
Sitecore CMS 7.0 or later 
Sitecore Search Scaling Guide Rev: 2015-02-18 

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved. 
 

Sitecore CMS 7.0 or later 

Sitecore Search Scaling 
Guide 
Administrator's guide to scaling with Sitecore search and item buckets.  



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 2 of 53 

Table of Contents 

Chapter 1 Introduction .......................................................................................................................... 3 
1.1 Item Buckets – Conceptual Overview ..................................................................................... 4 

1.1.1 Overview ............................................................................................................................. 4 
1.1.2 Fundamental Concepts ....................................................................................................... 4 
1.1.3 Terminology ......................................................................................................................... 7 

1.2 Creating Item Buckets ............................................................................................................. 9 
1.2.1 Making Content Items Bucketable .................................................................................... 10 
1.2.2 Hiding Items in an Item Bucket ......................................................................................... 11 
1.2.3 Making Templates Bucketable .......................................................................................... 11 

1.3 Synchronizing Item Buckets .................................................................................................. 13 
1.3.1 Locking Parent/Child Relationships .................................................................................. 13 

1.4 Managing Item Buckets ......................................................................................................... 15 
1.4.1 Building the Search Indexes ............................................................................................. 15 
1.4.2 Item Bucket Settings ......................................................................................................... 15 

Chapter 2 Configuring Scalability in Sitecore..................................................................................... 16 
2.1 Configuring Cache ................................................................................................................ 17 

2.1.1 Custom Cache Settings .................................................................................................... 17 
2.2 Multiple Search Indexes ........................................................................................................ 18 
2.3 Configuring Scalability Settings ............................................................................................. 21 

2.3.1 Sitecore Buckets Scaling Config ....................................................................................... 22 
2.3.2 Creating a Custom Crawler ............................................................................................... 25 

Custom Crawler Configuration ................................................................................................... 26 
2.3.3 Creating Multiple Search Indexes (Sharding) ................................................................... 27 

Chapter 3 Extending Scalability with Solr .......................................................................................... 29 
3.1 Benefits of Using Solr ............................................................................................................ 30 
3.2 Configuring Solr to work with Sitecore .................................................................................. 32 

3.2.1 Preparing Solr ................................................................................................................... 32 
3.2.2 Creating a Solr Core ......................................................................................................... 32 
3.2.3 Generating an XML Schema for Solr ................................................................................ 34 
3.2.4 Enabling Solr Term Support .............................................................................................. 36 
3.2.5 Verifying that Solr is Running Correctly ............................................................................ 36 

3.3 Configuring an IOC Container ............................................................................................... 38 
3.3.1 Selecting the Correct Support DLL files ............................................................................ 38 

3.4 Configuring Sitecore to work with Solr .................................................................................. 40 
3.4.1 Enabling the Solr Config File ............................................................................................. 40 
3.4.2 Solr Specific Settings ........................................................................................................ 41 
3.4.3 Specifying an IOC Container ............................................................................................. 42 

3.5 Re-building the Search Indexes ............................................................................................ 44 
3.6 Troubleshooting Solr ............................................................................................................. 46 

Chapter 4 Language Support in Solr ................................................................................................. 47 
4.1 Solr Schema-less Fields ....................................................................................................... 48 
4.2 Multiple Language Support ................................................................................................... 49 

4.2.1 Storing Fields for Items in Multiple Languages ................................................................. 49 
4.2.2 Retrieving a Specific Language Version Using Linq To Sitecore ..................................... 49 

Chapter 5 Appendix ........................................................................................................................... 51 
5.1 Tips and Tricks ...................................................................................................................... 52 
 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 3 of 53 

Chapter 1  

Introduction 

This document is designed for Sitecore administrators and developers and describes 
how to set up, configure, and tune Sitecore CMS and item buckets for performance 
and scalability. 

The document contains the following chapters: 

 Chapter 1 — Introduction 
This chapter is an introduction to Sitecore CMS and Item buckets. 

 Chapter 2 — Configuring Scalability in Sitecore 
This chapter explains some of the basic scaling strategies you can follow and settings 
you can use to improve the scalability of your Sitecore solution. 

 Chapter 3 — Extending Scalability with Solr 
This chapter explains how to install and configure Solr to make your Sitecore CMS 
installation more scalable. 

 Chapter 4 — Language Support in Solr 
This chapter explains how to configure the Solr provider to support different 
languages in Sitecore. 

 Chapter 5 — Appendix 
This chapter contains some tips and tricks as well as a list of known issues. 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 4 of 53 

1.1 Item Buckets – Conceptual Overview 

This section explains some of the basic concepts used in item buckets. 

1.1.1 Overview 

Item Buckets is a system that lets you store thousands of content items in one container. You can 
convert individual items in the content tree into item buckets that can contain any number of sub 
items. These sub items do not appear in the content tree and do not have a parent-child relationship 
with the item bucket item. You search each item bucket to find the content items that you are 
interested in. 

Item buckets allow content authors to: 

 Hide content items in the content tree. 

 Use the item bucket search functionality to retrieve content items from the item buckets. 

 Use the search functionality to set the value of fields in content items. 

 Alter the parent-child relationship of content items. 

Benefits of using item buckets: 

 You can search for content items in each item bucket. You can even search for non-bucket 
items. 

 You can use the Search API with bucketable content items. 

 All the bucketable content items in an item bucket are automatically organized into a logical 
format. 

 Content items that are stored under other content items can act as embedded items. 

 A single repository can contain millions of bucketable content items without slowing down the 
UI or overloading the content tree. 

Important 
Converting content items into item buckets removes the parent to child relationship between items in 
an item bucket. This conversion can also cause your website to not work as designed. For more 
information about coding and item buckets, see the Developer's Guide to Item Buckets and Search. 

You do not have to use the item buckets functionality when you install Sitecore. The buckets system 
only starts to work when you create the first item bucket. 

In an item bucket, you can create a hybrid structure that consists of content items that are hidden in 
the item bucket and content items that are structured in the normal way. 

You can also define a sub-structure within an item bucket. 

1.1.2 Fundamental Concepts 

This section explains some of the key concepts related to item buckets. 

Item Buckets Definition 

An item bucket is a repository in the content tree that stores content items. The difference between an 
item bucket and a normal repository is that an item bucket can store thousands of content items 
without displaying them in the content tree. 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 5 of 53 

Search Functionality 

An item bucket contains a Search tab that lets you find the items that are stored in the container so 
you no longer have to navigate for items in the content tree. If you have thousands of content items 
this is a more efficient way of finding items. 

 

Content Items 

Item Buckets can contain both normal (standard) content items and bucketable content items: 

 Standard content items 

Visible in the content tree and maintains their parent child relationship. A normal content item 
is based on a template that does not support item buckets. 

 Bucketable content items 

Not visible in the content tree and does not maintain their parent child relationship. A 
bucketable item is based on a template that supports item buckets. To make an item 
bucketable, select the checkbox on the template, standard values. 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 6 of 53 

Folder Structure 

The content items in an item bucket are automatically organized into folders and the parent to child 
relationship between the content items is completely removed. 
 

Item bucket with the folder structure hidden Item bucket showing folder structure 

 

 

Note 
By default the item bucket folder structure is kept hidden from content authors. 

You can mark all the item buckets with an icon in the Quick Action Bar. This allows content authors to 
see which containers are item buckets and which are normal containers. 

 

Use Semantics Instead of the Content Tree 

To decide if you should convert an item into an item bucket, and in-turn, hide all its descendants, you 
should ask yourself if you care about the structure of the data that is stored in the item bucket. 

For example, if you have a product repository, a media repository, or a tag repository within the 
content tree, you might want to place all the content items in the appropriate folder. When you want to 
work with a particular product, media item, or tag, you can search for it and open it. 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 7 of 53 

The item buckets system uses semantics to make connections, not the content tree hierarchy. For 
example, for a selection of products, you would traditionally create categories in the content tree and 
place the individual product items in these categories. With item buckets, you can place all the 
products in one repository and tag each product with the category that it belongs to and find them 
using search.  

To view semantics on a content item: 

1. In the Content Editor, enable standard fields. To do this in the ribbon, select the View tab and 
then select the Standard Fields check box. 

2. Select a content item, such as ‘test’. 

3. In the Content tab, scroll down and select the Tagging group. 

 

Improved Scalability 

Item buckets help you to manage the problem of storing large numbers of items in the Sitecore 
content tree, by retrieving them quickly using search, and thus enabling you to work with them in a 
speedy and efficient manner. 

1.1.3 Terminology 

This section contains a list of some key terms and definitions used with item buckets. 

Item Bucket 

An item bucket is a repository in the content tree that can store multiple content items. The difference 
between an item bucket and a normal repository is that an item bucket can store thousands of content 
items without displaying them in the content tree. 

Bucketable 

A bucketable item is a Sitecore content item that has been converted to make it compatible with item 
buckets. 

Structured Item 

Structured items are normal Sitecore content items or containers that appear in the content tree. 

Unstructured Item 

Sitecore items that have been made bucketable are known as unstructured items. 

Facet 

Facets are the categories of search results that appear to the left of item bucket search results. 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 8 of 53 

Synchronize 

After making items in an item bucket bucketable you need to synchronize them to update the 
structure of an item bucket. 

Semantics 

Item buckets use semantics such as keyword tagging to enable you to easily find items, so you do not 
need to navigate for these items in the content tree. 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 9 of 53 

1.2 Creating Item Buckets 

Content items that are stored in item buckets are just like any other content items — you can create, 
edit, and delete them. 

Note 
Before you start to work with item buckets, we recommend that you look through the Appendix of tips 
and tricks at the end of this document. 

You can create an item bucket from a new content item or convert an existing item into an item 
bucket. 

When you convert a content item that already exists into an item bucket, the item bucket organizes 
and hides all its descendants if they are based on templates that are bucketable. If the content item 
contains thousands or even millions of items, it can take some time to organize the content items after 
converting the item into a bucket. A progress bar displays a tally of the items that are being 
processed. 

To create an item bucket: 

1. In the Content Editor, in the content tree, create a content item, for example a folder, and 
give it a suitable name. 

Alternatively, select an existing content item that can expand over time to contain countless 
sub-items. 

 

2. In the content tree, select the content item and then on the Home tab, click Edit to lock the 
item. 

3. Click the Configure tab and then in the Buckets group, click Bucket to convert the new item 
into an item bucket. 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 10 of 53 

When you convert a content item into an item bucket, a new Search tab appears in the right-hand 
pane. 

 

Use this tab to search for content items in the item bucket. 

For more information about searching in item buckets, see the Content Author's Cookbook. 

An icon appears in the Quick Action Bar to the left of the content tree indicating that this item is now 
an item bucket. 

 

To display the item buckets icon, right-click the Quick Action Bar, and then select Item Bucket. 

1.2.1 Making Content Items Bucketable 

When you convert an item to an item bucket, you must ensure that the content items you want to 
store in the item bucket are bucketable. 

To make a content item bucketable, you can: 

 Make the individual content item bucketable. 

 Make the template that it is based on bucketable. 

Content items that are bucketable are hidden and searchable when they are stored in an item bucket. 

If the content items are based on a template that is not bucketable, the system does not automatically 
structure and hide the content items for you. Instead, the content items are treated like normal items 
in the content tree.  

To make a content item bucketable:  

1. In the Content Editor, on the View tab, in the View group, select the Standard Fields check 
box. 

2. Select the content item that you want to make bucketable. 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 11 of 53 

3. In the right hand pane, click the Content tab and scroll down and expand the Item Buckets 
section. 

 

4. Select the Bucketable check box. 

5. Save your changes. 

After you have made the content item bucketable, you must synchronize the item bucket and update 
its structure. For more information about synchronizing an item bucket, see the section Synchronizing 
Item Buckets. 

1.2.2 Hiding Items in an Item Bucket 

Normal (unbucketable) content items that are stored in an item bucket are not hidden in the content 
tree by default. Only bucketable items can be hidden in an item bucket. 

To hide content items stored in an item bucket: 

1. Open the Sitecore Desktop and open the Content Editor. 

2. In the Content Editor, on the View tab, in the View group, clear the Hidden Items check 
box. 

We recommend that you clear the Hidden Items check box if you are using item buckets. This 
prevents the system from unnecessarily loading all the items in the content tree. You can still work 
with the hidden content items when you need to. 

1.2.3 Making Templates Bucketable 

If you have a large number of similar content items that you want to hide in an item bucket, it makes 
more sense to make the template that they are based on bucketable. 

To make a template bucketable: 

1. In the Content Editor, on the View tab, in the View group, select the Standard Fields check 
box. 

2. Select one of the content items that you want to make bucketable. 

3. In the right-hand pane, on the Content tab, expand the Quick Info section.  



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 12 of 53 

4. Click the template link and the template that this content item is based on opens in the 
Template Manager. 

5. Select the _Standard Values item to make all the content items that use this template 
bucketable. 

6. In the Template Manager, in the right hand pane, click the Content tab. 

7. Scroll down and expand the Item Bucket section. 

 

8. Select the Bucketable check box. 

9. Save your changes. 

After you have made the template bucketable, you must synchronize the item bucket to update its 
structure. 

Note 
If you create any content items based on this template in another container that is not an item bucket, 
these items are treated like normal content items and are displayed in the content tree. 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 13 of 53 

1.3 Synchronizing Item Buckets 

When you create an item bucket, you can store both bucketable, unstructured content items and 
normal, structured content items in it. If you decide to convert some of the normal content items into 
bucketable items or make the templates that they are based on bucketable, you must synchronize the 
item bucket to update its structure. 

You must synchronize an item bucket when: 

 You convert a content item into an item bucket and it contains bucketable items. 

 You convert a content item into an item bucket and it contains content items whose template 
you have made bucketable. 

To synchronize an item bucket: 

1. In the Content Editor, select the item bucket whose structure you want to update. 

2. On the Configure tab, in the Buckets group, click Sync. 

 

The structure of the contents in the item bucket is updated: 

 The bucketable items are organized and hidden.  

 All the content items that are based on bucketable templates are organized and hidden.  

 The normal content items remain visible. 

You can search for all of these content items in the item bucket. 

1.3.1 Locking Parent/Child Relationships 

In some cases, you may want to lock the relationship between a parent item and its child items even 
though both are stored in an item bucket. You might need to ensure that the child items are always 
stored below the parent item, for example you might want to lock the parent to child relationship 
between news articles and comments. 

To lock the parent to child relationship: 

1. In the Template Manager, navigate to the template for the parent item. In this case it would 
be the news article template. 

2. Expand the template and select the _Standard Values item. 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 14 of 53 

3. In the right-hand pane, scroll down to the Item Buckets section. 

 

4. Select the Lock Child Relationship check box. 

Note 
If you create a content item that is a child of a content item based on this template, it is not 
automatically structured in the item bucket. Instead it retains its relationship with the parent item. For 
example, comments will always be children of the news article that they refer to. 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 15 of 53 

1.4 Managing Item Buckets  

There are a number of settings and tools that you can use to configure the way item buckets work on 
your installation. 

For example, you can re-build item bucket indexes, specify search settings, set up default search 
queries and, create facets and more. 

1.4.1 Building the Search Indexes 

You can build the item buckets search indexes from the Control Panel. 
 

  

Use the Item Buckets section in the control panel to: 

 Generate a Solr schema.xml file. 

 Rebuild the item bucket indexes. 

1.4.2 Item Bucket Settings 

There are a number of settings that you use to configure how search works with item buckets. These 

settings are stored at /sitecore/system/Settings/Buckets.  

You can use these settings to define various features including: 

 Defining the facets that are available on your website. 

 Specifying the way that an item opens when you click it in the search results. 

 Configuring the Search Box dropdown to add or remove search options. 

 Adding or removing Quick Actions to your search results. 

You can also specify which field is used when you perform a tag search. To specify which fields are 
used for tag searches, in the Item Buckets Settings item, you must ensure that the Tag Parent field 
points to the item in the content tree that contains all your tags — the tag repository. 

You can then create a field called Tags in any template and set the type to either Multilist or Multilist 
with Search. Before you decide which kind of field type you would like to use for your tags, you should 
think about how many tags you are going to need. 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 16 of 53 

Chapter 2  

Configuring Scalability in Sitecore 

This chapter describes how to scale big data implementations of Sitecore CMS that 
use item buckets, and Sitecore search and indexing. 

If you intend to store thousands or millions of items in Sitecore then you need to 
make your solution more scalable. Read this chapter to learn more about strategies 
such as using multiple indexes, sharding, and performing remote querying. 

This chapter contains the following sections: 

 Configuring Cache 

 Multiple Search Indexes 

 Configuring Scalability Settings 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 17 of 53 

2.1 Configuring Cache 

You can configure Sitecore cache settings to improve performance and scalability. The standard 

cache settings are in the web.config file found in the Website root folder. 

Some preliminary work has been done to preconfigure the cache levels for a site that contains 
100,000 items or more. You may need to adjust these settings depending on the number of items in 
your content tree and the type of Sitecore implementation you have. 

It is tempting to assign more and more cache as your item count grows, however this is not an 
effective scaling strategy. The data cache and item cache handle whatever you assign to them but 
performance is not always better. For example, you could specify 800MB of cache but this means you 
have the additional overhead of looking up a much a bigger cache. Creating a bigger cache does not 
necessarily mean you achieve better performance or improve scalability. 

Note 
In the web.config, the EnableEvents setting is set to true by default. This setting makes scaling 
configuration simpler by enabling the event queue for publishing items out of the box. If you have 
hundreds or thousands of records the event queue must be cleaned up regularly to avoid 
performance issues. Reducing the execution interval of the cleanup agent can help you to achieve 
this. In previous versions of Sitecore this was set to false. It is now set to true by default because new 
Index Strategies require that the Events system is enabled. 

2.1.1 Custom Cache Settings 

Sitecore database cache settings contained in the web.config file: 

<!-- core --> 

<database id="core" singleInstance="true" type="Sitecore.Data.Database, Sitecore.Kernel"> 

        <cacheSizes hint="setting"> 

          <data>20MB</data> 

          <items>10MB</items> 

          <paths>500KB</paths> 

          <itempaths>10MB</itempaths> 

          <standardValues>500KB</standardValues> 

        </cacheSizes> 

      </database> 

 

<!-- master --> 

<database id="master" singleInstance="true" type="Sitecore.Data.Database, Sitecore.Kernel"> 

        <cacheSizes hint="setting"> 

          <data>20MB</data> 

          <items>10MB</items> 

          <paths>500KB</paths> 

          <itempaths>10MB</itempaths> 

          <standardValues>500KB</standardValues> 

        </cacheSizes> 

      </database> 

 

<!-- web --> 

<database id="web" singleInstance="true" type="Sitecore.Data.Database, Sitecore.Kernel"> 

        <cacheSizes hint="setting"> 

          <data>20MB</data> 

          <items>10MB</items> 

          <paths>4MB</paths> 

          <itempaths>10MB</itempaths> 

          <standardValues>4MB</standardValues> 

        </cacheSizes> 

      </database> 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 18 of 53 

2.2 Multiple Search Indexes 

If you want to use item buckets to support millions of content items on your website, you need to 
make your search more scalable, so the best approach may be to create multiple search indexes. 

Choosing an appropriate index strategy is something that should be discussed during the design 
phase of a project, such as whether to shard or not? One index satisfies the needs of most Sitecore 
solutions but multiple indexes offer more scaling possibilities. 

For example, you could split the different parts of your website into the following indexes: 

 Index 1 – Content 

 Index 2 – System 

 Index 3 – Media library 

Advantages of Using Multiple Search Indexes 

 Spread the load by storing each index on a different server – This makes indexing quicker. 

 Better performance – If you have millions of items search is quicker. 

 Smaller indexes on file. 

 You can set very specific configuration settings for different parts of the content tree. 

If you require an even more scalable index and greater querying power, we recommend using Solr as 
your provider. For more information, see Chapter 3, Extending Scalability with Solr. 

Configuring Multiple Search Indexes 

To make it easier to create multiple search indexes, Sitecore includes all the configuration files you 
need to create a sharded or non sharded setup. Enable whichever configuration file that you want to 
use. If the default configuration files are not sharded enough, it is quite easy to append your own by 
adding the appropriate configuration. 

Use the code sample and table below, which outlines what elements you need to add. 

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/"> 

  <sitecore> 

    <contentSearch> 

      <configuration type="Sitecore.ContentSearch.LuceneProvider.LuceneSearchConfiguration,  

       Sitecore.ContentSearch.LuceneProvider"> 

        <indexes hint="list:AddIndex"> 

          <index id="sitecore_core_index"  

           type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex,  

            Sitecore.ContentSearch.LuceneProvider"> 

            <param desc="name">$(id)</param> 

            <param desc="folder">$(id)</param> 

            <!-- This initializes index property store. Id has to be set to the index id --> 

            <param desc="propertyStore" ref="contentSearch/databasePropertyStore"  

             param1="$(id)" /> 

            <strategies hint="list:AddStrategy"> 

              <!-- NOTE: order of these is controls the execution order --> 

              <strategy ref="contentSearch/indexUpdateStrategies/intervalAsyncCore" /> 

            </strategies> 

            <commitPolicy hint="raw:SetCommitPolicy"> 

              <policy type="Sitecore.ContentSearch.TimeIntervalCommitPolicy,  

               Sitecore.ContentSearch" /> 

            </commitPolicy> 

            <commitPolicyExecutor hint="raw:SetCommitPolicyExecutor"> 

              <policyExecutor type="Sitecore.ContentSearch.CommitPolicyExecutor,  

               Sitecore.ContentSearch" /> 

            </commitPolicyExecutor> 

            <locations hint="list:AddCrawler"> 

              <crawler type="Sitecore.ContentSearch.LuceneProvider.Crawlers.DefaultCrawler,  

               Sitecore.ContentSearch.LuceneProvider"> 

                <Database>core</Database> 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 19 of 53 

                <Root>/sitecore</Root> 

              </crawler> 

            </locations> 

          </index> 

        </indexes> 

      </configuration> 

    </contentSearch> 

  </sitecore> 

</configuration> 

 

Name Description Example 

<Root> 

 
Root node of the index. 
Specify the root node of 
the content tree to be 
included in the index. The 
crawler indexes content 
below this location.  
 

<Root>/sitecore/media library</Root> 

<name> 

 
Name of the search 
index. 

<param desc="name">$(id)</param> 

 

<Database> 

 
Database name. 
 

<Database>core</Database> 

<strategies> List of index strategies to 
run. 

<strategies hint="list:AddStrategy"> 

<strategy 

ref="contentSearch/indexUpdateStrate

gies/intervalAsyncCore" /> 

</strategies> 

 

<CommitPolicy> Controls when the index 
commits what it has either 
in memory or in 
temporary files to disk. 
This can be time based or 
document count based. 
 

<commitPolicy  

hint="raw:SetCommitPolicy"> 

<policy 

type="Sitecore.ContentSearch.TimeInt

ervalCommitPolicy,Sitecore.ContentSe

arch"/> 

</commitPolicy> 

<commitPolicyExecutor> The class that executes 
the commit. 

<commitPolicyExecutor 

hint="raw:SetCommitPolicyExecutor"> 

<policyExecutor 

type="Sitecore.ContentSearch.CommitP

olicyExecutor, 

Sitecore.ContentSearch" /> 

</commitPolicyExecutor> 

 

Index Context Switcher 

If you decide to use the sharded approach to indexing, Sitecore uses the <Root> element in relation 

to the Context.Item to determine which index to use. This index switching is done for you. 

It is important to note that the more specific your <Root> is, the higher it needs to be listed in the 

configuration file. The Index Context Switcher uses the indexes in the order they are listed. 

For example, if you have an index <Root> of /sitecore/content/Home, it should be located 

below the index for a <Root> of /sitecore/content/Home/Flights. 

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/"> 

  <sitecore> 

    <contentSearch> 

      <configuration type="Sitecore.ContentSearch.LuceneProvider.LuceneSearchConfiguration,  

       Sitecore.ContentSearch.LuceneProvider"> 

        <indexes hint="list:AddIndex"> 

          <index id="sitecore_core_index"  



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 20 of 53 

           type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex,  

            Sitecore.ContentSearch.LuceneProvider"> 

            <param desc="name">$(id)</param> 

            <param desc="folder">$(id)</param> 

            <!-- This initializes index property store. Id has to be set to the index id --> 

            <param desc="propertyStore" ref="contentSearch/databasePropertyStore"  

             param1="$(id)" /> 

            <strategies hint="list:AddStrategy"> 

              <!-- NOTE: order of these is controls the execution order --> 

              <strategy ref="contentSearch/indexUpdateStrategies/intervalAsyncCore" /> 

            </strategies> 

            <commitPolicy hint="raw:SetCommitPolicy"> 

              <policy type="Sitecore.ContentSearch.TimeIntervalCommitPolicy,  

               Sitecore.ContentSearch" /> 

            </commitPolicy> 

            <commitPolicyExecutor hint="raw:SetCommitPolicyExecutor"> 

              <policyExecutor type="Sitecore.ContentSearch.CommitPolicyExecutor,  

               Sitecore.ContentSearch" /> 

            </commitPolicyExecutor> 

            <locations hint="list:AddCrawler"> 

              <crawler type="Sitecore.ContentSearch.LuceneProvider.Crawlers.DefaultCrawler,  

               Sitecore.ContentSearch.LuceneProvider"> 

                <Database>core</Database> 

                <Root>/sitecore</Root> 

              </crawler> 

            </locations> 

          </index> 

        </indexes> 

      </configuration> 

    </contentSearch> 

  </sitecore> 

</configuration> 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 21 of 53 

2.3 Configuring Scalability Settings 

When you install Sitecore with item buckets, by default several configuration files are added to the 

App_Config\Include folder. This section explains the customizable settings related to scalability 

contained in the following config files: 

 Sitecore.Buckets.config 

 Sitecore.ContentSearch.Lucene.DefaultIndexConfiguration.config 

 Web.config 

 Sitecore.Buckets.Scaling.config 

 Custom Crawler 

 Sharding config files 

The Sitecore.Buckets.config file contains the following settings which you can use to improve 

the scalability of your Sitecore solution: 
 

Setting Name and Description Example 

BucketTriggerCount 
 
If you enable the AutoBucket events, 
this setting specifies the maximum 
number of children that an item can 
have before it is automatically 
converted into an item bucket. 
 
Example: When an item has 100 
children, Sitecore asks if you want to 
automatically convert the parent item 
into an item bucket. 
 

<setting name="BucketConfiguration.BucketTriggerCount" 

value="100"/> 

 

BucketTemplateId 
 
To change the template of a folder 
item that contains all the hidden 
bucketable items, you must change 
this setting to point to the GUID of the 
new folder item. We recommend you 
use the default value. 
 

<setting name="BucketConfiguration.BucketTemplateId" 

value="{ADB6CA4F-03EF-4F47-B9AC-9CE2BA53FF97}" /> 

SecuredItems 
 
This setting determines what happens 
to results that are returned when a 
user does not have permission to 
access them. The options are "hide" 
and "blur". 
 

<setting name="BucketConfiguration.SecuredItems" 

value="hide"/> 

 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 22 of 53 

The Sitecore.ContentSearch.DefaultIndexConfiguration.config file contains the 

following setting: 
 

Setting Name and Description Example 

ContentSearch.LuceneQueryClauseCount 
 
This setting allows you to move the clause 
count for Lucene up and down depending 
on the size of your queries. 
 
Increasing this value increases memory 
consumption. Only increase it if you need 
to run very large queries. 
 

<setting name="ContentSearch.LuceneQueryClauseCount" 

value="1024"/> 

The Sitecore web.config file contains the following setting: 

 

Setting Name and Description Example 

Indexing.UpdateInterval 
 
This interval determines how often the 
Web database index is updated.  
 
Set an index update interval to record 
when unstructured items are created, 
deleted or modified in the Web database. 
If you do not set an update interval these 
events are not automatically included in 
the index. 
 
This setting is particularly important when 
you have 100,000 or more unstructured 
items in your index. 
 

<setting name="Indexing.UpdateInterval" 

value="00:05:00"/> 

Note 
In case of configuring Scaled Environment, on Solr only one CD instance should use the 
OnPublishEndAsync or intervalAsync strategy. Other instances should use manual strategy or no 
strategy at all. At the same time, only one CM instance should be configured for using the 
intervalAsync strategy, all the others CM instances should use manual strategy or no strategy at all. 

2.3.1 Sitecore Buckets Scaling Config 

Enable the Sitecore.Buckets.Scaling.config file if you want to use a dedicated query server. 

This section describes the purpose of each setting with some examples. 

For example, you could designate two servers to handle search indexing: 

 Server 1 – Remote search indexing server - for building and rebuilding the search indexes of 
an authoring server on a dedicated remote server. 

 Server 2 – Dedicated search query server – to send the search queries of an authoring server 
to a dedicated query server. 

Using a Remote Indexing Server 

The default bucket indexes are written in the default data directory in the file system. The default data 

directory is specified in the web.config file. Rebuilding the indexes can be quite slow and can 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 23 of 53 

demand a lot of resources on the web server. It is therefore a good idea to rebuild your indexes on a 
remote server computer. 
 

Advantages Disadvantages 

The remote server can have an SSD 
drive that makes indexing a lot faster. 
 

While the index is copied back to the local data 
directory, there is a short time when the index is 
locked for reading and writing. 

Only the performance of the remote 
server used for re-indexing is affected, 
not the computer that is delivering the 
content. 
 

 

In the Sitecore.Buckets.Scaling.config, find the RemoteIndexLocation setting, and enter 

a network path that has full read and write access. 

  <setting name="RemoteIndexLocation" value="c:\remote"/> 

You can then specify your index: 

configuration xmlns:patch="http://www.sitecore.net/xmlconfig/"> 

  <sitecore> 

    <contentSearch> 

      <configuration type="Sitecore.ContentSearch.LuceneProvider.LuceneSearchConfiguration,  

         Sitecore.ContentSearch.LuceneProvider"> 

        <indexes hint="list:AddIndex"> 

          <index id="sitecore_master_index"   

            type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex,  

            Sitecore.ContentSearch.LuceneProvider"> 

            <param desc="name">$(id)</param> 

            <param desc="folder">$(id)</param> 

      <!-- This initializes index property store. Id has to be set to the index id --> 

       <param desc="propertyStore" ref="contentSearch/databasePropertyStore" param1="$(id)" /> 

            <strategies hint="list:AddStrategy"> 

              <!-- NOTE: order of these controls is the execution order --> 

              <strategy ref="contentSearch/indexUpdateStrategies/syncMaster" /> 

            </strategies> 

            <locations hint="list:AddCrawler"> 

               <crawler type="Sitecore.ContentSearch.LuceneProvider.Crawlers.DefaultCrawler,  

                  Sitecore.ContentSearch.LuceneProvider"> 

                 <Database>master</Database> 

                <Root>/sitecore</Root> 

              </crawler> 

            </locations> 

          </index> 

        </indexes> 

      </configuration> 

    </contentSearch> 

  </sitecore> 

</configuration> 

Using a Dedicated Query Server 

You can specify a dedicated query server that runs all the search queries that are generated in the UI. 
This may be useful if you have many content authors and you do not want the overhead of running 
queries that might affect the performance of the rest of the system. 

Use the QueryServer setting, to route all the queries to a dedicated authoring server.  

You can use several query servers if necessary with some authoring servers using QUERYSERVER 
1 and other authoring servers using QUERYSERVER 2. Although this is possible with the Lucene 
provider we recommend that you use SOLR if you want to implement distribution of search queries or 
indexing. 

Note 
You can shard both Lucene and Solr search indexes across multiple remote servers. The settings in 
this section can apply equally to both Lucene and Solr implementations. 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 24 of 53 

Enabling the Sitecore.Buckets.Scaling.config 

The Sitecore.Buckets.Scaling.config file is in your website Include folder: 
wwwroot\<sitename>\Website\App_Config\Include 

To start defining your scalability settings, enable the Sitecore.Buckets.Scaling.config file by 

removing the .example extension from the file name. 

 

Configuring Scalability Settings 

For each setting listed there is a description and an example of usage. 

Events  

Name and Description Example 

Remote Indexing Events 
 
Every time a change is made to a Sitecore item 
an event is added to the event queue and sent to 
a remote server for indexing. 
 
These events allow developers to implement code 
that will run when the indexing process starts 
and/or ends on remote servers. 
 

<event name="item:indexing:remotestarting"/> 

 

<event name="item:indexing:remotefinished"/> 

 

Name and Description Example 

Query Server Address 
 
This enables you to specify a dedicated query 
server for your content management server. 
In the value parameter, enter a URL address for 
the remote server. 
 

<setting name="Scaling.QueryServer" 

value="http://queryserver"/> 

Remote Index Rebuild Location 
 
This enables you to specify a specific location on 
the indexing server where the indexes will be 
rebuilt.  
In the value parameter, enter the path to the 
folder you want to specify. 
 

<setting name="Scaling.RemoteIndexLocation" 

value="c:\remote"/> 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 25 of 53 

Name and Description Example 

Remote Index Drop Location 
 
Use this setting if you want to spread indexes 
across multiple locations. This is a read only drop 
location that the built indexes get moved to so 
other servers can copy these indexes into their 
local index directory. 
 
In the value parameter, enter the path to the drop 
location. 
 

<setting name="Scaling.NetworkDropPoint" 

value="\\SERVERNAME\c$\inetpub\wwwroot\sitena

me\Website\Data\indexes"/> 

Indexing Server Service Location 
 
This is the method that is called from the local 
server to the remote indexing server to start the 
remote rebuild. 
It is a web service method enabling you to specify 
how the indexes should be sent to the remote 
server. For example, by specifying a folder or 
location. 
 

<setting name="Scaling.RemoteIndexingServer" 

value="http://localhost/sitecore/shell/Applic

ations/Buckets/Rebuild.asmx/Build"/> 

Search Server Copy Service 
 
This setting indicates the Web Service method 
called on the Initiator when a remote server has 
finished rebuilding the indexes, and before the 
remove server copies the index back to the 
Initiator. The Web Service method disables the 
History Engine, to suspend history updates as the 
index is copied back from the remote server to the 
Initiator. 
 

<setting name="Scaling.RemoteIndexingReceipt" 

value="http://localhost/sitecore/shell/Applic

ations/Buckets/Rebuild.asmx/Reciept"/> 

Service to Re-enable Indexing Engine 
 
This setting indicates the Web Service method 
called on the Initiator when a remote server has 
finished copying the index back to the Initiator.  
The Web Service method re-enables the History 
Engine, which would have been disabled before 
the copy operation began. 
 

<setting 

name="Scaling.RemoteIndexingReceiptEnable" 

value="http://localhost/sitecore/shell/Applic

ations/Buckets/Rebuild.asmx/EnableIndexing"/> 

2.3.2 Creating a Custom Crawler 

If you want to create a custom crawler to index a specific part of your website, such as the Media 
Library, you can adapt the sample code below. 

You also need to create your own config file to implement this crawler. 

This example is taken from the Sitecore.ContentSearch.Lucene.Index.Master.config. 

<configuration xmlns:patch="http://www.sitecore.net/xmlconfig/"> 

  <sitecore> 

    <contentSearch> 

      <configuration type="Sitecore.ContentSearch.LuceneProvider.LuceneSearchConfiguration,  

       Sitecore.ContentSearch.LuceneProvider"> 

        <indexes hint="list:AddIndex"> 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 26 of 53 

          <index id="sitecore_master_index" 

           type="Sitecore.ContentSearch.LuceneProvider.LuceneIndex,  

            Sitecore.ContentSearch.LuceneProvider"> 

            <param desc="name">$(id)</param> 

            <param desc="folder">$(id)</param> 

            <!-- This initializes index property store. Id has to be set to the index id --> 

            <param desc="propertyStore" ref="contentSearch/databasePropertyStore"  

             param1="$(id)" /> 

            <strategies hint="list:AddStrategy"> 

              <!-- NOTE: order of these is controls the execution order --> 

              <strategy ref="contentSearch/indexUpdateStrategies/syncMaster" /> 

            </strategies> 

            <commitPolicy hint="raw:SetCommitPolicy"> 

              <policy type="Sitecore.ContentSearch.TimeIntervalCommitPolicy,  

               Sitecore.ContentSearch" /> 

            </commitPolicy> 

            <commitPolicyExecutor hint="raw:SetCommitPolicyExecutor"> 

              <policyExecutor type="Sitecore.ContentSearch.CommitPolicyExecutor,  

               Sitecore.ContentSearch" /> 

            </commitPolicyExecutor> 

            <locations hint="list:AddCrawler"> 

              <crawler type="Sitecore.ContentSearch.LuceneProvider.Crawlers.DefaultCrawler,  

               Sitecore.ContentSearch.LuceneProvider"> 

                <Database>master</Database> 

                <Root>/sitecore</Root> 

              </crawler> 

            </locations> 

          </index> 

        </indexes> 

      </configuration> 

    </contentSearch> 

  </sitecore> 

</configuration> 

This example declares a new index called sitecore_master_index. It then uses a custom crawler to 
tokenize and list the field types. This enables you to search within list items. 

Custom Crawler Configuration 

In Lucene and Solr, you can customize the custom crawler to specify exactly which fields it should 
include or exclude when indexing. 

Specify these settings in the context of where you make the changes, for example in the 

Sitecore.ContentSearch.Lucene.DefaultIndexConfiguration.config file. 

Index All Fields 

By default IndexAllFields is set to true and automatically includes all fields in the search index. 

This also means that any new fields added to your templates are automatically included in the index. 

There are two different ways you can use this setting: 

1. Set to true and add all the fields you would like to exclude from the index to the 

ExcludeField list. 

<exclude hint="list:ExcludeField"> 

            <__display_name>{B5E02AD9-D56F-4C41-A065-A133DB87BDEB}</__display_name> 

            <__Base_template>{12C33F3F-86C5-43A5-AEB4-5598CEC45116}</__Base_template> 

            <__Created>{25BED78C-4957-4165-998A-CA1B52F67497}</__Created> 

            <__Created_by>{5DD74568-4D4B-44C1-B513-0AF5F4CDA34F}</__Created_by> 

            <__DefaultWorkflow>{CA9B9F52-4FB0-4F87-A79F-24DEA62CDA65}</__DefaultWorkflow>     

2. Set to false and add all fields you would like to include in the index to the IncludeField list. 

<include hint="list:IncludeField"> 

            <fieldId>{8CDC337E-A112-42FB-BBB4-4143751E123F}</fieldId> 

          </include> 

ExcludeTemplate 

When the index is running you can exclude templates of a certain type. To exclude a template you 
must specify the GUID of the template you want to exclude. 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 27 of 53 

   <exclude hint="list:ExcludeTemplate"> 

       <BucketFolderTemplateId>{ADB6CA4F-03EF-4F47-B9AC-9CE2BA53FF97}</BucketFolderTemplateId> 

   </exclude> 

Include Field 

When the index is running you can include certain fields by supplying their ID. This is useful if 

IndexAllFields is set to false. 

   <include hint="list:IncludeField"> 

       <fieldId>{8CDC337E-A112-42FB-BBB4-4143751E123F}</fieldId> 

   </include> 

Exclude Field 

You can also exclude fields by specifying their ID. The default index has many of the system fields 
excluded already. 

   <exclude hint="list:ExcludeField"> 

        <__DefaultWorkflow>{CA9B9F52-4FB0-4F87-A79F-24DEA62CDA65}</__DefaultWorkflow> 

        <__Lock>{001DD393-96C5-490B-924A-B0F25CD9EFD8}</__Lock> 

   </exclude> 

Remove Special Fields 

Special fields are standard fields that Sitecore indexes. If you do not want to search by these fields 
you can exclude them from the index by specifying them individually. 

   <fields hint="raw:RemoveSpecialFields"> 

        <remove type="both">AllTemplates</remove> 

        <remove type="both">Created</remove> 

        <remove type="both">DisplayName</remove> 

        <remove type="both">Editor</remove> 

        <remove type="both">Hidden</remove> 

        <remove type="both">Icon</remove> 

        <remove type="both">Links</remove> 

        <remove type="both">Updated</remove> 

   </fields> 

Add Computed Index Fields 

This section lets you configure computed fields which will be included into the search indexes. 

<fields hint="raw:AddComputedIndexField"> 

     <field fieldName="_content" returnType="string"> 

       Sitecore.ContentSearch.ComputedFields.MediaItemContentExtractor,Sitecore.ContentSearch 

     </field> 

     <field fieldName="calculateddimension" 

       returnType="stringCollection"> 

       Sitecore.ContentSearch.ComputedFields.CalculatedDimension,Sitecore.ContentSearch 

     </field> 

</fields> 

2.3.3 Creating Multiple Search Indexes (Sharding) 

The data from each of the three Sitecore databases (master, web, core), is by default, stored in a 
single Lucene search index. As your search indexes grow, if they get larger than normal, you could 
implement a sharding strategy to store the data from each database in its own separate search index. 

If you want to split you searches indexes up by database, you can use the following config files to 
configure each index: 

 Sitecore.ContentSearch.Lucene.Indexes.Sharded.Core.config 

 Sitecore.ContentSearch.Lucene.Indexes.Sharded.Master.config 

 Sitecore.ContentSearch.Lucene.Indexes.Sharded.Web.config 

You can find each of these files in the following location: 

wwwroot\<site name> \Website\App_Config\Include 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 28 of 53 

If you are using Sitecore with item buckets and have thousands or millions of items, sharding is one 
strategy you could use if you want to continue using Lucene. If your search indexes continue to grow 
and become too large for this strategy, we recommend that you switch to using Solr.  

Note 
If you follow the sharded approach, you should turn off the other Lucene config files as leaving these 
enabled will create redundant indexes. 

For more information on using Solr, see Chapter 3, Extending Scalability with Solr. 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 29 of 53 

Chapter 3  

Extending Scalability with Solr 

Solr is an open source enterprise search platform from the Apache Lucene project. 
Using Solr integration for search is the same as using a file-based Lucene index but 
instead of storing its information in file-based Lucene indexes they are stored 
remotely on the Solr server. This is a particularly effective strategy in a distributed 
environment. 

Solr is optimized for performance and handling large numbers of documents. 

This chapter contains the following sections: 

 Benefits of Using Solr 

 Configuring Solr to work with Sitecore 

 Configuring an IOC Container 

 Configuring Sitecore to work with Solr 

 Re-building the Search Indexes 

 Troubleshooting 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 30 of 53 

3.1 Benefits of Using Solr 

Solr is an open source enterprise search platform from the Apache Lucene project that is available as 
a pre-configured Sitecore module. 

When you use Solr integration for Item buckets the experience should be exactly the same as using 
Lucene except that instead of storing information in file-based Lucene indexes it is stored on a Solr 
server. 

Benefits of using Solr: 

 It is heavily optimized for search performance with a powerful query cache. 

 It can handle a large number of documents. 

 There is detailed configuration support for language indexing. 

 You can shard indexes across multiple servers. 

 With Solr Cloud you can also split an index across multiple physical locations. 

The Sitecore.ContentSearch namespace 

The Sitecore.ContentSearch namespace works from a provider based model. This means that 

any search operations, such as indexing or searching, get passed down to whichever provider is 
enabled. This pluggable design means that you can add support for more search providers over time. 

Lucene is still the default search provider but the Sitecore.ContentSearch namespace now also 

works separately, not being so tightly coupled with Lucene. 

 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 31 of 53 

Summary of setup steps 

In this chapter learn how to configure Solr provider support for Sitecore. 

There are four key parts to the Solr setup: 

1. Configure a Solr instance to use with Sitecore. 

2. Configure an IOC container. 

3. Configure Sitecore to work with the Solr provider. 

4. Re-index all content items. 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 32 of 53 

3.2 Configuring Solr to work with Sitecore 

Follow the steps in this section to configure a Solr instance to use with Sitecore. 

Important 
Your Sitecore installation comes with a Sitecore Solr Support zip package which includes several 
DLLs you can use depending on which IOC container you choose. The distribution also includes a 
Sitecore.ContentSearch.Solr.Indexes.config file and a ReadMe file. 

3.2.1 Preparing Solr 

At time of writing the most current release of Solr is version 4.1.0 

Version 4.1.0 (stable): http://www.apache.org/dyn/closer.cgi/lucene/solr/4.1.0 

There are several different ways to install Solr, for example in Jetty or Tomcat / Linux or Windows, 
your system administrator can help you choose the best approach. There are also many configuration 
options depending on your environment, size of installation or the amount of documents you need to 
index. 

Before proceeding any further, please ensure that your Solr instance starts up with no errors and you 
are able to access the administration screens. 

Note 
This document does not explain all the configuration options available in Solr, it only documents 
configuration settings specific to Sitecore search and indexing with item buckets. 

Recommended Solr reading:  

http://www.packtpub.com/apache-solr-3-enterprise-search-server/book 

http://www.packtpub.com/solr-3-1-enterprise-search-server-cookbook/book 

http://www.packtpub.com/apache-solr-4-cookbook/book 

3.2.2 Creating a Solr Core 

You need to create a Solr core to store all your index data. For example, the data collected from 
Sitecore content items. We recommend to create separate cores for each Sitecore index. Some 
methods are executed in terms of the context core disregarding the current index, which can lead to 
inconsistent and unexpected results. 

To create a Solr core: 

1. In Solr, navigate to the solr directory. 

http://www.apache.org/dyn/closer.cgi/lucene/solr/4.1.0
http://www.packtpub.com/apache-solr-3-enterprise-search-server/book
http://www.packtpub.com/solr-3-1-enterprise-search-server-cookbook/book
http://www.packtpub.com/apache-solr-4-cookbook/book


Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 33 of 53 

Your root Solr installation should have a directory structure that looks similar to this: 

 

2. Create an itembuckets folder in the Solr root. In this example no other cores are present. 

 

Note 
The name of the core does not have to be itembuckets. If you give it a different name, ensure 
that you update the index references in the file 

Sitecore.ContentSearch.Solr.Indexes.config (as explained in the next step). 

3. Open the solr.xml file and update the core reference by entering the name of the home 

directory for the Solr core. In this example, the core is called item buckets. 

<cores  

    adminPath="/admin/cores"  

    defaultCoreName="itembuckets"  

    host="${host:}"  

    hostPort="${jetty.port:}"  

    hostContext="${hostContext:}"  

    zkClientTimeout="${zkClientTimeout:15000}"> 

  <core name="itembuckets" instanceDir="itembuckets" /> 

</cores> 

The itembuckets folder is now the home directory for this Solr core. 

4. In the itembuckets folder, create the following three folders or sub directories: 
 

Directory Description 

conf/ 

 
This directory is mandatory and must contain your solrconfig.xml 

and schema.xml. Any other optional configuration files are also 

stored here. You can find an example solrconfig.xml included in your 

Solr distribution. 
 

data/ 

 
This directory is the default location for your 
index, and is used by the replication scripts for dealing with 

snapshots. You can override this location in the conf/solrconfig.xml. 

Solr creates this directory if it does not already exist. 
 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 34 of 53 

Directory Description 

lib/ 

 
This directory is optional. If it exists, Solr loads any Jars found in this directory and 

uses them to resolve any plugins specified in the solrconfig.xml or schema.xml. 

For example, Analyzers or  

Request Handlers. Alternatively you can use the <lib> 

syntax in conf/solrconfig.xml to direct Solr to your plugins. See  

the example conf/solrconfig.xml file for details. 

 

 

To make the Social Connected work correctly with Solr, you must create a new core in Solr named 
Social. If you give the new core a different name, you must specify this name in the 

Sitecore.Social.Solr.Index.Master.config and 

Sitecore.Social.Solr.Index.Web.config files, in the Parameters section. 

3.2.3 Generating an XML Schema for Solr 

The main difference between the default Lucene instance and Solr is that Solr needs a defined xml 
schema when working with documents. 

You can modify an existing schema using the Sitecore Build Solr Schema tool. This tool automatically 
generates a basic schema and ensures all the fields that Sitecore needs are present. You can add 
your own fields to this schema as long as you do not change the system index fields. 

To generate a new Solr schema.xml file: 

1. In the Sitecore Desktop, open the Control Panel. In the Control Panel, click Indexing. 

 

2. Then click Generate the Solr Schema.xml file. 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 35 of 53 

 

3. In the Build Schema window, in the Source field, enter the path to the Solr schema that you 

want to use, for example: C:\apache-solr-
4.0.0\solr\itembuckets\conf\schema.xml 

In the Target File field, enter the destination for the new schema file, for example the website 

root folder: C:\inetpub\wwwroot\<sitename>\Website\schema.xml 

 

4. Click Generate. 

When you click Generate this updates the schema.xml and adds all the necessary fields that 

Sitecore needs. 

When the tool has finished, copy the file to the conf directory in the itembuckets/conf folder. It 

must also be renamed to schema.xml. 

Note 
If you have any other field definitions, copy fields or dynamics fields configured in your schema they 
are overwritten by the schema generator. To preserve these fields, copy your original schema and 
merge it with the newly generated schema afterwards. 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 36 of 53 

3.2.4 Enabling Solr Term Support 

When you implement Solr with Sitecore you need to enable term support in the Solr search handler. 

The term functionality is built into Solr but is disabled by default. To power the dropdowns in the UI 
you must enable the terms component. 

Note 
In Lucene term support is enabled by default. 

To enable Solr term support: 

1. In your Solr installation, open the solrconfig.xml file. This file is located in the conf folder 

along with the schema.xml file. The path to this file is something like this: 

apache-solr-4.0.0\solr\itembuckets\conf 

2. In the solrconfig.xml file, locate the requestHandler node: 

<requestHandler name="/select" class="solr.SearchHandler"> 

3. Inside the requestHandler node, you need to add the following line: 

<bool name="terms">true</bool>  

Add this line under the "defaults" node: 

<lst name="defaults"> 

   <str name="echoParams">explicit</str> 

   <int name="rows">10</int> 

   <str name="df">text</str> 

   <bool name="terms">true</bool> 

</lst> 

4. Also add the following node after the "defaults" element. 

<arr name="last-components"> 

   <str>terms</str> 

</arr> 

5. Save your changes. 

3.2.5 Verifying that Solr is Running Correctly 

After generating a new schema.xml file and updating the solrconfig.xml file you need to verify 

that Solr runs correctly. 

To check Solr starts up correctly: 

1. Ensure Solr is not running. A full restart is needed so that it loads the new configuration. 

2. Start up Solr. 

Note 
How you start up Solr is dependent on the type of installation you have. 

3. Check the output log files. If there are no errors, then open the Solr administration page. 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 37 of 53 

To open the administration page, enter the following URL in your browser: 

http://localhost:8983/solr/admin. 

 

4. Select the CoreAdmin tab and then click itembuckets in the left hand navigation. 

 

5. If you can see the Solr administration page and do not get any errors in the log files, then Solr 
is running correctly. 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 38 of 53 

3.3 Configuring an IOC Container 

The Sitecore Solr provider makes use of an IOC (Inversion of Control) container so that all the 
elements inside it are swappable without the need for re-compilation. 

Sitecore supports five of the most commonly used open source IOC containers, all of which are 
currently available on the NuGet website. 

Versions currently supported: 

 Castle Windsor v3.1.0.0 

 AutoFac v2.5.2 

 Ninject v3.0.0 

 StructureMap v2.6.2 

 Unity v2.1.505 

Note 
As these projects are open source they are often updated. You may have to request a specific version 
of the container from NuGet using the –Version switch in the NuGet command line. 

3.3.1 Selecting the Correct Support DLL files 

When you have chosen a suitable IOC container ensure that you include the correct support DLLs in 
the bin directory alongside the DLLs installed for the container. 

Depending on your container, ensure that you also copy the following DLL files into the bin folder: 
 

IOC container DLL files 

Castle Windsor  SolrNet.dll 

 Microsoft.Practices.ServiceLocation.dll 

 Castle.Facilities.SolrNetIntegration.dll 

 Sitecore.ContentSearch.SolrProvider.CastleWindsorIn

tegration.dll 

AutoFac  SolrNet.dll 

 Microsoft.Practices.ServiceLocation.dll 

 AutofacContrib.CommonServiceLocator.dll 

 AutofacContrib.SolrNet.dll 

 Sitecore.ContentSearch.SolrProvider.AutoFacIntegrat

ion.dll 

Ninject  SolrNet.dll 

 Microsoft.Practices.ServiceLocation.dll 

 CommonServiceLocator.NinjectAdapter.dll 

 Ninject.Integration.SolrNet.dll 

 Sitecore.ContentSearch.SolrProvider.NinjectIntegrat

ion.dll 

 

StructureMap  SolrNet.dll 

 Microsoft.Practices.ServiceLocation.dll 

 StructureMap.SolrNetIntegration.dll 

 Sitecore.ContentSearch.SolrProvider.StructureMapInt

egration.dll 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 39 of 53 

IOC container DLL files 

Unity  SolrNet.dll 

 Microsoft.Practices.ServiceLocation.dll 

 Unity.SolrNetIntegration.dll 

 Sitecore.ContentSearch.SolrProvider.UnityIntegratio

n.dll 

 

 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 40 of 53 

3.4 Configuring Sitecore to work with Solr 

Follow the steps in this section to configure Sitecore to work with Solr. 

Important 
Before you can enable the Solr config file you must copy the 
Sitecore.ContentSearch.Solr.Indexes.config file from your Sitecore Solr Support zip package to your 

website Include folder: wwwroot\<sitename>\App_Config\Include\ 

3.4.1 Enabling the Solr Config File 

Your website Include folder contains several configuration files. Lucene search is enabled by default. 
If you want to use Solr you must disable the Lucene search config files and enable the Solr config file. 
This enables Solr integration and gives you access to all the Solr specific configuration settings. 

To switch configuration files so that Solr is enabled and Lucene is disabled: 

1. Navigate to the website Include folder: wwwroot\<sitename>\App_Config\Include\ 

Disable the following Lucene configuration files by adding .example to the file name 

extension. 

 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 41 of 53 

2. Enable the Sitecore.ContentSearch.Solr.Indexes.config file by removing 

.example from the file name. 

 

Note 
It is important to remove, or rename, the Lucene configuration include files so that they do not get 
loaded. If these files are not removed you get an error message. For more information on handling 
this error message, see the Troubleshooting section. 

3.4.2 Solr Specific Settings 

The following Solr specific settings can be found in the 

Sitecore.ContentSearch.Solr.Indexes.config file. 

Specifying a Solr Service Address 

This setting tells Sitecore where the Solr server is located. Sitecore appends the core name so only 
the base address needs to be supplied. 

<setting name="ContentSearch.Solr.ServiceBaseAddress" value="http://localhost:8983/solr" /> 

Enabling a Search Provider 

This setting tells Sitecore that Solr is enabled and so attempts to connect to the Solr server the next 

time the index is accessed. If it cannot connect you get an error. To disable, set this back to Lucene, 

which was the default setting. 

<setting name="ContentSearch.Provider" value="Solr" /> (Default: “Lucene”) 

Maximum Number of Search Results 

This is a global setting found in the Sitecore.ContentSearch.config file. 

This setting contains the maximum number of documents to retrieve on a single request if a limit has 

not been specified in the query, for example, Take(10). It is important to remember, for performance 

reasons, when querying how many results will be returned from the query being run and to handle 
them correctly, for example by using paging. 

<setting name="ContentSearch.SearchMaxResults" value="500" /> 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 42 of 53 

Enabling Batch Mode 

When an item is indexed the composed document is saved to the search index. When the default 
Lucene provider is enabled then each write is being flushed to a file on the local disk. When a 
document is written using the Solr provider the update has to travel over a network. 

 

When an index is rebuilt a large number of document updates are created, this could result in a lot of 
network traffic which is not very efficient. Therefore using batch can help to optimize the update 
process as your indexes grow in size. 

<setting name="ContentSearch.Update.BatchModeEnabled" value="true" /> 

<setting name="ContentSearch.Update.BatchSize" value="500" /> 

Batch mode (enabled by default) takes these document updates and only flushes to the Solr server 
when the batch has reached a certain size. 

 

As your index grows you may want to increase this batch size to gain the most out of this process. 

3.4.3 Specifying an IOC Container 

The final part is to update the global.asax file so that the Solr provider is loaded on application 

start. You can do this by instructing your application to inherit from one of the application classes 
provided; specific configuration is dependent on your IOC container choice. 

For example, to update the Global.asax file to use Castle Windsor: 

1. In your website root folder, locate the Global.asax file: 

wwwroot\<sitename>\Website 

2. Open the Global.asax file and in the first line, replace the following: 

Inherits="Sitecore.Web.Application" 

With 

Inherits="Sitecore.ContentSearch.SolrProvider.CastleWindsorIntegration.WindsorApplicat

ion" 

This registers the IOC (inversion of control) components for Castle Windsor enabling Solr 

integration to work correctly. 

 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 43 of 53 

Alternatively, replace the Sitecore.Web.Application reference with a reference to one of 

the following IOC containers: 
 

IOC Container Class 

Castle 

Windsor 

 

<%@Application Language='C#' 

Inherits="Sitecore.ContentSearch.SolrProvider.CastleWindsorIntegration.Winds

orApplication" %> 

Autofac 

 
 

<%@Application Language='C#' 

Inherits="Sitecore.ContentSearch.SolrProvider.AutoFacIntegration.AutoFacAppl

ication" %> 

Ninject 

 
 

<%@Application Language='C#' ' 

Inherits="Sitecore.ContentSearch.SolrProvider.NinjectIntegration.NinjectAppl

ication" %> 

StructureMap 

 
 
 

<%@Application Language='C#' ' 

Inherits="Sitecore.ContentSearch.SolrProvider.StructureMapIntegration.Struct

ureMapApplication" %> 

 

Unity 

 
 

<%@Application Language='C#' 

Inherits="Sitecore.ContentSearch.SolrProvider.UnityIntegration.UnityApplicat

ion" %> 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 44 of 53 

3.5 Re-building the Search Indexes 

Before you can start using the Solr indexing system you need to re-index all your Sitecore content. 

To rebuild the Sitecore search indexes: 

1. Log into the Sitecore Desktop. 

2. Click Start and then click Control Panel. 

3. In Control Panel, select Indexing. 

 

4. Then select Indexing Manager. 

 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 45 of 53 

5. In the Select Search Index window, select all local indexes. 

 

6. Click Rebuild and then click Finish when the Wizard has completed. 

When the Wizard has finished, try to perform a search in the Sitecore Content Editor using the item 
buckets search functionality. 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 46 of 53 

3.6 Troubleshooting Solr 

Q: I see the error ‘Connection error to search provider [Solr]: Unable to connect to..’ 

A: This means that Sitecore is unable to communicate with the Solr server. Check the network 
address in the configuration file. Also check that the Solr application server is accessible over the 
network and all the relevant ports are open. 

Q: I see the error ‘Solr configuration conflict. Do you still have other provider indexes 
enabled?’ 

A: You have not removed all the existing Lucene configuration files from the App_Config/Include 
directory of your Sitecore installation. The Solr provider is unable to start if these are still present. 

Q: I am already using a container. I don’t want two active containers in my application, so how 
do I access the container instantiated by Sitecore? 

A: The supplied application (where relavant) exposes a public property called Container which can be 
used to retreive the current container instance. 

Q: Can I have more than one provider active at the same time?  

A: No, currently you can only have one provider active per Sitecore instance. 

Q: Should I use the Solr provider instead of the default Lucene provider? 

A: The Lucene provider supplies identical support and excellent performance so the choice of which 
to use should come down to issues of scale and support. If the amount of content items becomes vast 
and each item contains a lot of data then you may want to look at moving your search index into Solr. 
Solr is designed for large numbers of items, allows the index to be sharded and scaled efficiently and 
also includes advanced features such as query and http caching which support the enterprise 
customer. 

Solr also requires a separate Solr instance, whereas Lucene is local and file based. If you use Lucene 
you always have to assess the management and up-keep of this instance. Solr requires very little 
manual attention, other than the initial configuration and log/disk space management but it is another 
factor to consider. 

Q: I search for an item field in the Sitecore search interface and I see ‘field not in schema’ 
errors in my Solr log. It works correctly in Lucene, so what is going on? 

A: The most important difference between the Lucene and Solr providers is that Solr requires a 
schema for all fields. The Solr Provider tries to work round this limitation by using dynamic fields to 
map fields that are not in the schema. You can observe this mapping in the fieldMap section of the 
SolrProvider.config file. If, for example, you have a field called title which is a rich text field type then, 
using the field mapping logic, it stores the field as title_t. This translation is handled for you in Linq 
requests but through the Sitecore search UI, if you want users to be able to search a certain field 
without its dynamic extension, you must add this field to the schema.xml file. 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 47 of 53 

Chapter 4  

Language Support in Solr 

This chapter explains how to configure the Solr provider to support different languages in Sitecore. It 
includes the following sections: 

 Solr Schema-less Fields 

 Multiple Language Support 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 48 of 53 

4.1 Solr Schema-less Fields 

When using Sitecore with Solr, items in different languages are stored separately as fields with 
different culture extensions. 

Solr and Lucene process fields from Sitecore differently. Solr requires a schema to know how to 
process each field and Lucene does not. In Solr, the schema file (schema.xml) must be updated for 
each field you want to add to the index. This allows a great deal of flexibility in how you analyze and 
process the information that goes into these fields. In Sitecore it is easy to add/remove or rename 
template fields so it becomes very inconvenient if you have to re-generate your Solr schema.xml file 
every time you add a new field. 

To overcome this problem Sitecore uses Solr’s dynamic fields. These are a special type of index field 
that do not require the Solr schema to be updated every time you make a change. When Sitecore 
stores a new field name, the field type is mapped to a dynamic field, so there is no need to re-
generate the Solr schema more than once. 

Example: Defining a simple schema-less field 

A Sitecore template has a field called title which is a text/rich text field. 

This field is not defined in the schema so when it is indexed it instead uses the *_t dynamic field that 

has been set up in the Solr schema.xml. 

How to define a dynamic field in a Solr schema file: 

<dynamicField name="*_t" type="text_general" indexed="true" stored="true" /> 

The field is therefore stored in the Solr index as title_t. 

Note 
Sitecore handles the adding and removing of these extensions when they are queried using Linq To 
Sitecore but if you run into problems it is important that you have a more technical understanding of 
how this works. The next section, Multiple Language Support explains this in more detail. 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 49 of 53 

4.2 Multiple Language Support 

This section explains how Sitecore stores fields if an item has more than one language version. 

4.2.1 Storing Fields for Items in Multiple Languages 

Language processing is based on the default language defined in the Sitecore web.config file: 

<setting name="DefaultLanguage" value="en" /> 

Any field item in a language that does not match the default language is stored with an additional 
culture extension. For example, an extension of _fr is added to create the French language context. 

Storing items with different languages as separate fields allows us to use language specific analyzers. 
Solr comes with several very powerful analyzers for many commonly used languages. The example in 
this section uses the type text_fr which maps to a field specifically tailored for processing French text. 
Including French specific stop words and stemming. 

<!-- French --> 

<fieldType name="text_fr" class="solr.TextField" positionIncrementGap="100"> 

  <analyzer> 

    <tokenizer class="solr.StandardTokenizerFactory" /> 

    <!-- removes l', etc --> 

    <filter class="solr.ElisionFilterFactory" ignoreCase="true"  

     articles="lang/contractions_fr.txt" /> 

    <filter class="solr.LowerCaseFilterFactory" /> 

    <filter class="solr.StopFilterFactory" ignoreCase="true" words="lang/stopwords_fr.txt"  

     format="snowball" enablePositionIncrements="true" /> 

    <filter class="solr.FrenchLightStemFilterFactory" /> 

    <!-- less aggressive: <filter class="solr.FrenchMinimalStemFilterFactory"/> --> 

    <!-- more aggressive: <filter class="solr.SnowballPorterFilterFactory"  

     language="French"/> --> 

  </analyzer> 

</fieldType> 

Example: Defining a Simple Schema-less Language Version 

Again using the template field title, in this example it is used in an item that has both English (default) 
and French language versions. 
The default English version is stored using the default *_t extension. So in this example, the 
field is stored as title_t. 

The French version, is stored using the *_t_fr extension as it does not match the default language. 

<dynamicField name="*_t_fr" type="text_fr" indexed="true" stored="true" /> 

This means the French version of this field is stored as title_t_fr in the Solr index. 

Note 
If the default language in the web.config is French (fr) then the fields are stored as title_t and 
title_t_en respectively. 

4.2.2 Retrieving a Specific Language Version Using Linq To Sitecore 

To retrieve a language specific version of an item you need to use the IExecutionContext object, 

and the CultureExecutionContext implementation. 

When you request an object from the search context that you want to query, you can specify a 

CultureExecutionContext for a specific language. 

For example, you could choose French: 

var queryable = ctx.GetQueryable<MultiLanguage>( 

    new CultureExecutionContext(CultureInfo.GetCultureInfo("fr"))); 

This means that any queries issued using this object return the language specific versions of those 
fields (if they exist) without the need to specifically name the field. 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 50 of 53 

So an object property such as: 

public string Title { get;  set; } 

would map to title_t with no CultureExecutionContext specified and title_t_fr with a French 

CultureExecutionContext specified, like the example above. 

Example: Updating the default language analyzer in Solr 

If your default language is not English you need to change the default text extension analyzer (*_t) to 
match the language you want as the default. 

For example, to change the default language from English to French: 

1. Update the Sitecore web.config setting by changing the DefaultLanguage setting from 

en to fr. 

<setting name="DefaultLanguage" value="fr" /> 

2. Open the Solr schema.xml file and change the default analyzer from text_general 

analyzer (which is generic for all languages) to text_fr (French language). You need to 

change both *_t dynamic field and the text regular field. 

Text general: 

<dynamicField name=”*_t” type=”text_general” indexed=”true” stored=”true” /> 

<field name="text" type="text_general" indexed="true" stored="false"   

multiValued="true" /> 

Text French: 

<dynamicField name="*_t" type="text_fr" indexed="true" stored="true" /> 

<field name="text" type="text_fr" indexed="true" stored="false"  

multiValued="true" /> 

This means that Solr now analyzes the *_t dynamic field using the French language analyzer, 
which gives better search results for text submitted in French. 

3. Restart Solr 

4. Re-index all your search index data. 

Note 
After changing the default language it is important to remember to restart Solr and re-build all your 
search indexes. 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 51 of 53 

Chapter 5  

Appendix 

This chapter contains additional information that may be useful for extending or 
modifying your Sitecore CMS and item buckets solution. 

This chapter contains the following sections: 

 Tips and Tricks 



Sitecore CMS 7.0 or later  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 52 of 53 

5.1 Tips and Tricks 

Standard Web.Config Tweaks 

 Change the web.config setting of Indexing.UpdateInterval to 30 seconds or lower 

depending upon performance. 

 You should periodically tweak the cache depending on how many items are in the content 
tree and how many similar searches have been processed. 

Setup Tweaks 

 Keep the number of facets to a minimum. If you have more than 100 facets, you might see a 
small degradation of performance.  

 When you import a lot of content programmatically, you must truncate the PublishingQueue, 
History, and Event Queue tables in the Master and Web databases and rebuild the indexes 
on the database tables. If you do not do this, the PublishingQueue, History, and EventQueue 
tables become very large, slowing down processing, and your Sitecore installation may not 
start. 

To clear the tables, you must rebuild the index and run a smart publish instead of an 
incremental publish. 

Content Author Tips 

 You can use wildcards to search for IDs. 

For example, if you know the first 4 characters of the GUID of an item, enter, for example, 
id:c728* and click search to find the corresponding item. 

Environment Tweaks 

 If possible, disable the inbuilt Windows Search Index as well as any other indexer that is 
running on the computer that runs the index or on the web server itself. This index uses 
essential Disk I/O resources that Lucene.net needs. 

 Do not run processes on the index to create a backup. This is an expensive operation and the 
index is likely to be out of date when the backup is complete. 

 It is very important that you set up a SQL Maintenance task that rebuilds your indexes. When 
you create a lot of content, index fragmentation increases, especially with the bulk importation 
of content. 

The hotspots are the Items, Versioned, Unversioned, Shared, Blobs, and Links tables. To be 
on the safe side, you should set rebuilds for every table. If you do not do this, the CMS gets 
sluggish. 

Here is a script for rebuilding all the indexes in your databases. 

-- Show fragmentation for all tables 

EXEC sp_MSforeachtable @command1="print '?' DBCC SHOWCONTIG('?')" 

 

--Rebuild all indexes (this method locks the tables while the indexes are rebuilt) 

 

USE [Sitecore_Master] --Change this to your database name 

DECLARE @TableName varchar(255) 

DECLARE TableCursor CURSOR FOR 

 

SELECT table_name FROM information_schema.tables 

WHERE table_type = 'base table' 

 

OPEN TableCursor 

FETCH NEXT FROM TableCursor INTO @TableName 

WHILE @@FETCH_STATUS = 0 

 

BEGIN 



Sitecore Search Scaling Guide  

 

Sitecore® is a registered trademark. All other brand and product names are the property of their respective holders. The 
contents of this document are the property of Sitecore. Copyright © 2001-2015 Sitecore. All rights reserved.  

Page 53 of 53 

DBCC DBREINDEX(@TableName,' ',90) 

FETCH NEXT FROM TableCursor INTO @TableName 

END 

 

CLOSE TableCursor 

DEALLOCATE TableCursor 

Importing Data Tweaks 

 If you import a lot of content, do it in batches of, for example, one thousand items, and then 
bucket or re-sync the bucket to avoid overloading the process with items. 

Bucket Config Tweaks 

 You can tweak your index so that you only include the things that you really want in the index. 
This decreases rebuild time and improves search time. 

 Consider rebuilding your indexes on a computer that has a solid state disk (SSD). Incremental 
updates do not have to be performed on SSD but they benefit from this approach. If you have 
one dedicated server that rebuilds indexes and deploys them to an environment, ensure that 
this server has an SSD. Indexes do not take up much space, so it is fine to use a small SSD 
— for example 64GB. 

 Do not shard too many indexes. Sitecore must context switch between these shards and this 
slows down search time. 

 If you have very large caches, you can see large memory spikes when you run a search. This 
is normal as a search is filling the ItemCache for the results. Be careful of under-optimized 
caches — they keep as much of the search results in cache as possible and this may not be 
optimal. 

 If you see a lag in searches or results that are taking a long time to display facets, enable 

debug mode in the Sitecore.ContentSearch.config file. To enable debug mode 

change the following setting: <setting name="ContentSearch.EnableSearchDebug" 

value="false" />. In Debug mode all the queries are logged, as well as how long the 

queries take to run and how many clauses they contain. This can help identify the issue. 
Wildcard and range queries are probably the main culprits. 

 Optimize the out-of-the-box indexes.  

Optimization speeds up index rebuilding time and to some small degree, query time as well. 

 Disable the search tips if you do not need them. To do this open the 

Sitecore.Buckets.config file and change the following setting: <setting 

name="BucketConfiguration.EnableSearchTips" value="true"/>. 

 Disable all the dropdowns that you are not using in the 

/sitecore/system/Settings/Buckets/Settings/Search Box Dropdown item. 

The most expensive lookups are recently modified and recently created. 

 Add all the items in /sitecore/system/Settings/Buckets to your prefetch cache. 

 If you have disabled Debug mode but would like to debug a single query, in the search field 
enter debug:1, press tab and then enter the search term. Sitecore only adds that search 
query to your log file. 

 Ensure that the Buckets option is not selected. 


	Chapter 1  Introduction
	1.1 Item Buckets – Conceptual Overview
	1.1.1 Overview
	1.1.2 Fundamental Concepts
	1.1.3 Terminology

	1.2 Creating Item Buckets
	1.2.1 Making Content Items Bucketable
	1.2.2 Hiding Items in an Item Bucket
	1.2.3 Making Templates Bucketable

	1.3 Synchronizing Item Buckets
	1.3.1 Locking Parent/Child Relationships

	1.4 Managing Item Buckets
	1.4.1 Building the Search Indexes
	1.4.2 Item Bucket Settings


	Chapter 2  Configuring Scalability in Sitecore
	2.1 Configuring Cache
	2.1.1 Custom Cache Settings

	2.2 Multiple Search Indexes
	2.3 Configuring Scalability Settings
	2.3.1 Sitecore Buckets Scaling Config
	2.3.2 Creating a Custom Crawler
	Custom Crawler Configuration

	2.3.3 Creating Multiple Search Indexes (Sharding)


	Chapter 3  Extending Scalability with Solr
	3.1 Benefits of Using Solr
	3.2 Configuring Solr to work with Sitecore
	3.2.1 Preparing Solr
	3.2.2 Creating a Solr Core
	3.2.3 Generating an XML Schema for Solr
	3.2.4 Enabling Solr Term Support
	3.2.5 Verifying that Solr is Running Correctly

	3.3 Configuring an IOC Container
	3.3.1 Selecting the Correct Support DLL files

	3.4 Configuring Sitecore to work with Solr
	3.4.1 Enabling the Solr Config File
	3.4.2 Solr Specific Settings
	3.4.3 Specifying an IOC Container

	3.5 Re-building the Search Indexes
	3.6 Troubleshooting Solr

	Chapter 4  Language Support in Solr
	4.1 Solr Schema-less Fields
	4.2 Multiple Language Support
	4.2.1 Storing Fields for Items in Multiple Languages
	4.2.2 Retrieving a Specific Language Version Using Linq To Sitecore


	Chapter 5  Appendix
	5.1 Tips and Tricks


