationPipeline

Removes a qualification from a promotion. The promotion’s
approval status must be Draft. All qualifications can be deleted
from a promotion only if the promotion has no benefits.

The following table describes the promotions actions, commands, and pipelines pertaining to the Benefit
component:

Action/Command/Pipeline Description
SelectBenefit

GetOperatorsCommand and

GetActionsCommand

Selects a benefit from all the benefits available in the system.

AddBenefit

AddBenefitCommand

AddBenefitPipeline

Adds the selected benefit to a promotion. The promotion’s
approval status must be Draft. The promotion must have a
qualification.

EditBenefit

EditBenefitCommand

AddBenefitPipeline

Edits a promotion’s benefit. The promotion’s approval status must
be Draft.

DeleteBenefit

DeleteBenefitCommand

DeleteBenefitPipeline

Removes a benefit from a promotion. The promotion’s approval
status must be Draft.

The following table describes the promotions actions, commands, and pipelines pertaining to the Item
component:

Action/Command/Pipeline Description
AddItem

AddPromotionItemCommand

AddPromotionItemPipeline

Adds an Item to a promotion. An item must be unique within a
promotion. The promotion’s approval status must be Draft.

RemoveItem

RemovePromotionItemCommand

RemovePromotionItemPipeline

Removes an item from a promotion. The promotion’s approval
status must be Draft.

Sitecore Commerce 8.2.1

54

Promotions Approval Process

The following figure illustrates the promotions approval process:

10.8 Promotions Models

The following table lists the promotions models:

Model
AssociatedCatalogModel

PromotionBookAdded

PromotionAdded

PromotionChanged

QualificationAdded

BenefitAdded

PromotionItemAdded

PromotionItemModel

10.9 Promotions Policies

The following table describes the promotions policies:

Policy Description
ExclusivePromotionPolicy

Identifies whether the promotion is exclusive. An exclusive
promotion means that it is the only promotion that applies for a
given cart line, or for a given cart. For example, a cart containing
two cart lines could have up to three exclusive policies applied.

GlobalPromotionsPolicy Provides the ability to specify some standard promotion policies.
KnownPromotionsActionsPolicy Provides the ability to change the default promotions action

names, those listed above.
KnownPromotionsListsPolicy Provides the ability to change the default promotions list names
KnownPromotionsViewsPolicy Provides the ability to change the default promotions view names.
PromotionBenefitsPolicy A policy that is added to a promotion to define its benefits.
PromotionQualificationsPolicy A policy that is added to a promotion to define its qualifications.

Developer’s Guide

55

 55

Chapter 11 Promotion Service – Coupons

As part of the Promotions service, the Coupons plugin provides the ability to generate, redeem, and track
coupons. A coupon represents a customer-initiated request to qualify for a promotion. Types of coupons
include:

 Public – multiuse coupons that can be used by anyone.

 Private – single-use coupons targeted at specific registered customers.

Coupons can apply at various layers:

 Cart Line – for example, money-off or a percentage-off an item or variant in a cart line.

 Cart – for example, money-off or a percentage-off the entire cart.

 Customer – for example, access to a benefit that applies across carts, for example, services,
entitlements, a trial period.

Other capabilities of coupons include:

 Customer adds a coupon to a cart, by typing in the coupon code.

 Customer removes a coupon from the cart.

 System includes the coupon in its calculation of promomotion benefits based on entered coupon.

 Validating the coupon when it is added to the cart.

 Presenting to the customer in the cart if the coupon will be applied, or if it will not be used (for
example, is not qualified).

 Tracking the number of times a valid coupon is used in completed orders.

Business users in the Business Tools can:

 View coupons used in an order.

 View coupons used by a customer.

 View coupons allocated to a customer.

 Assign a coupon to a registered customer.

 Generate coupons linked to a promotion, or a batch of specified quantity each with a unique
coupon code.

 Manage generated coupons, including allocating/unallocating coupons.

11.1 Coupons Concepts

The following table describes the hierarchy of coupon entities and components:

Entity Components

Coupon

CouponUsage

PrivateCouponGroup

PriceCard

CartCoupons

The following table describes general coupons terminology:

Coupon Term Description

Coupon A customer-initiated request to qualify for a promotion.

CouponUsage Defines where a coupon is used.

PrivateCouponGroup A function to keep track of private coupons associated with a promotion,
identifying whether they are allocataed or not.

Sitecore Commerce 8.2.1

56

Coupon Term Description

PriceCard A mechanism to apply common pricing across multiple SellableItems without
repeating the same pricing definition in each one

CartCoupons A component normally placed into a cart where any coupons that have been
added to the cart are stored.

11.2 Coupons Views

The following figure displays the hierarchy of coupon views:

The following table describes the coupons views terminology:

Coupons Views Description

Coupons A list of all available coupons.

PrivateCoupons A list of available private coupons.

PublicCoupons A list of available public coupons.

CouponDetails The details of a specified coupon.

AllocationDetails The details of where a specified coupon is allocated.

11.3 Coupons Actions, Commands, Pipelines

The following table describes the coupons actions, commands, and pipelines:

Action/Command/Pipeline Description
AddCoupon

AddCouponCommand

AddCouponToCartPipeline

Adds a coupon to a cart using a coupon code.
It has the following parameters:

 cartId – the identifier of the cart (string).

 couponCode – the identifier of the coupon (string).
To add a coupon to a cart using a coupon code, this action,
command and pipeline:
1. Validates the coupon by loading the coupon based on the coupon
code.

o Coupon code length <=
GlobalCouponsPolicy.MaxCouponLength

o Coupon code not already in cart
o Coupon with that coupon code actually exists

2. Retrieves the CartCouponsComponent from the cart.
3. Checks if this coupon code is already added.
4. Creates a new CartCoupon object.
5. Populates: IsValid = true, promotion = coupon.Promotion.
6. Adds new CartCoupon object to CartCouponsComponent list
property.

AddPrivateCoupon

AddPrivateCouponCommand

AddPrivateCouponPipeline

Generates a batch of private coupons, adding those coupons to a
list of unallocated coupons associated to the promotion. Uses the

Developer’s Guide

57

 57

Action/Command/Pipeline Description

prefix and suffix combined with a generated string to form a
complete unique coupon code.
It has the following parameters:

 PromotionId – the identifier of a promotion the coupon
qualifies for (string).

 Prefix – a prefix to apply to the generated codes (string).

 Suffix – a Suffix to apply to the generated codes (string).

 Total – the number of private coupons to generate (integer).
AddPublicCoupon

AddPublicCouponCommand

AddPublicCouponPipeline

Creates a public coupon to be associated with a promotion.
It has the following parameters:

 PromotionId – the identifier of a promotion the coupon
qualifies for (string).

 CouponCode - the identifier of the coupon code (string).
NewAllocation

NewCouponAllocationCommand

NewCouponAllocationPipeline

Allocates a batch of coupons from an private coupon group
associated with the promotion. This moves the list of coupons from
the unallocated coupons list to the allocated coupons list. This
returns a list of coupon codes that have been allocated.
It has the following parameters:

 PromotionId – the identifier of a promotion to allocate from
(string).

 PrivateCouponGroupId - the identifier of the
PrivateCouponGroup to allocate from (string).

 Total - the number of private coupons to allocate (integer).
RemoveCoupon

RemoveCouponCommand

RemoveCouponFromCartPipeline

Removes a coupon from the cart.
It has the following parameters:

 cartId – the identifier of the cart (string).

 couponCode – the identifier of the coupon (string).

11.4 Coupons Models

The following table lists the coupons models:

Model
CartCoupon

PrivateCouponGroupAdded

PrivateCouponList

PublicCouponAdded

11.5 Coupons Policies

The following table describes the coupons policies:

Policy Description
GlobalCouponsPolicy Defines coupon policies that apply globally:

 GeneratedCouponCodeLength – defines number of characters

that the coupon code shall have.

 MaxCouponCodeLength – maximum length of a coupon before it

gets rejected by validation; default = 30 (integer).

 MaxCouponPrefixLength – maximum length of the coupon’s

prefix; default = 10 (integer).

 MaxCouponSuffixLength – maximum length of the coupon’s

suffix; default = 10 (integer).

Sitecore Commerce 8.2.1

58

Policy Description

 MaxNumberOfPrivateCoupons – maximum number of coupons to

generate at one time; default = 1000 (integer).

 MinPrivateCouponTotal – minimum number of private coupons;

default = 1 (integer).

 MinAllocationCount – minimum number of coupons to allocate;

default = 1 (integer).
CartCouponsPolicy Defines a policy for the CartCoupons component:

 MaxCouponsInCart – maximum # of coupons allowed in the cart;

default = 5 (integer).
KnownCouponActionsPolicy Provides the ability to change the default coupon action names.
KnownCouponViewsPolicy Provides the ability to change the default coupon view names.
KnownCouponsListsPolicy Provides the ability to change the default coupon list names.

Developer’s Guide

59

 59

Chapter 12 Entitlements Service

The Entitlements service is provided by the Sitecore.Commerce.Plugin.Entitlements plugin.

An entitlement is an artifact representing a trackable unit of ownership or license with the ability to track unit
quantities as they change due to customer or ambient activity. This allows a separation of concerns between a
right to access a digital product or the tracking of activity on a customer’s behalf.

Example entitlements includes:

 Gift card

 Warranty

 Installation service

 Digital product

 Loyalty membership

Entitlement capabilities include:

 The ability to have a separate provisioning process for an entitlement when an order is placed.

 The ability to separately track a customer’s current entitlements from the original order that
caused it to be provisioned.

 The ability to track a quantity on an entitlement that is meaningful to the entitlement, such as the
current value of a gift card or the current number of loyalty points accumulated, and so on.

 The ability to remove an entitlement from a customer.

12.1 Entitlement Concepts

Entitlements represent digital rights. These are usually acquired through a purchase. For example, buying an
online movie does not actually get you the movie. It only gives you the rights to view a movie. Often
entitlements are only available for a limited time or other restrictions apply. For example, you can rent a
movie online but you can only view that movie in certain countries, or for a certain period of time, or in certain
formats. Entitlements provide the ability to store those rights and the policies that govern access in a generic
way that can be extended to meet a solution developer’s needs.

Provisioning entitlements: When an order containing digital items is released, the
ReleasedOrdersMinionPipeline calls the ProvisionEntitlementsPipeline. This creates the order's
entitlements and links them to the order and the order's customer (if the customer is authenticated).

Deleting entitlements: Entitlements are not actually deleted from the system. They are logically deleted by
adding a DeletedEntitlementComponent, which indicates it has been deleted and no longer included in
the views that return entitlements for orders or customers.

12.2 Entitlement Views

The following figure displays the hierarchy of entitlement views:

The following table describes entitlement views:

Sitecore Commerce 8.2.1

60

View Description
CustomerEntitlements Displays a customer’s entitlements.
CustomerEntitlementsDetails Displays the details of a customer’s entitlements.
OrderEntitlements Displays an order’s entitlements.
OrderEntitlementDetails Displays the details of an order’s entitlements.

The following table lists entity blocks:

Entity Views
GetCustomerEntitlementsViewBlock

GetOrderEntitlementsViewBlock

PopulateCustomerEntitlementsViewActionsBlock

PopulateOrderEntitlementsViewActionsBlock

Entity Actions
DoActionDeleteEntitlementBlock

12.3 Entitlements Actions, Commands, Pipelines

The following table describes the entitlements actions, commands, and pipelines:

Action/Command/Pipeline Description
Get]Api/Entitlements

FindEntitiesInListCommand

FindEntitiesInListPipeline

Returns all the entitlements in the system.

Note
This is computationally expensive and should be used with caution.

Parameters: none
Get]Api/Entitlements(id)

FindEntityCommand

FindEntityPipeline

Returns a specific entitlement based on it’s identifier.
It has the following parameter:

 Id – the identifier of the entitlement.
DeleteEntitlement

DeleteEntitlementCommand

DeleteEntitlementPipeline

Deletes an entitlement.

12.4 Entitlements Policies

The following table describes the entitlements policies:

Policy Description
KnownEntitlementsActionsPolicy Provides the ability to change the default entitlement action

names.
KnownEntitlementsViewsPolicy Provides the ability to change the default entitlement view

names.

Developer’s Guide

61

 61

Chapter 13 Customer Service

The Customer service is provided by the Sitecore.Commerce.Plugin.Customers plugin.

The Sitecore Commerce Customer Service provides integration with external profile systems. In this release,
the out-of-box product is delivered with integration with the Commerce Server’s profile system.

The following describes the hierarchy of customer entities and components:

Entity Component

Customer CustomerDetails
Address

13.1 Customer Views

The following figure describes the hierarchy of customer views:

The following table describes the customer views:

View Description
Customers Lists customers.
Master Displays customer information.
Details Displays detailed customer information.
Preview Displays a subset of the customer details information.
Addresses Displays the customer addresses.
AddressDetails Displays detailed address information.
CustomerOrders Displays the orders associated with a customer.

The following table lists the entity blocks:

Entity Views
GetCustomerAddressDetailsViewForSelectBlock

GetCustomerAddressDetailsViewBlock

GetCustomerAddressesViewBlock

GetCustomerDetailsViewBlock

GetCustomerOrdersViewBlock

GetCustomerPreviewViewBlock

PopulateAddressDetailsViewActionsBlock

PopulateAddresseseViewActionsBlock

PopulateCustomersViewActionsBlock

PopulateEntityViewActionsBlock

PopulateEntityViewActionsMasterBlock

Entity Actions

Sitecore Commerce 8.2.1

62

DoActionAddressBlock

DoActionAddCustomerBlock

DoActionEditAddressBlock

DoActionEditCustomerBlock

DoActionGetCountryRegionsBlocks

DoActionRemoveAddressBlock

DoActionRemoveCustomerBlock

13.2 Customer Actions, Commands, Pipelines

The following table describes the customer actions, commands, and pipelines:

Action/Command/Pipeline Description
GetCustomer

GetCustomerCommand

GetCustomerPipeline

Retrieves a specific customer.

GetCustomerAddress

GetCustomerAddressCommand

GetCustomerAddressPipeline

Retrieves the address of a specified customer.

AddCustomer

CreateCustomerCommand

CreateCustomerPipeline

Creates a new customer record.

AddAddress

CreateCustomerAddressCommand

CreateCustomerAddressPipeline

Creates a new address record for a customer.

EditCustomer

UpdateCustomerDetailsCommand

UpdateCustomerDetailsPipeline

Edits a customer record.

EditAddress

UpdateCustomerAddressCommand

UpdateCustomerAddressPipeline

Edits a customer address record.

RemoveCustomer

DeleteCustomerCommand

DeleteCustomerPipeline

Deletes a customer record.

RemoveAddress

DeleteCustomerAddressCommand

DeleteCustomerAddressPipeline

Deletes a customer address record.

13.3 Customer Models

The following table describes the customer models:

Model Description
CustomerAdded A return model providing the identifier of a customer that was added.
CustomerAddressAdded A return model providing the identifiers of a customer and an address that

were added.

13.4 Customer Policies

The following table describes the customer policies:

Policy Description
KnownCustomerActionsPolicy Provides the ability to change the default customer action

names.
KnownCustomersListsPolicy Provides the ability to change the default customer list

names.

Developer’s Guide

63

 63

Policy Description
KnownCustomerViewsPolicy Provides the ability to change the default customer view

names.
ProfilePropertiesMappingPolicy Provides mappings between a Commerce Server profile

and a Commerce Engine customer.
Defaults:

 first_name = GeneralInfo.first_name

 last_name = GeneralInfo.last_name

 email_address = GeneralInfo.email_address

 user_security_password =
GeneralInfo.user_security_password

 account_status = AccountInfo.account_status

 language = GeneralInfo.language
PartyProfilePropertiesMappingPolicy Provides mappings between a Commerce Server profile

address and a Commerce Engine Party Model.
Defaults:

 address_name = AddressName

 first_name = FirstName

 last_name = LastName

 country_name = Country

 country_code = CountryCode

 region_name = State

 region_code = StateCode

 city = City

 address_line1 = Address1

 address_line2 = Address2

 postal_code = ZipPostalCode

 tel_number = PhoneNumber
ProfilePropertiesPolicy Provides mappings of standard profile properties between

Commerce Server and the Commerce Engine.
Defaults:

 this.AddressType = Address

 this.UserObjectType = UserObject

 this.GeneralInfoPropertyGroup = GeneralInfo

 this.AccountInfoPropertyGroup = AccountInfo

 this.UserIdProperty = GeneralInfo.user_id

 this.EmailAddressProperty =
GeneralInfo.email_address

 this.AddressListProperty =
GeneralInfo.address_list

 this.ExternalIdProperty =
GeneralInfo.ExternalId

 this.PasswordProperty =
GeneralInfo.user_security_password

 this.AddressIdProperty =
GeneralInfo.address_id

 this.AddressId = address_id

 this.Country = Country

 this.CountryCode = CountryCode

 this.State = State

 this.StateCode = StateCode

 this.City = City

 this.AccountNumber = AccountNumber

 this.Email = Email

 this.Password = "Password

Sitecore Commerce 8.2.1

64

Policy Description

 this.Value = Value

 this.UserTypeSiteTerm = UserType

 this.AccountStatusSiteTerm = AccountStatus

 this.Languages = Languages
SitecoreUserTermsPolicy Provides the location in Sitecore XP where UserTerms are

stored.
Defaults:

 this.AccountStatusPath =
/sitecore/Commerce/Commerce Control
Panel/Commerce Engine Settings/Commerce
Terms/CS User Site Terms/Account Status

 this.UserTypePath =
/sitecore/Commerce/Commerce Control
Panel/Commerce Engine Settings/Commerce
Terms/CS User Site Terms/User Type

 this.AllLanguagesPath =
/sitecore/Commerce/Commerce Control
Panel/Shared Settings/Language Sets/All Languages

ProfilesSqlPolicy Provides connectivity information to the Commerce
Server Profile System.

Developer’s Guide

65

 65

Chapter 14 Catalog Service

The Catalog service is provided by the Sitecore.Commerce.Plugin.Catalog plugin and the
Sitecore.Commerce.Plugin.Catalog.Cs plugin.

In the current release, the Catalog Service is managed by Commerce Server. Therefore, the role of the
Commerce Engine is focused on managing and displaying catalog information (for example, products and
carts), rather than directly managing catalogs.

Commerce Engine catalog service capabilities include:

 Retrieving a standardized catalog or list of catalogs.

 Providing a basic SellableItem concept for carts and orders.

 Calculating bulk pricing for a catalog item.

 Managing and storing list pricing for a SellableItem, in multiple currencies.

The two catalog plugins apply as follows:

 Sitecore.Commerce.Plugin.Catalog – provides general catalog functionality commands and
pipelines.

 Sitecore.Commerce.Plugin.Catalog.Cs – provides integration with the Commerce Server Catalog
system.

14.1 Catalog Actions, Commands, Pipelines

The following table describe the catalog actions, commands, and pipelines:

Action/Command/Pipeline Description
Catalogs

GetCatalogsCommand

GetCatalogsPipeline

Retrieves all catalogs defined in the system. Retrieves the list of
catalogs from Commerce Server and maps them to the generic
object.
Parameters: none

Catalogs(id)

GetCatalogCommand

GetCatalogPipeline

Retrieves a specific Catalog defined in the system.
It has the following parameter:

 Id – identifier of the catalog (string)
SellableItems

FindEntitiesInListCommand

FindEntitiesInListPipeline

Retrieves all the SellableItems in the system.

Note
This is computationally expensive when you have many SellableItems
and must not be used.

Parameters: none
SellableItems(id)

GetSellableItemCommand

GetSellableItemPipeline

Retrieves a specified SellableItem.
It has the following parameter:

 Id – identifier of the SellableItem (string).
GetBulkPrices

GetBulkPricesCommand

GetSellableItemPipeline

Provides bulk pricing capabilities. Retrieves a string of sellable item
identifiers and returns a bulk pricing model for each item. Returns
pricing on a particular variant if a variant identifier is supplied,
otherwise returns pricing on all variants.
Parameter:

 itemIds – a delimited list of item identifiers; contains a
Catalog, ProductId, and VariantId to fully describe a particular
item (string).

Sitecore Commerce 8.2.1

66

Action/Command/Pipeline Description
UpdateListPrices

UpdateListPricesCommand

UpdateListPricesPipeline

Retrieves and stores list prices for a SellableItem, for example, when
updating the list pricing in the Merchandising Manager. It can contain
pricing in multiple currencies.
It has the following parameters:

 itemId – identifier of the SellableItem (string)

 Prices – prices for different currencies (delimited string)
RemoveListPrices

RemoveListPricesCommand

RemoveListPricesPipeline

Removes specified list prices from a SellableItem.
Parameters:

 itemId – identifier of the SellableItem (string)
Prices – prices for different currencies (delimited string)

14.2 Catalog Models

The following table describes the catalog models:

Model Description
SellableItemPricing A return model providing bulk pricing.

Properties:

 Name – name of SellableItem (string).

 ItemId – identifier of the SellableItem (string).

 ListPrice – the SellableItem’s list price (string).

 SellPrice – the SellableItem’s sell price (string).

 Variations – a list of pricing variations (list<string>).
VariationPricing A return model providing bulk pricing at the variation level.

Properties:

 Name – name of SellableItem (string).

 ItemId – identifier of the SellableItem (string).

 ListPrice – the SellableItem’s list price (string).

 SellPrice – the SellableItem’s sell price (string).

Note
There are no catalog policies.

Developer’s Guide

67

 67

Chapter 15 Availability Service

The Availability service is provided by the Sitecore.Commerce.Plugin.Availability plugin.

Availability is the generalized notion of conveying whether an item is available to be purchased. It is intended
to apply in a simplistic, small-shop scenario where there is no real inventory tracking. Availability could be
extended as required to address more comprehensive scenarios, for example, integration with an inventory
system and concepts like back orders and preorders.

For integration with Commerce Server, the availability service calls a stored procedure in Commerce Server to
reduce the quantity of the inventory stock keeping unit (sku).

Availability capabilities include:

 Supporting a basic products’ availability separate from the concept of inventory.

 Tracking availability for non-physical items such as digital products.

 Being applicable where only basic product availability is needed, instead of a full inventory system.

Availability can be defined and returned as part of a Sellable Item. Or it can be injected as a component into a
CartLineItem.

Note
There are no Availability Service views or models.

15.1 Availability Commands and Pipelines

The Availability Service does not have externally exposed Service APIs. Availability is supported by extending
existing pipelines.

The following table describes the availability commands and pipelines:

Command/Pipeline Description
UpdateItemAvailabilityCommand

UpdateItemAvailabilityPipeline
Provides the ability to update availability on an item. This is
performed during the sale of a product, through integration to
reduce the inventory count in an external inventory system.
It has the following parameters:

 catalogName – name of the catalog of an item (string).

 productid – the product identifier (string).

 variantId – the product variant identifier (string).

 deltaQuantity – the quantity to reduce the inventory by,
or increase it in the event of a canceled order (decimal).

15.2 Availability Policies

The following table describes the availability policies:

Policy Description
AvailabilityAlwaysPolicy Indicates that inventory checks on a SellableItem do not need to be

performed. This is the case for digital items that do not have a specific
inventory.

DigitalItemTagsPolicy Allows the specification of a list of tags that cause an item to be
considered a digital item. Digital items are automatically considered

Sitecore Commerce 8.2.1

68

Policy Description

always available and have no inventory. This is a simple way of flagging
an item in the Merchandising Manager as digital.
The following default tags are provided: entitlement, service,
installation, subscription, digital subscription, warranty, onlinetraining,
onlinelearning, giftcards
You can use an environment policy to override these tags.

GlobalAvailabilityPolicy Provides basic availability with a single property (AvailabilityExpires),
indicating how long availability applies, in seconds.
This allows more efficient functioning because the system does not need
to check availability with an external system.

Developer’s Guide

69

 69

Chapter 16 Inventory Service

The Inventory service is provided by the Sitecore.Commerce.Plugin.Inventory and the
Sitecore.Commerce.Plugin.Inventory.Cs plugin.

The Sitecore Commerce inventory solution integrates with Commerce Server’s inventory system. Inventory is
provided by the Merchandising Manager business tool.

Inventory capabilities include retrieving:

 A Commerce Server inventory catalog.

 A Commerce Server inventory SKU to populate a generic inventory item.

 A specific Commerce Server inventory SKU.

Note
There are no Inventory Service views.

16.1 Inventory Commands and Pipelines

The inventory plugins do not currently have any externally exposed inventory actions. Functionality in the
plugin integrates with existing pipelines to implement inventory. Commands are called during the execution
of other pipelines.

The following table describes the inventory commands and pipelines:

Command/Pipeline Description
GetInventoryCatalogCommand Retrieves an inventory catalog.

Parameters: none
To retieve an inventory catalog, the command:

 Retrieves the Commerce Server inventory catalog.

 Translates it to a generic inventory catalog.
GetInventoryItemCommand Retrieves an inventory item.

Parameters: none
To retrieve an inventory item, the command:

 Retrieves the Commerce Server inventory item.

 Translates it to a generic inventory item.
GetInventorySkuCommand Retrieves an inventory SKU.

Parameters: none
To retrieve an inventory SKU, the command:

 Retrieves the Commerce Server inventory SKU.

 Translates it to a generic inventory SKU.

16.2 Inventory Policies

The following table describes the inventory policies:

Policy Description
GlobalInventoryPolicy Defines global inventory settings, for example for stock level, and

adjusting stock levels with orders.
LoggingPolicy Defines system logging settings for the inventory service.

Sitecore Commerce 8.2.1

70

Chapter 17 Payment Service

The Payment service is provided by the Sitecore.Commerce.Plugin.Payment plugin.

The Payment plugin provides basic commands, pipelines, and policies to implement a payment collection
through integration with a third party payment service.

Payment capabilities include:

 Resolving a collection of payment options for a cart. Payment options allow the selection of a type
of payment (credit card, PayPal, and so on.).

 Resolving a collection of payment options for an individual line in a cart.

 Resolving a collection of payment methods for a cart, based on a previously selected cart payment
option. Some payment options allow further selection of a payment method, for example,
selecting the shipping (ground, next day, and so on).

 Resolving a collection of payment methods for an individual line in a cart, based on a previously
selected cart line payment option.

 Sample integration with a third-party payment provider (BrainTree), integrated into a sample
solution and provided as source code in the SDK.

17.1 Payment Concepts

Sitecore Commerce provides out-of-box support for collecting payments from gift cards, but does not directly
support collecting and storing payment vehicles like credit cards. As such, this enables Sitecore Commerce to
contribute to a PCI compliant commerce solution without itself mediating sensitive financial information.

The Payment plugin supports the concept of federated payments, which leverages a third-party payment
provider to collect payment information using an iFrame on the website. The solution receives and stores
payment tokens and masked information, and not the full set of credit-card data. The reference sample
provided with the product includes an integration with BrainTree for this functionality. The source code for
this integration is included in the Sitecore Commerce SDK.

BrainTree offers sandboxing support without requiring financial information, so a solution developer can
easily set up and run the integration in a demo environment. The solution developer must set up a sandbox
account with BrainTree to be able to demonstrate collecting credit cards.

It is not required to use BrainTree in a production Sitecore Commerce implementation. Solution developers
can remove the BrainTree integration and replace with their own custom integration, or an integration
offered as a solution by a Sitecore partner.

The Reference Solution contains configuration for the BrainTree implementation. This section should be
populated with the solution developer’s specific values provided by BrainTree after registering. For example, a
sample configuration:

{

 "$type": "Plugin.Sample.Payments.Braintree.BraintreeClientPolicy,

Plugin.Sample.Payments.Braintree",

 "Environment": "sandbox",

 "MerchantId": "[YourMerchantId]",

 "PublicKey": "[YourPublicKey]",

 "PrivateKey": "[YourPrivateKey]",

 "ConnectTimeout": 120000

 }

Developer’s Guide

71

 71

17.2 Payment Views

The following figure displays the hierarchy of payment views:

The following table describes the payment views:

Payment Views Description
OrderPayments A list of all the order payments.
OrderPaymentDetails Displays the order payment details.
SalesActivities A list of all the sales activities.
SalesActivityDetails Displays the order payment details.

The following table lists the entity blocks:

Entity Views
GetOrderPaymentDetailsViewBlock

GetOrderPaymentDetailsViewsForSelectBlock

GetOrderPaymentsViewBlock

GetOrderSalesActivitiesEntityViewBlock

PopulateOrderPaymentsViewActionsBlock

Entity Actions
DoActionAddPaymentBlock

DoActionGetCountryRegionsBlock

DoActionGetCountryRegionsFederatedBlock

DoActionRefundPaymentBlock

DoActionSelectPaymentOptionBlock

DoActionVoidPaymentBlock

GetFederatedPaymentOptionBlock

GetPaymentFromViewBlock

SelectFederatedPaymentOptionBlock

SelectPaymentOptionBlock

17.3 Payment Actions, Commands, Pipelines

The following table describes the payment actions, commands, and pipelines:

Action/Command/Pipeline Description
Api/GetClientToken

GetClientTokenCommand

GetClientTokenPipeline

Retrieves a client token from the integrated third-party
payment provider. This token allows the storefront payment
iFrame to communicate directly with the payment provider.
Parameters: none

[Put]Api/AddFederatedPayment

AddPaymentsCommand

AddPaymentsPipeline

Adds a federated payment to a cart.
It has the following parameters:

 cartId – the identifier of the cart.

 payment – a federated payment component.
[Delete]Api/RemovePayment

RemovePaymentsCommand

RemovePaymentsPipeline

Removes a federated payment from a cart.
It has the following parameters:

 cartId – the identifier of the cart.

 paymentId – the identifier of the payment to remove.
[Get]Api/GetCartPaymentMethods

GetPaymentMethodsCommand
Retrieves a list of available payment methods based on the
payment type selected and the items in the Cart

Sitecore Commerce 8.2.1

72

Action/Command/Pipeline Description
GetCartPaymentMethodsPipeline Parameters:

 cartId – the identifier of the cart.

 paymentType – a string representing a selected payment
type

To retrieve a list of the available payment methods, the
command:

 Retrieves the payment methods.

 Filters the payment methods based on the payment type.

 Returns the available payment methods.

Note
The following are not implemented:

[Get]Api/PaymentMethods

[Get]Api/PaymentOptions

[Get]Api/GetCartPaymentOptions

17.4 Payment Policies

The following table describes the payment policies:

Policy Description
KnownPaymentsActionsPolicy Provides the ability to change the default payment action names.
KnownPaymentsViewsPolicy Provides the ability to change the default payment views names.
KnownViewsPolicy Provides the ability to change the default view names for the Payment

service, specifically the PaymentOptions view.

Developer’s Guide

73

 73

Chapter 18 Fulfillment Service

The Fulfillment service is provided by the Sitecore.Commerce.Plugin.Fulfillment plugin.

The Fulfillment plugin offers a basic fulfillment experience. It is expected that solution developers will extend
this experience with an additional customized experience. APIs and pipelines are available to allow
customization by extending or replacing existing blocks in the pipeline.

Fulfillment capabilities include:

 Resolving a collection of fulfillment options that are available for a cart., for example, physical,
electronic, split. Options are filtered based on the type(s) of items in the cart.

 Resolving a collection of fulfillment options for an individual line in a cart.

 Resolving a collection of fulfillment methods that are available for a cart, based on a previously
selected fulfillment option, for example, for a physical fulfillment you can select ground, next day,
and so on.

 Resolving a collection of fulfillment methods for an individual line in a cart, based on a previously
selected fulfillment option.

 Basic calculation of fulfillment fees based on fulfillment policies. A simple calculation model is
provided, which focuses on testing calculations. Solution developers will usually integrate with a
specific shipping integration service.

18.1 Fulfillment Concepts

The calculation of fulfillment charges is configured by an environment policy called
GlobalPhysicalFulfillmentPolicy. This policy controls the configuration based on the selected fulfillment
method and currency. This policy is set up in the environment configuration JSON files in the
wwwroot/data/Environments directory. The policy can be modified there. For example, a sample
configuration:

{

 "$type":

"Sitecore.Commerce.Plugin.Fulfillment.GlobalPhysicalFulfillmentPolicy,

Sitecore.Commerce.Plugin.Fulfillment",

 "MaxShippingWeight": 50.0,

 "MeasurementUnits": "Inches",

 "WeightUnits": "Lbs",

 "DefaultCartFulfillmentFees": {

 "$type": "System.Collections.Generic.List`1[[Sitecore.Commerce.Core.Money,

Sitecore.Commerce.Core]], mscorlib",

 "$values": [

 {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "USD",

 "Amount": 10.0

 },

 {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "CAD",

 "Amount": 12.0

 }

]

 },

 "DefaultCartFulfillmentFee": {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "USD",

 "Amount": 3.0

Sitecore Commerce 8.2.1

74

 },

 "DefaultItemFulfillmentFees": {

 "$type": "System.Collections.Generic.List`1[[Sitecore.Commerce.Core.Money,

Sitecore.Commerce.Core]], mscorlib",

 "$values": [

 {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "USD",

 "Amount": 2.0

 },

 {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "CAD",

 "Amount": 3.0

 }

]

 },

 "DefaultItemFulfillmentFee": {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "USD",

 "Amount": 3.0

 },

 "FulfillmentFees": {

 "$type":

"System.Collections.Generic.List`1[[Sitecore.Commerce.Plugin.Fulfillment.FulfillmentFee,

Sitecore.Commerce.Plugin.Fulfillment]], mscorlib",

 "$values": [

 {

 "$type": "Sitecore.Commerce.Plugin.Fulfillment.FulfillmentFee,

Sitecore.Commerce.Plugin.Fulfillment",

 "Fee": {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "USD",

 "Amount": 15.0

 },

 "Name": "Ground",

 "Policies": {

 "$type":

"System.Collections.Generic.List`1[[Sitecore.Commerce.Core.Policy, Sitecore.Commerce.Core]],

mscorlib",

 "$values": []

 }

 },

 {

 "$type": "Sitecore.Commerce.Plugin.Fulfillment.FulfillmentFee,

Sitecore.Commerce.Plugin.Fulfillment",

 "Fee": {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "USD",

 "Amount": 2.0

 },

 "Name": "Standard",

 "Policies": {

 "$type":

"System.Collections.Generic.List`1[[Sitecore.Commerce.Core.Policy, Sitecore.Commerce.Core]],

mscorlib",

 "$values": []

 }

 },

 {

 "$type": "Sitecore.Commerce.Plugin.Fulfillment.FulfillmentFee,

Sitecore.Commerce.Plugin.Fulfillment",

 "Fee": {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "USD",

 "Amount": 5.0

 },

 "Name": "Next Day Air",

 "Policies": {

 "$type":

"System.Collections.Generic.List`1[[Sitecore.Commerce.Core.Policy, Sitecore.Commerce.Core]],

mscorlib",

 "$values": []

 }

Developer’s Guide

75

 75

 },

 {

 "$type": "Sitecore.Commerce.Plugin.Fulfillment.FulfillmentFee,

Sitecore.Commerce.Plugin.Fulfillment",

 "Fee": {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "USD",

 "Amount": 10.0

 },

 "Name": "Standard Overnight",

 "Policies": {

 "$type":

"System.Collections.Generic.List`1[[Sitecore.Commerce.Core.Policy, Sitecore.Commerce.Core]],

mscorlib",

 "$values": []

 }

 },

 {

 "$type": "Sitecore.Commerce.Plugin.Fulfillment.FulfillmentFee,

Sitecore.Commerce.Plugin.Fulfillment",

 "Fee": {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "CAD",

 "Amount": 15.0

 },

 "Name": "Ground",

 "Policies": {

 "$type":

"System.Collections.Generic.List`1[[Sitecore.Commerce.Core.Policy, Sitecore.Commerce.Core]],

mscorlib",

 "$values": []

 }

 },

 {

 "$type": "Sitecore.Commerce.Plugin.Fulfillment.FulfillmentFee,

Sitecore.Commerce.Plugin.Fulfillment",

 "Fee": {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "CAD",

 "Amount": 2.0

 },

 "Name": "Standard",

 "Policies": {

 "$type":

"System.Collections.Generic.List`1[[Sitecore.Commerce.Core.Policy, Sitecore.Commerce.Core]],

mscorlib",

 "$values": []

 }

 },

 {

 "$type": "Sitecore.Commerce.Plugin.Fulfillment.FulfillmentFee,

Sitecore.Commerce.Plugin.Fulfillment",

 "Fee": {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "CAD",

 "Amount": 5.0

 },

 "Name": "Next Day Air",

 "Policies": {

 "$type":

"System.Collections.Generic.List`1[[Sitecore.Commerce.Core.Policy, Sitecore.Commerce.Core]],

mscorlib",

 "$values": []

 }

 },

 {

 "$type": "Sitecore.Commerce.Plugin.Fulfillment.FulfillmentFee,

Sitecore.Commerce.Plugin.Fulfillment",

 "Fee": {

 "$type": "Sitecore.Commerce.Core.Money, Sitecore.Commerce.Core",

 "CurrencyCode": "CAD",

 "Amount": 10.0

 },

 "Name": "Standard Overnight",

 "Policies": {

Sitecore Commerce 8.2.1

76

 "$type":

"System.Collections.Generic.List`1[[Sitecore.Commerce.Core.Policy, Sitecore.Commerce.Core]],

mscorlib",

 "$values": []

 }

 }

]

 }

 }

18.2 Fulfillment Views

The following figure displays the hierarchy of fulfillment views:

The following table describes the fulfillment views terminology:

Payment Views Description
OrderFulfillments A list of all the order fulfillments.
OrderFulfillmentDetails Displays the order fulfillment details.
Shipments A list of all the shipments.

The following table lists the entity blocks:

Entity Views
GetOrderFulfillmentDetailsViewBlock

GetOrderFulfillmentDetailsViewForSelectBlock

GetOrderFulfillmentsViewBlock

GetOrderShipmentsEntityViewBlock

PopulateOrderFulfillmentViewActionsBlock

Entity Actions
DoActionGetCountryRegionsBlock

DoActionGetFulfillmentMethodsBlock

DoActionSelectFulfillmentOptionBlock

DoActionSetFulfilmentBlock

GetDigitalFulfillmentFromViewBlock

GetFulfillmentFromViewBlock

GetPhysicalFulfillmentFromViewBlock

SelectDigitalFulfillmentOptionBlock

SelectFulfillmentOptionBlock

SelectShipToMeFulfillmentOptionBlock

SelectSplitFulfillmentOptionBlock

18.3 Fulfillment Actions, Commands, Pipelines

The following describes the fulfillment actions, commands, and pipelines:

Action/Command/Pipeline Description
Api/GetCartFulfillmentOptions

GetFulfillmentOptionsCommand

GetCartFulfillmentOptionsPipeline

Retrieves a list of fulfillment options, with the ability to
filter based on items in the Cart.
It has the following parameter:

 cartId – the identifier of the cart
The command:

Developer’s Guide

77

 77

Action/Command/Pipeline Description

 Retrieves the available fulfillment options.

 Filters based on items in the cart.
Api/GetCartLineFulfillmentOptions

GetFulfillmentOptionsCommand

GetCartLineFulfillmentOptionsPipeline

Retrieves a list of fulfillment options for a specific cart
line.
It has the following parameters:

 cartId – the identifier of the cart.

 cartLineId – the identifier of the cart line.
The command:

 Retrieves the available fulfillment options.

 Filters based on items in the cart line.
Api/GetFulfillmentMethods

GetFulfillmentMethodsCommand

GetFulfillmentMethodsPipeline

Retrieves a list of all available fulfillment methods.
Parameters: none

Api/GetCartFulfillmentMethods

GetFulfillmentMethodsCommand

GetCartFulfillmentMethodsPipeline

Retrieves a list of all available fulfillment methods for a
cart, based on the populated FulfillmentComponent
and the items in the cart.
It has the following parameters:

 cartId – the identifier of the cart.

 fulfillment – a PhysicalFulfillmentComponent
(ShippingParty populated).

The command:

 Loads the cart.

 Retrieves available fulfillment methods.

 Filters methods based on items in the cart.

 Returns methods.
Api/GetCartLineFulfillmentMethods

GetFulfillmentMethodsCommand

GetCartLineFulfillmentMethodsPipeline

Retrieves a list of all available fulfillment methods for a
cart line, based on the populated
FulfillmentComponent and the item in the cart line.
It has the following parameters:

 cartId – the identifier of the cart

 fulfillment – a PhysicalFulfillmentComponent
(LineID populated with a specific Line Id,
ShippingParty populated)

The command:

 Retrieves available fulfillment methods.

 Filters methods based on item in the cart line.

 Returns methods.
Api/SetCartFulfillment

SetCartFulfillmentCommand

SetCartFulfillmentPipeline

Sets a cart to a specific FulfillmentComponent.
It has the following parameters:

 cartId – the identifier of the cart

 fulfillment – a FulfillmentComponent
The command:

 Validates the FulfillmentComponent.

 Sets the component into the cart.

 Calculates the cart.

 Persists the cart.

 Adds cart totals to return the models collection.
Api/SetCartLineFulfillment

SetCartLinesFulfillmentCommand

SetCartLinesFulfillmentPipeline

Sets a cart line to a specific FulfillmentComponent.
It has the following parameters:

 cartId – the identifier of the cart.

 cartLineId – the identifier of the cart line.

 fulfillment – a FulfillmentComponent.
The command:

 Validates the FulfillmentComponent.

Sitecore Commerce 8.2.1

78

Action/Command/Pipeline Description

 Sets the component into the cart line.

 Calculates the cart line.

 Persists the cart line.

 Adds the cart line totals to return the models
collection.

Api/Shipments

FindEntitiesInListCommand

FindEntitiesInListPipeline

Returns all shipments in the shipments list. This could
be a very long list so do not use for routine processing.
Instead, use the GetList functionality.
Parameters: none
The command:

 Uses FindEntitiesInList to retrieve all of the
items in the Shipments list.

Api/Shipments(id)

FindEntityCommand

FindEntityPipeline

Returns a specific shipment based on its identifier.
It has the following parameter:

 Id – the identifier of the shipment.
The command:

 Retrieves a specific shipment entity using the
FindEntityPipeline.

Note:
The following is not implemented: Api/FulfillmentOptions.

18.4 Fulfillment Models

The following fulfillment model is available:

Model
FulfillmentFee

18.5 Fulfillment Policies

The following describes the fulfillment policies:

Policy Description
GlobalPhysicalFulfillmentPolicy Provides policies associated with shipping items, including

maximum shipping weight, measurements, and fulfillment
fees.

KnownFulfillmentActionsPolicy Provides the ability to change the default fulfillment actions.
KnownFulfillmentListsPolicy Provides the ability to change the default fulfillment lists.
KnownFulfillmentViewsPolicy Provides the ability to change the default fulfillment views.

Note:
DeliveryInStorePickupPolicy and ShippingPolicy are not used.

Developer’s Guide

79

 79

Chapter 19 Shops Service

The Shops service is provided by the Sitecore.Commerce.Plugin.Shops plugin.

The Shops plugin provides the ability to specify environmental rules and other details for multiple shops or at
an individual shop level.

The Shops Service capabilities include:

 Administering multiple shops.

 Administering both online and physical shops.

 Assigning multiple shops to an environment, or assigning each shop to an exclusive environment.

19.1 Shops Concepts

A Sitecore Commerce shop as it applies to the Commerce Engine represents a collection of policies and
configurations that are applied to one or more online storefronts or physical brick-and-mortar stores.
Configurations include, for example: branding experience, geographic location, and franchise.

A shop can specify a particular environment that provides a collection of policies including location and
method of entity storage.

A Sitecore Commerce shop has been developed as a hybrid between:

 Details specified in Sitecore Commerce as part of bootstrap, and

 Details specified in the Sitecore Control Panel.

The following figure shows an example structure of the shops configuration of the Commerce Control Panel:

For more information on accessing and using the Commerce Control Panel for configuring shops, refer to the
topics on doc.sitecore.net, specifically the Storefront configuration settings.

https://doc.sitecore.net/sitecore_commerce/commerce_connect_components

Sitecore Commerce 8.2.1

80

19.2 Accessing a Shop from Rules or from Pipeline Blocks

You might want to leverage information provided by a shop entity during the execution of business
functionality. In this case, the shop is validated and loaded into the objects collection during the
ValidateContextPipeline, which is run on every call into Sitecore Commerce. Sitecore Commerce
validates that the storefront passed in as a header is a valid and that the requested currency is valid. The shop
can then be referenced as a cached object in any pipeline block or by rules in the rules engine.

19.3 Shops Components

Shops components include:

 OnlineShopComponent – aspects of an online shop. The ServiceUrl is the URL of the shop.

 ShopFinancialsComponents – financial aspects that may be used for financial reporting including:
o LegalEntity
o DefaultCustomer
o BusinessUnit
o CostCenter
o Department

The shops components represent an extension point on whether other policies/components can be inserted
by various plugins, by listening for the GetShop pipeline.

Validation is performed on every call before processing a request in the OnActionExecuting event. Any errors
cause an HttpBadRequest with the localized message for each of the following:

 InvalidStorefront –the storefront requested does not exist.

 InvalidStorefrontCurrency – the currency requested is not valid for this storefront.

A ServiceAPI is provided for retrieveing shop information, as follows:

 /api/Shops – retrieves a list of shops.

 /api/Shops('Storefront')?&expand=Components – retrieves a single shop instance.

19.4 Shops Models

The following table lists shops models:

Model
ShopFulfillmentMethod

ShopFulfillmentOption

ShopPaymentMethod

ShopPaymentOption

Developer’s Guide

81

 81

Chapter 20 Guided Tours

This chapter provides examples of guided tours for extending Sitecore Commerce.

20.1 Get the Customer.Sample.Solution Up and Running

To begin your plugin development, this document assumes that you have followed the Sitecore Commerce
8.2.1 Deployment Guide, and have a working deployment with the standard sample environments and data.

Sitecore Commerce provides a Visual Studio extension to make it easier to create new plugins.

To get the Customer.Sample.Solution up and running:

1. On the machine that has Visual Studio 2015 (Update 3) installed, open the SDK.

2. To install the Visual Studio Extension, double-click SitecorePluginTemplate.vsix:

3. In Visual Studio, open Customer.Sample.Solution.sln. This is the Visual Studio solution
that you will use to develop plugins for the Sitecore Commerce Engine, and to build and deploy a
new instance of the Engine.

4. You can rename the solution to conform to the naming standards of your company.

5. Press F5 to run the Engine in Visual Studio in debug mode. As you develop a plugin, you can
interactively debug your plugin using Visual Studio:

http://commercesdn.sitecore.net/SitecoreCommerce/DeploymentGuide/en-us/index.html
http://commercesdn.sitecore.net/SitecoreCommerce/DeploymentGuide/en-us/index.html

Sitecore Commerce 8.2.1

82

The Customer.Sample.Solution contains the Engine project (an ASP.NET Core host), and several sample
plugins. As you develop your plugin, you can run your extended solution through a set of sample orders to test
the plugin functionality.

The Sitecore.Commerce.Sample.Console.sln is a simple console tool that provides samples, and allows
the end-to-end demonstration and functional tests of standard scenarios. It can be loaded in a second Visual
Studio instance, and can be enhanced by either removing unneeded scenarios, or adding your own to test
specific scenarios. This is useful for quick and iterative development of extensibility and integration. You can
build and test back-end scenarios without running Sitecore.

Note
Before you do any extensibility, to make sure that you have a working system, run the
Customer.Sample.Solution to host the Engine. Also, to ensure that all existing functionality can be used,
run the console tool. This is important to make sure that you are starting from a known working state, and do
not confuse issues that are related to set up with issues that are caused by your extension.

Developer’s Guide

83

 83

20.2 Creating Your First Plugin

To add your new plugin, the Visual Studio extension has added a new template:

To create your first plugin:

1. Give your plugin a namespace and name.

2. Select the folder to add your plugin to. In the following example, the plugin is added to the
PluginSamples folder in SDK. Do not try to add your plugin to a folder outside SDK, because the file
paths can conflict with proper builds:

Sitecore Commerce 8.2.1

84

3. To construct your plugin and add it to your Visual Studio project with a sample Command/Pipeline,
click OK.

You receive three errors that are simple fix up errors:

Accept the suggestion to fix the path up to Sitecore.Commerce.Core:

Developer’s Guide

85

 85

Once you have fixed the minor namespace error, there are three other errors:

4. Follow the suggested fixes for the first two errors. For the third error, fix it by adding the following
using to the ConfigureSitecore class:

using Sitecore.Framework.Pipelines.DefinitionExtensions;

After these minor fixes, your Visual Studio project will build successfully.

The new plugin has an end-to-end sample named Sample that shows an extension from the controller level
all the way through running a pipeline. In many cases, you will not want to create a new pipeline, but instead
want to extend an existing pipeline to add new processing blocks. You can delete these samples, but we
recommend that you keep the samples until you are sure you no longer need them. You can copy and paste
from the sample to create new items, such as components, because the sample item contains the necessary
structure. Then you can change the naming to your preferred patterns.

Once the plugin builds, you must add it to the Sitecore.Commerce.Engine project as a reference so that
the plugin will be pulled in during a build/publish:

1. In the Sitecore.Commerce.Engine project, open the project.json file, look for the
dependencies list, and then add the Loyalty project:

"Plugin.Sample.Loyalty": "0.0.1"

When the file is saved, it will resolve the dependency and load it when the application is launched.

2. Once you build the project, press F5 to run the solution in debug mode as you did previously, but now
it will pull in your new plugin.

Sitecore Commerce 8.2.1

86

20.3 Mapping Additional Properties from a Commerce Server Catalog

It is often necessary as part of extending the solution, to add additional properties to the Commerce Server
catalog, either at the product or at a variation level. These properties are used as part of business
functionality.

Scenario: To support a loyalty system, you need to support a new property called LoyaltyPoints to all
Commerce Server products. You want to map it so that it populates into the Sitecore Engine SellableItem
when it is loaded.

To add the property to Commerce Server:

1. Open the legacy Windows application Commerce Server Catalog and Inventory Schema Manager.

2. Create a new property definition LoyaltyPoints as a number and assign it to all product types.

3. Set the default value to 100, and display it as a base property.

4. To augment a SellableItem, you need a block that will be processed as part of the
GetSellableItem pipeline. To determine where you want to insert the block, look at the current
pipeline configuration for the GetSellableItem pipeline. You can do this by looking in the
wwwroot/logs directory of the solution for the latest file that starts with NodeConfiguration.
This file is automatically generated whenever the solution is run, and outputs the most recent
Pipeline configuration. If you search for GetSellableItem, you find the following pipeline:

Sitecore.Commerce.Plugin.Catalog

IGetSellableItemPipeline (Sitecore.Commerce.Plugin.Catalog.ProductArgument =>

Sitecore.Commerce.Plugin.Catalog.SellableItem)

--

Plugin.Catalog.GetSellableItemInitializeBlock

(Sitecore.Commerce.Plugin.Catalog.ProductArgument =>

Sitecore.Commerce.Plugin.Catalog.ProductArgument)

Developer’s Guide

87

 87

--

Plugin.Catalog.Cs.TranslateProductBlock

(Sitecore.Commerce.Plugin.Catalog.ProductArgument =>

Sitecore.Commerce.Plugin.Catalog.SellableItem)

--

Plugin.Catalog.Cs.TranslateImageryBlock (Sitecore.Commerce.Plugin.Catalog.SellableItem

=> Sitecore.Commerce.Plugin.Catalog.SellableItem)

--

Plugin.Catalog.EnsureSellableItemPoliciesBlock

(Sitecore.Commerce.Plugin.Catalog.SellableItem =>

Sitecore.Commerce.Plugin.Catalog.SellableItem)

--

Plugin.Availability.EnsureSellableItemAvailabilityPoliciesBlock

(Sitecore.Commerce.Plugin.Catalog.SellableItem =>

Sitecore.Commerce.Plugin.Catalog.SellableItem)

--

Plugin.Catalog.ICalculateSellableItemPricesPipeline

(Sitecore.Commerce.Plugin.Catalog.SellableItem =>

Sitecore.Commerce.Plugin.Catalog.SellableItem)

--

Plugin.Availability.IPopulateItemAvailabilityPipeline

(Sitecore.Commerce.Plugin.Catalog.SellableItem =>

Sitecore.Commerce.Plugin.Catalog.SellableItem)

5. All of the current translation is performed in the TranslateProductBlock. To add additional
translations, add a block after the TranslateProductBlock to map in additional properties. The
output of the TranslateProductBlock is a SellableItem, and the next block is expecting the

SellableItem, so you can insert a block that accepts a SellableItem as a parameter and
returns the same SellableItem with the new extended properties.

6. Open the Pipelines/Blocks folder, copy SampleBlock, and rename it SellableItemLoyaltyBlock.
Open the block and change all the places that say SampleBlock to
SellableItemLoyaltyBlock.

7. To reference a SellableItem, add Sitecore.Commerce.Plugin.Catalog to the dependencies
list in the project.json of the new plugin:

"Sitecore.Commerce.Plugin.Catalog": "1.0.2301",

"Sitecore.Commerce.Plugin.Catalog.Cs": "1.0.2301"

When project.json is saved again, it will resolve the dependency.

8. In the new block, add the using Sitecore.Commerce.Plugin.Catalog reference. Change the
input/output parameter types to SellableItem. The SellableItem resolves, and the main run
method can be changed to look like the following:

/// <summary>

 /// The execute.

 /// </summary>

 /// <param name="arg">

 /// The SampleArgument argument.

 /// </param>

 /// <param name="context">

 /// The context.

 /// </param>

 /// <returns>

 /// The <see cref="SampleEntity"/>.

 /// </returns>

 public override Task<SellableItem> Run(SellableItem arg,

CommercePipelineExecutionContext context)

 {

 Condition.Requires(arg).IsNotNull("The argument cannot be null");

 //var result = this._pipeline.Run(arg, context).Result;

 return Task.FromResult(arg);

 }

9. Now that the new block is able to be built, you must add it to the pipeline in the
ConfigureSitecore.cs class by adding the following:

 .ConfigurePipeline<IGetSellableItemPipeline>(

 configure =>

 {

Sitecore Commerce 8.2.1

88

configure.Add<SellableItemLoyaltyBlock>().After<TranslateProductBlock>();

 })

This states that the pipeline should run the SellableItemLoyaltyBlock after the TranslateProduct
block.

10. Before adding any logic, make sure that the block you added is going to be hit. To do this, add a
break point at the beginning of the Run method, and then press F5 to run the solution with the
Engine in debug mode.

The simplest way to test this is with Postman. Load Postman and go to the
CatalogApiSamples/SellableItems API, and then select "Get SellableItem with a
variation". Send the command with no changes. If everything is correct, the break point will be hit,
and you know the block will execute:

Adding Logic

Once you know that the block is wired up correctly, you can add the logic.

When you did the original mapping, you retrieved a Commerce Server Product. The object was cached in the
context.CommerceContext.Objects collection so it would not be retrieved multiple times. As you
execute a pipeline, objects are cached so that later blocks can retrieve them from the cache, instead of
reloading them from the original source.

To add logic:

1. To gain access to the Product block, you must find it in the Objects collection. For example:

var product = context.CommerceContext.GetObjects<Product>()

 .FirstOrDefault(p => p.ProductId.Equals(sellableItem.FriendlyId,

StringComparison.OrdinalIgnoreCase));

2. Accept all of the suggestions to automatically add the "usings".

Developer’s Guide

89

 89

Now you have a local variable of the Commerce Server Product SellableItem, which simplifies
mapping properties. Before you map any additional properties, you must define a new component to
put the extended properties in.

3. Copy and paste the SampleComponent, and name it LoyaltyComponent. Edit the properties so

that there is only one property, named Points. You can add more properties later as needed.

4. You can now reference that component directly in the pipeline block, and set the property. For
example: sellableItem.GetComponent<LoyaltyComponent>().Points =
(int)product["LoyaltyPoints"];

The component does not need to be initialized. The special method GetComponent will check if the
component already exists, and return it or initialize a new one. An instance of that component is
guaranteed to be returned, so there is no requirement for null checking. However, you must check
for null for the Commerce Server Product property to add a default value if there is no value
populated in the LoyaltyPoints property.

var product = context.CommerceContext.GetObjects<Product>()

 .FirstOrDefault(p => p.ProductId.Equals(sellableItem.FriendlyId,

StringComparison.OrdinalIgnoreCase));

 if (product["LoyaltyPoints"] == null)

 {

 sellableItem.GetComponent<LoyaltyComponent>().Points = 100;

 }

 else

 {

 sellableItem.GetComponent<LoyaltyComponent>().Points =

(int)product["LoyaltyPoints"];

 }

5. Write some code to map the additional property and populate a new component in the
SellableItem. Run the solution again, and send the command in Postman to get the sellable item
and debug through the break point. It is also helpful to look at what other objects are in the Objects
collection. These are all easily accessible to your block:

If the code has run and you get a response in Postman, the new component will be populated:

Sitecore Commerce 8.2.1

90

You have created a new plugin that extends the SellableItem Commerce entity with an additional
component.

Note
When you want to extend an entity, you must extend it with its own component, rather than try to inherit and
extend the component from another entity. This allows a clean separation of concerns between your
extensions and any extensions that are made by other plugins.

Developer’s Guide

91

 91

20.4 Extending a Cart Line

Sitecore Commerce supports easily extending the existing solution using compositional extensibility patterns,
which enables extending the solution in a way that does not prevent upgrades and enables a separation of
concerns between multiple plugIns that seek to extend the same Commerce entity.

Scenario: add loyalty points earned to the cart line so it can be carried into the order.

The simplest way to make an item part of the Order is to copy the component from the SellableItem into
the cart line during the AddCartLine pipeline.

To extend a cart line:

1. Open the same NodeConfiguration file that you referenced previously, and find the AddCartLine
pipeline:

Sitecore.Commerce.Plugin.Carts

IAddCartLinePipeline (Sitecore.Commerce.Plugin.Carts.CartLineArgument =>

Sitecore.Commerce.Plugin.Carts.Cart)

--

Plugin.Catalog.ValidateSellableItemBlock

(Sitecore.Commerce.Plugin.Carts.CartLineArgument =>

Sitecore.Commerce.Plugin.Carts.CartLineArgument)

--

Plugin.Carts.AddCartLineBlock (Sitecore.Commerce.Plugin.Carts.CartLineArgument =>

Sitecore.Commerce.Plugin.Carts.Cart)

--

Plugin.Carts.ICalculateCartLinesPipeline (Sitecore.Commerce.Plugin.Carts.Cart =>

Sitecore.Commerce.Plugin.Carts.Cart)

--

Plugin.Carts.ICalculateCartPipeline (Sitecore.Commerce.Plugin.Carts.Cart =>

Sitecore.Commerce.Plugin.Carts.Cart)

--

Plugin.GiftCards.AddCartLineGiftCardBlock (Sitecore.Commerce.Plugin.Carts.Cart =>

Sitecore.Commerce.Plugin.Carts.Cart)

--

Plugin.Carts.PersistCartBlock (Sitecore.Commerce.Plugin.Carts.Cart =>

Sitecore.Commerce.Plugin.Carts.Cart)

--

Plugin.Carts.WriteCartTotalsToContextBlock (Sitecore.Commerce.Plugin.Carts.Cart =>

Sitecore.Commerce.Plugin.Carts.Cart)

2. Create another component that takes a Cart as a parameter and returns a Cart, and runs after the
AddCartLineBlock.

3. To access an Entity from the Carts plugin, add a reference to it. For example:

/// <summary>

 /// The execute.

 /// </summary>

 /// <param name="arg">

 /// The SampleArgument argument.

 /// </param>

 /// <param name="context">

 /// The context.

 /// </param>

 /// <returns>

 /// The <see cref="SampleEntity"/>.

 /// </returns>

 public override Task<Cart> Run(Cart cart, CommercePipelineExecutionContext

context)

 {

 Condition.Requires(cart).IsNotNull("The argument can not be null");

 //var result = this._pipeline.Run(arg, context).Result;

 return Task.FromResult(cart);

 }

4. Add the following configuration:

.ConfigurePipeline<IAddCartLinePipeline>(

 configure =>

 {

Sitecore Commerce 8.2.1

92

configure.Add<AddCartLineLoyaltyBlock>().After<AddCartLineBlock>();

 })

5. As in the previous scenario, you must run the block with no logic, adding a break point so you can
check if the objects that you need are in the objects collection. To test this piece, add a
SellableItem to the cart. In Postman, go to CartsAPISamples/Add Cart Line Without
Variant and run it. This adds an item to the cart.

6. When you look at the objects collection, you can see the SellableItem, and can get to the line that
was added by retrieving the CartLineArgument and using the Line property. Copy the component
from the SellableItem to the Cart Line. For example:

public override Task<Cart> Run(Cart cart, CommercePipelineExecutionContext context)

 {

 Condition.Requires(cart).IsNotNull("The argument can not be null");

 var sellableItem =

context.CommerceContext.GetObjects<SellableItem>().First();

 var arg = context.CommerceContext.GetObjects<CartLineArgument>().First();

 var cartLine = arg.Line;

 cartLine.SetComponent(sellableItem.GetComponent<LoyaltyComponent>());

 return Task.FromResult(cart);

Now, each time an item is added to the cart, the loyalty points for the item are added to the cart.
This can be mapped and displayed on the storefront by using the Sitecore Commerce Connect
component.

You can run the solution and add the item to the cart to verify using Postman.

Because the item is now a component in a cart line, it is automatically copied over, along with all
other components in the cart line, to the order line when an order is placed.

7. For this example, finish the order in Postman.

8. Add a physical fulfillment option, a federated payment option, and complete the order, and then
copy the OrderID from the completed order results.

9. In Postman, go to GetOrder, paste the OrderID, and retrieve the order. You can see the
LoyaltyComponent in the completed order.

Developer’s Guide

93

 93

20.5 Extending a Commerce View to Show Additional Information in the Business
Tools

A related action is to show the summary of points that have been earned on the business users order screen.
This screen can be extended by adding a new EntityView block.

To extend a commerce view to show additional information:

1. Copy and paste the sample block and name it GetOrderSummaryViewBlock.

2. The GetEntityView blocks take an EntityView as a parameter and return an EntityView.
Because this extension must see an order, you must add a reference to the Orders plugin:

Sitecore.Commerce.Plugin.Orders": "1.0.2301

3. Add the new block:

if (request.ViewName != context.GetPolicy<KnownOrderViewsPolicy>().Summary

 && request.ViewName !=

context.GetPolicy<KnownOrderViewsPolicy>().Master)

 {

 // Do nothing if this request is for a different view

 return Task.FromResult(entityView);

 }

 if (request.Entity == null)

 {

 // Do nothing if there is no entity loaded

 return Task.FromResult(entityView);

 }

 // Only do something if the Entity is an order

 if (!(request.Entity is Order))

 {

 return Task.FromResult(entityView);

 }

 var order = request.Entity as Order;

 EntityView entityViewToProcess;

 if (request.ViewName == context.GetPolicy<KnownOrderViewsPolicy>().Master)

 {

 entityViewToProcess = entityView.ChildViews.FirstOrDefault(p=>p.Name

== "Summary") as EntityView;

 }

 else

 {

 entityViewToProcess = entityView;

 }

 int pointsEarned = 0;

 foreach(var line in

order.Lines.Where(p=>p.HasComponent<LoyaltyComponent>()))

 {

 pointsEarned = pointsEarned +

line.GetComponent<LoyaltyComponent>().Points;

 }

 entityViewToProcess.Properties.Add(new ViewProperty { Name = "Points

Earned", IsReadOnly = true, RawValue = pointsEarned });

 return Task.FromResult(entityView);

[End of Document]

	Chapter 1 Getting Started with Sitecore Commerce
	1.1 Guided Tours

	Chapter 2 Sitecore Commerce Engine
	2.1 Sitecore Commerce Engine Concepts
	2.2 Getting the Customer.Sample.Solution Up and Running
	2.3 Functional Testing of the Solution
	2.4 Adding a Plugin
	2.5 Deploying Your Solution
	2.6 Commerce Engine Roles

	Chapter 3 Sitecore Commerce Core
	3.1 Commerce Core Concepts
	3.2 Sitecore Deployment Environments
	3.3 Commerce Entity
	3.4 EntityStore
	3.5 Compositional Extensibility
	3.6 Commerce List
	3.7 Entity Journaling
	3.8 Sitecore Commerce Service API
	3.9 Localization

	Chapter 4 Commerce Views Service
	4.1 Authoring API
	4.2 EntityViews
	4.3 Composite EntityViews
	4.4 EntityView Properties
	4.5 EntityView Actions, Commands, Pipelines
	4.6 EntityView Samples
	4.6.1 EntityView Sample – Order Preview
	4.6.2 EntityView Sample – Order Summary

	4.7 EntityActions

	Chapter 5 Rules
	5.1 Rules Commands and Pipelines
	5.2 Rules Models

	Chapter 6 Orders Service
	6.1 Orders Concepts
	6.2 Orders Views
	6.3 Orders Actions, Commands and Pipelines
	6.4 Orders Models
	6.5 Orders Policies

	Chapter 7 Orders Service – Shopping Cart
	7.1 Cart Actions, Commands and Pipelines
	7.2 Cart Models
	7.3 Cart Policies

	Chapter 8 Orders Service – Returns
	8.1 Returns Views
	8.2 Returns Actions, Commands and Pipelines
	8.3 Returns Models
	8.4 Returns Policies

	Chapter 9 Pricing Service
	9.1 Pricing Concepts
	9.2 Pricing Views
	9.3 Pricing Actions, Commands, Pipelines
	9.4 Pricing Models
	9.5 Pricing Policies
	9.6 Pricing Transparency

	Chapter 10 Promotions Service
	10.1 Promotions Concepts
	10.2 Promotions – Qualifications
	10.3 Promotions – Benefits
	10.4 Promotions Samples
	10.5 Calculating Promotions
	10.6 Promotions Views
	10.7 Promotions Actions, Commands, Pipelines
	10.8 Promotions Models
	10.9 Promotions Policies

	Chapter 11 Promotion Service – Coupons
	11.1 Coupons Concepts
	11.2 Coupons Views
	11.3 Coupons Actions, Commands, Pipelines
	11.4 Coupons Models
	11.5 Coupons Policies

	Chapter 12 Entitlements Service
	12.1 Entitlement Concepts
	12.2 Entitlement Views
	12.3 Entitlements Actions, Commands, Pipelines
	12.4 Entitlements Policies

	Chapter 13 Customer Service
	13.1 Customer Views
	13.2 Customer Actions, Commands, Pipelines
	13.3 Customer Models
	13.4 Customer Policies

	Chapter 14 Catalog Service
	14.1 Catalog Actions, Commands, Pipelines
	14.2 Catalog Models

	Chapter 15 Availability Service
	15.1 Availability Commands and Pipelines
	15.2 Availability Policies

	Chapter 16 Inventory Service
	16.1 Inventory Commands and Pipelines
	16.2 Inventory Policies

	Chapter 17 Payment Service
	17.1 Payment Concepts
	17.2 Payment Views
	17.3 Payment Actions, Commands, Pipelines
	17.4 Payment Policies

	Chapter 18 Fulfillment Service
	18.1 Fulfillment Concepts
	18.2 Fulfillment Views
	18.3 Fulfillment Actions, Commands, Pipelines
	18.4 Fulfillment Models
	18.5 Fulfillment Policies

	Chapter 19 Shops Service
	19.1 Shops Concepts
	19.2 Accessing a Shop from Rules or from Pipeline Blocks
	19.3 Shops Components
	19.4 Shops Models

	Chapter 20 Guided Tours
	20.1 Get the Customer.Sample.Solution Up and Running
	20.2 Creating Your First Plugin
	20.3 Mapping Additional Properties from a Commerce Server Catalog
	20.4 Extending a Cart Line
	20.5 Extending a Commerce View to Show Additional Information in the Business Tools

